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In this supplementary material, we provide more detailed discussions and experimental results on
Pareto MTL. We also point out some limitations for the current Pareto MTL and propose some
potential research directions.

1 The Importance of Finding the Initial Solution
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Figure 1: The convergence behaviours of different algorithms on the synthetic example. The
proposed Pareto MTL algorithm without initialization step can still generate a set of solutions with
different trade-offs on the Pareto front. However, it fails to find solutions near the end points.

Finding an initial solution is important for solving Pareto MTL. In this paper, we propose a gradient-
based method to find an initial solution to each MTL problem. The initial solution should be a feasible
solution to the constrained subproblem or at least satisfy most constraints. In this section, we further
analyze the importance of finding the initial solution.

We first test the Pareto MTL algorithm without the initialization step on the synthetic example. As
shown in Figure. 1, without the initialization step, Pareto MTL can still generate a set of Pareto
solutions with different trade-offs and outperforms the MOO-MTL algorithm. However, the diversity
of these solutions is worse than those generated by the Pareto MTL with the initialization step. It is
obvious that Pareto MTL without initialization fails to find solutions near the endpoints of the Pareto
front. The lack of ability to cross the boundary between different sub-regions would be one reason
for inferior performance.

For a subproblem, a randomly generated solution might not be in (or even far away from) its
preference sub-region. With the initialization step, the solution can be sequentially updated to get
close to the assigned preference sub-region since the constraint values are lowered at each iteration.
Many constraints would turn inactivated once the solution crosses its boundary to get close to its
assigned preference vector. In contrast, without the initialization step, the solution might stop at some
boundary of the preference vectors (with corresponding activated constraints) during the optimization
process since now the objective functions are taken into consideration. It is easier to find a descent
direction to lower the value of activated constraints than to find a direction to lower both the values of
activated constraints and the tasks.
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Figure 2: Pareto MTL with and without Initialization on Multi-Fashion MNIST problem.

We also test the Pareto MTL without initialization step on the Multi-FashionMNIST problem. As
shown in Fig. 2, the Pareto MTL without initialization step can generate solutions with different
trade-offs, but the diversity is much worse than Pareto MTL with initialization step.

In the proposed Pareto MTL, we obtain the descent direction for each subproblem by solving:

(dt, αt) =arg min
d∈Rn,α∈R

α+
1

2
||d||2

s.t. ∇Li(θt)T d ≤ α, i = 1, ...,m.

∇Gj(θt)T d ≤ α, j ∈ Iε(θt).

(1)

Actually, depended on how to obtain the gradient direction, we have three different algorithms:

1. Only consider the tasks Li(θt): MOO-MTL, for convergence;
2. Only consider the constraints Gj(θt): the initialization step in Pareto MTL, for diversity;
3. Consider both Li(θt) and Gj(θt): the main step of Pareto MTL, tries to find a set of restricted

Pareto points on diverse sub-region, somehow balance the convergence and diversity.

How to choose or switch among these different algorithms would be an interesting research topic.
The proposed Pareto MTL first runs step 2 and then runs step 3. An immediate extension is to keep
and get a snapshot [1] of all solutions at the end of step 3, then relax all constraints and run step
1. In this way, we can obtain a set of restricted Pareto critical solutions for each subproblem by
Pareto MTL (running step 2 and step 3) with good diversity, plus a set of Pareto critical solutions (not
restricted) with potential better convergence by running step 1 at the end.

2 MTL with Many Tasks

Pareto MTL uses a set of preference vectors to decompose a given MTL problem into several
constrained multi-objective subproblems. By solving all subproblems, Pareto MTL can obtain a set
of optimal solutions with different trade-offs among all tasks. However, to fairly cover the whole
objective space of all tasks, the number of required preference vectors would increase exponentially
when the MTL problem has more tasks.

To be concrete, Pareto MTL needs to solve a (m+K − 1)-dimensional constrained optimization
problem to find the descent direction at each iteration, and solve K subproblems in total, where
m is the number of tasks and K is the number of preference vectors. Under mild assumption, the
Pareto front would be a m− 1 dimensional manifold for a multi-objective optimization problem [2].
Suppose we need p (e.g., 5) widely distributed Pareto solutions to properly represent different optimal
trade-offs on one dimension of the Pareto front, the total required solutions could be pm−1 (e.g., 25
solutions for three tasks and 125 solutions for four tasks) to cover the whole Pareto front. Since we
need to assign one preference vector for each expected solution, the dimension of the constrained
optimization problem at each iteration would bem+pm−1−1, and there are pm−1 MTL subproblems
to be solved in total. The current Pareto MTL suffers the curse of dimensionality to cover the whole
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Pareto front for a MTL with many tasks. In other words, it would be extremely time-consuming for
Pareto MTL to provide a set of widely distributed solutions to explore the whole objective space for a
MTL problem with many tasks.

To check the required number of solutions, we test Pareto MTL on a multi-task learning problem
with three prediction tasks on the UCI census-income dataset [3, 4]. This dataset is a subset of the
1994 American Census dataset and contains 299, 285 adults’ demographic information records with
40 different features. Similar to the setting in [5], we set the income, education level, and marital
status as three binary targets to be predicted:

• Task 1: whether the person’s income exceeds $50K/year.
• Task 2: whether the person’s education level is at least college.
• Task 3: whether the person is never married.

We build a multi-task neural network with hard parameter sharing for three tasks as the prediction
model. We first convert all discrete categorical features into one-hot vectors and obtain a 482
dimensional input feature vector for each record. The model has two hidden fully connected hidden
layers with 1024 and 128 hidden units, and each task has its own output layer.
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Figure 3: Pareto MTL with different number of preference vectors and linear scalarization with
random search on census dataset.

The experiment’s results are shown in Fig. 3. We first compare the performance of Pareto MTL
with 5 and 25 randomly generated preference vectors. From sub-figure (a), it is clear that Pareto
MTL with 25 preference vectors can represent the different trade-offs among three tasks much better.
MTL practitioners can easily select their preferred solutions from the obtained results. Pareto MTL
with 5 preference vectors can also provide solutions with different trade-offs, but the only 5 obtain
solutions can not properly represent different optimal trade-offs on the Pareto front. Therefore, a
large number of preference vectors (and hence corresponding MTL subproblems) is needed to obtain
a set of well-representative trade-offs for a MTL problem with more tasks. We also compare Pareto
MTL with the linear scalarization method with random weight research. As shown in sub-figure (b),
Pareto MTL’s solutions dominate nearly all random search’s solutions, which means Pareto MTL has
a much better performance on this MTL problem.

In addition to the performance, how to provide information to the practitioner for making decisions is
another critical issue for many tasks. Visualizing all solutions with different trade-offs for three tasks
is not as clear as for two tasks, and visualization would be much more difficult for more than three
tasks. We make a discussion on some potential methods for many tasks in the rest of this section.

Finding representative solutions with preferred trade-offs. When the preference vectors are
fixed and cannot be adaptively adjusted, MTL practitioners can still directly use Pareto MTL to
generate different Pareto solutions with their preferred trade-offs for MTL problem with many tasks.
As discussed in the experiment section, in Pareto MTL, the subproblem with extreme preference vector
(e.g., (0, 1) and (1, 0)) can be explained as auxiliary multi-task learning, where the corresponding

3



task is the preferred main task and the others are auxiliary tasks. Similar explains can also be applied
for subproblem with a specific preference vector. In other words, once the MTL practitioners have
their preferred trade-off(s) among the tasks, they can directly run Pareto MTL to find diverse Pareto
solution(s) corresponding to different preference vectors. If the MTL practitioners do not have any
preferred trade-off yet, they can at least run Pareto MTL with a few different preference vectors to
obtain a set of diverse Pareto solutions. They can directly choose their preferred solutions or use
them to summarize preferred trade-off(s) for another run.

In this section, we run Pareto MTL with only a few preference vectors for solving a MTL with three
different tasks. The dataset we use is the UTKFace dataset [6], and the MTL problem is to predict
human’s gender, race, and age based on one image of their faces. We build a deep MTL network with
Resnet18 as the encoder and a task-specific fully connected layer for each task.

Table 1: The gender accuracy, race accuracy, and age L1-loss obtained by different algorithms. The
best results are highlighted. Pareto MTL can find widely distributed solutions with diverse trade-offs.

Method Reference Gender Race Age
Vector (Accuracy) (Accuracy) (L1-Loss)

Single Task - 0.879157 0.781265 13.55133
Fixed MTL ( 1

3 ,
1
3 ,

1
3 ) 0.873982 0.783819 13.90006

GradNorm - 0.880913 0.766011 13.79205
Uncertainty - 0.879657 0.770406 13.96869
MOO-MTL - 0.878013 0.778436 13.80779

(
√
3
3 ,
√
3
3 ,
√
3
3 ) 0.878049 0.786747 13.91812

Pareto MTL (0,
√
2
2 ,
√
2
2 ) 0.885552 0.754095 14.41414

(
√
2
2 , 0,

√
2
2 ) 0.872242 0.792814 14.32156

(
√
2
2 ,
√
2
2 , 0) 0.866895 0.762251 13.51771
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Figure 4: The 2-D projections for the results obtained by different algorithms. We report the negative
age L1-loss for the sake of consistency. Pareto MTL can provide solutions with diverse trade-offs.

The experiment result is shown in Table.1 and Fig.4. It confirms that Pareto MTL with a few
specific preference vectors can still find representative Pareto solutions for the practitioner’s preferred
trade-offs.

Learning to find preferred Pareto solution(s). One advantage of Pareto MTL over MOO-MTL is
its ability to incorporate preference information even with only a single run (solving one subproblem,
but still need a set of preference vectors to divide the objective space). Recently, some learning-based
methods have been proposed to solve MTL problems [7, 8]. It is possible to propose learning-based
Pareto MTL for dynamically adjusting the preference vectors to incorporate the MTL practitioner’s
preference, and to guide the solutions search to their preferred smaller subspace for a MTL problem.

Methods from the multi-objective optimization community. By formulating the MTL with many
tasks as a multi-objective optimization problem, we get a many-objective optimization problem,
which is indeed a popular research topic in the multi-objective optimization community [9, 10, 11, 12].
How to adopt the techniques proposed from the multi-objective optimization community to solve the
MTL problem with many tasks is a potential research direction.
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3 The Adaptive Weight Vectors
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Figure 5: The adaptive weight vectors for different algorithms during the training process for
MultiMNIST experiment. Pareto MTL behaves differently with different reference vectors. The
other algorithms with adaptive weights assignment try to balance different tasks.

In the paper, we show that MOO-MTL and the proposed Pareto MTL algorithm can be reformulated
as a linear scalarization of different tasks with adaptive weights assignment where the Pareto MTL
algorithm can be rewritten as:

L(θt) =

m∑
i=1

αiLi(θt), where αi = λi +
∑

j∈Iε(θ)

βj(uji − uki), (2)

In this section, we compare the adaptive weight vectors for different algorithms during the training
process. As shown in Fig. 5, Pareto MTL has clearly different weight adaption strategies for
subproblems with different preference vectors, while MOO-MTL and GradNorm always try to
balance different tasks.

From the view point of linear scalarization with adaptive weights, the surrogate loss for MOO-MTL,
GradNorm and Uncertainty can be written as L(θt) =

∑m
i=1 λiLi(θt). Different methods have their

own strategy to adapt the weight λi to balance the loss function Li(θt). For Pareto MTL, the weight
vector now has the form αi = λi +

∑
j∈Iε(θ) βj(uji − uki). While the parameter λi is still for

balancing different tasks, the preference term
∑
j∈Iε(θ) βj(uji − uki) will guide the Pareto MTL to

its corresponding preference vector. As shown in Fig. 5, Pareto MTL will bias the search to a specific
task when it has extreme preference vectors (e.g., (0, 1) and (1, 0)), and it will try to balance different
tasks with a balance preference vector (e.g., (

√
2/2,
√

2/2)).

When all constraints are inactivated (e.g., Iε(θ) = ∅), Pareto MTL has a feasible solution right in
the assigned sub-region for a given subproblem. In this case, the surrogate loss could be reduced
to Li(θt) =

∑m
i=1 λiLi(θt) which is the same as MOO-MTL, and Pareto MTL will try to find a

balanced solution in the assigned sub-region.

Pareto MTL is not mutually exclusive with other adaptive weight strategies such as GradNorm [13]
and Uncertainty [14], especially when it can be reformulated as the linear scalarization method.
For MTL problem with highly unbalanced tasks with different difficulties, it is possible to first
balance all tasks with some adaptive weight strategies, and then use Pareto MTL to find a set of
Pareto solutions for the balanced tasks. We will discuss the Pareto MTL’s performance on tasks with
different difficulties in the next section.

5



4 Pareto MTL with Different Tasks Difficulties
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Figure 6: The convergence behaviours of different algorithms on a synthetic example with different
tasks difficulties. Pareto MTL can find a set of widely distributed Pareto solutions on problems
with low or medium difficulty unbalance level ((a1 = 2, a2 = 1) and (a1 = 10, a2 = 1)), but its
performance gets worse for problem with high difficulty unbalance level (a1 = 50, a2 = 1).

Pareto MTL implicitly assumes the tasks in a MTL problem should have similar difficulties, and
uses the set of widely distributed unit vectors as the preference vectors. However, its performance
might be deteriorated for tasks with extremely different difficulties. It is hard to control the tasks’
difficulties in real-world MTL applications manually. To clearly demonstrate the performance of
Pareto MTL, we test it on the following synthetic example:

min f1(x) = α1 − α1 exp (−
d∑
i=1

(xd −
1√
d

)2),

min f2(x) = α2 − α2 exp (−
d∑
i=1

(xd +
1√
d

)2),

(3)

where f1(x) and f2(x) are two objective functions to be minimized at the same time and x =
(x1,x2, ...,xd) is the d dimensional decision variable. This problem has a concave Pareto front on
the objective space. The two objective function can have different difficulty levels controlled by the
parameters αi. If α1 = α2, the two tasks have similar difficult level, which is the synthetic example
we have in the main paper. If α1 > α2, the task one could be "easier" since it has a larger gradient
value, and task 2 could be "easier" if α1 < α2. We notice the difficulty measurement for real-world
multi-task learning problem would be much more complicated. Here we focus on the much simplified
version and left the analysis for real-world problems in the future.
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Performance for Problems with Unbalanced Difficulties. The results on problems with different
levels of unbalanced difficulties are shown in Fig. 6. As in the balanced difficult case, the linear
scalarization and MOO-MTL approach can not obtain a set of well-representative solutions for all
problems. Pareto MTL can find a set of widely distributed Pareto solutions on problems with low or
medium difficulty unbalance level ((a1 = 2, a2 = 1) and (a1 = 10, a2 = 1)), but its performance
gets worse for problem with high difficulty unbalance level (a1 = 50, a2 = 1).

Different Biases for MOO-MTL and Pareto MTL. Another interesting observation in this exper-
iment is that MOO-MTL and Pareto MTL will be biased to different tasks in the same unbalance
problem. For example, in the highly unbalanced problem (a1 = 50, a2 = 1), MOO-MTL is biased to
the "easier" Task 1 since it has a much larger absolute gradient value. Most solutions found by Pareto
MTL, however, are biased to the "harder" Task 2. When the tasks have different difficulty levels, the
decomposed sub-region would be highly unbalanced for evenly distributed preference vectors, and
the solutions would be attracted by a few preference vector much easier. In this case, most solutions
are attracted by the preference vector corresponding to task 2 rather than task 1.

As discussed in the previous section, combining Pareto MTL and other adaptive weight methods to
balance different tasks would be one possible method for tackling different levels of task difficulties.
Learning-based self-adaptive method methods would be another important research direction.

5 Preference Vector Assignment
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Figure 7: Three different sets of preference vector: (a) 5 evenly distributed unit preference vectors;
(b) 8 evenly distributed preference unit vectors; and (c) 5 biased unit preference vectors.

The final distribution of the solutions obtained by Pareto MTL depends on both the preference
vectors and the shape of the Pareto front. Even for tasks with similar difficulties, it is still important
to properly assign the set of preference vectors for Pareto MTL. When we do not have any prior
information for a given MTL problem, it is reasonable to decompose the objective space for different
tasks with a set of evenly distributed preference vectors as shown in Fig. 7 (a)(b). When the MTL
practitioners have their own preference for a given MTL problem, they can feel free to use a set of
biased preference vectors as in Fig. 7 (c).

However, it is hard to tell whether the assigned preference vectors would be the optimal one before
the actual run of Pareto MTL. We run Pareto MLT multiple times with a different set of randomly
generated unit preference vectors, and show the results in Fig. 8. Pareto MTL with different sets
of random preference vectors can consistently generate well-distributed solutions, but the accuracy
performance would be better or worse than the default uniform setting. Getting stuck in bad local
Pareto optima would be one possible reason for some inferior performance, since Pareto MTL can
only guarantee locally restricted Pareto optimality. Our preliminary experiment results also show that
too close preference vectors (and hence narrow region Ωk) could also lead to worse performance.

How to efficiently set the preference vectors based on the user’s preference or any prior information
could be an interesting topic. A strategy to adaptively set or change the preference vectors during the
multi-task learning process to incorporate the practitioner’s preference or better explore the objective
space is another possible extension.
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Figure 8: Pareto MTL with different sets of randomly generated unit preference vectors.

6 The Gap between Optimization and Generalization
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(f) MultiFashion: Test Accuracy
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Figure 9: The training loss/training accuracy/test accuracy of Pareto MTL and other algorithms with
ResNet18 on the MultiMNIST, MultiFashionMNIST and Multi-(Fashion+MNIST) datasets. The
labels legend is on the last figure (bottom-right). Pareto MTL has different patterns on the training
loss and the test accuracy.
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Current work shows that the adaptive gradient methods would have inferior performance on some
tasks [15]. In section 4 of this supplementary material, we have discussed tasks with different
difficulty levels which could be one possible reason for the inferior performance. In this section, we
provide another discussion based on the gap between optimization and generalization.

Pareto MTL is derived from the view of optimization. To be concrete, we reformulate MTL as a multi-
objective optimization problem, and then decompose it into multiple constrained multi-objective
subproblems. We also propose an efficient algorithm to solve each constrained subproblem, and treat
the obtained solutions as the Pareto solutions for the original MTL problem. However, the objective
functions we truly optimize is the training loss functions but not the training accuracy or even the
test accuracy for the original MLT problem. Therefore, there would a gap between the objective
functions we truly optimize and the MTL generalization ability, which the practitioners most care
about. Pareto MTL might have different performance on the training loss and the test accuracy.

To show a clear gap between optimization and generalization on purpose, we test Pareto MTL with
ResNet-18 model on the three MNIST-like multi-task datasets, namely the MultiMNIST, Multi-
FashionMNIST, and Multi-(Fashion+MNIST) in the main paper. The ResNet-18 model could be
overparameterized for the MNIST-like dataset and it has the ability to remember all training examples
(and hence has a very high training accuracy). To show the different behaviors, we train the models
on the MultiMNIST dataset with early stop and train the models on MultiFashionMNIST and
Multi-(Fashion+MNIST) till the end.

The experimental results are shown in Fig. 9. For the training losses on all three experiments, Pareto
MTL can obtain widely distributed solutions with different trade-offs. This result is not surprising
since Pareto MTL makes trade-offs and optimizes the loss functions directly. However, there are
different performances on the training accuracy and testing accuracy. For the MultiMNIST dataset
with early stop, Pareto MTL has well-distributed solutions on training loss and training accuracy, but
they are outperformed by the separate single-task baseline. In contrast, Pareto MTL’s solutions on test
accuracy are not diverse enough, but they outperform the single-task baseline and provide different
optimal trade-off. For MultiFashionMNIST and Multi-(Fashion+MNIST) dataset, we train the models
till the end. The training losses for all solutions are close to 0, and the training accuracy for most
solutions are closed to 100%. For this extreme case, although Pareto MTL can still generate a set
of well-representative solutions on the training loss, it has worse performance on the test accuracy.
Some solutions generated by Pareto MTL can match the strong performance of separate single-task
baseline on the training loss, and other solutions can provide different optimal trade-offs at the same
time. However, they are all outperformed by the single-task baseline on the test accuracy. In other
words, Pareto MTL is still good at optimization but has a bad generalization in these cases.

Other adaptive weight methods do not have a clear advantage over the single-task baseline and linear
scalarization method with fixed weights, although they sometimes can generate good solutions that
match Pareto MTL’s solution with the balanced trade-off. In the view of multi-objective optimization,
the adaptive weight methods (with proper weight adaption strategy) should be better than linear
scalarization with fixed weight. The latter can not find any solution on the concave part of a Pareto
front as proved in [16]. The gap between optimization and generalization could be an important
research issue when we design MTL algorithms from the view of optimization.

Another issue for Pareto MLT is the local convergence. As pointed out in the main paper, the solution
for each MTL constrained subproblem is restricted Pareto optimal. If the objective functions are all
convex and the constraints are properly assigned, Pareto MTL should have a set of widely distributed
Pareto solutions. However, especially for training deep neural networks, the loss function would be
highly non-convex and the interaction between constrains and the optimization landscape would be
complicated. In this case, the solutions for Pareto MTL might be trapped by inferior local Pareto
optima. How to get rid of the poor local Pareto optima is an important extension for Pareto MTL.

7 Conclusion Remark

In this supplementary material, we provide more experimental results and detailed discussions
on Pareto MTL. We also point out several limitations of the current Pareto MTL algorithm and
propose some potential research directions. Pareto MTL is derived from the view of multi-objective
optimization, and it is orthogonal to many existing MTL methods. We hope there would be further
developments on Pareto MTL and its applications for different MTL problems.

9



References
[1] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger. Snapshot

ensembles: Train 1, get m for free. InternationalConference on Learning Representations, 2017.

[2] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business Media,
2012.

[3] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In KDD’96
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pages
202–207, 1996.

[4] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019.

[5] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. Modeling task relationships
in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery Data Mining, pages 1930–1939, 2018.

[6] Song Yang Zhang, Zhifei and Hairong Qi. Age progression/regression by conditional adversarial autoen-
coder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[7] Yu Zhang, Ying Wei, and Qiang Yang. Learning to multitask. In Advances in Neural Information
Processing Systems, pages 5771–5782, 2018.

[8] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task prioritization
for multitask learning. In Proceedings of the European Conference on Computer Vision (ECCV), pages
270–287, 2018.

[9] Peter J Fleming, Robin C Purshouse, and Robert J Lygoe. Many-objective optimization: An engineering
design perspective. In International conference on evolutionary multi-criterion optimization, pages 14–32.
Springer, 2005.

[10] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-objective optimization: A
short review. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computa-
tional Intelligence), pages 2419–2426. IEEE, 2008.

[11] David Hadka and Patrick Reed. Borg: An auto-adaptive many-objective evolutionary computing framework.
Evolutionary computation, 21(2):231–259, 2013.

[12] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE
transactions on evolutionary computation, 18(4):577–601, 2013.

[13] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normal-
ization for adaptive loss balancing in deep multitask networks. In Proceedings of the 35th International
Conference on Machine Learning, pages 794–803, 2018.

[14] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[15] Anonymous. Which tasks should be learned together in multi-task learning? In Submitted to International
Conference on Learning Representations, 2020. under review.

[16] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

10


	The Importance of Finding the Initial Solution
	MTL with Many Tasks
	The Adaptive Weight Vectors
	Pareto MTL with Different Tasks Difficulties
	Preference Vector Assignment
	The Gap between Optimization and Generalization
	Conclusion Remark

