
Appendix
A Proof of Theorem 1 - Step-by-Step Equivalence of EP and BPTT

In this section, we prove Theorem 1, which we recall here.
Theorem 1 (Gradient-Descending Updates, GDU). Consider the setting with a transition function
of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). Let s0, s1, . . . , sT be the convergent sequence of states and
denote s∗ = sT the steady state. If we further assume that there exists some stepK where 0 < K ≤ T
such that s∗ = sT = sT−1 = . . . sT−K , then, in the limit β → 0, the first K updates in the second
phase of EP are equal to the negatives of the first K gradients of BPTT, i.e.

∀t = 0, 1, . . . ,K :

{
∆EP
s (β, t)→ −∇BPTT

s (t),
∆EP
θ (β, t)→ −∇BPTT

θ (t).
(12)

In this section we choose a slightly different convention for the definition of the ∇BPTT
θ (t) and

∆EP
θ (t) processes, with an index shift. We explain in Appendix B.3 why this convention is in fact

more natural.

A.1 Sketch of the Proof

Theorem 1 is a consequence of Lemma 2 and Lemma 3 below. Lemma 2 is itself a straightforward
consequence of the formula for back-propagating the gradients in an RNN (Proposition 4 in subsection
A.2). As for Lemma 3, it is an intermediary result for the more general version of EP with arbitrary
transition function F (presented in subsection A.3).
Lemma 2. In our specific setting with static input x, suppose that the network has reached the steady
state s∗ after T −K steps, i.e.

sT−K = sT−K+1 = · · · = sT−1 = sT = s∗. (20)
Then the first K gradients of BPTT satisfy the recurrence relationship 7

∇BPTT
s (0) =

∂`

∂s
(s∗, y) , (21)

∀t = 1, 2, . . . ,K, ∇BPTT
s (t) =

∂F

∂s
(x, s∗, θ)

> · ∇BPTT
s (t− 1), (22)

∀t = 1, 2, . . . ,K, ∇BPTT
θ (t) =

∂F

∂θ
(x, s∗, θ)

> · ∇BPTT
s (t− 1). (23)

Lemma 3. Let ∆EP
s (t) = limβ→0 ∆EP

s (β, t) and ∆EP
θ (t) = limβ→0 ∆EP

θ (β, t) be the neural and
weight updates of EP in the limit β → 0. They satisfy the recurrence relationship

∆EP
s (0) = −∂`

∂s
(s∗, y) , (24)

∀t ≥ 0, ∆EP
s (t+ 1) =

∂F

∂s
(x, s∗, θ) ·∆EP

s (t), (25)

∀t ≥ 0, ∆EP
θ (t+ 1) =

∂F

∂θ
(x, s∗, θ)

> ·∆EP
s (t). (26)

Note that the multiplicative matrix in Eq. 25 is the square matrix ∂F
∂s (x, s∗, θ) whereas the one in

Eq. 22 is its transpose ∂F
∂s (x, s∗, θ)

>. Because of that, the updates ∆EP
s (t) and ∆EP

θ (t) of EP on the
one hand, and the gradients∇BPTT

s (t) and∇BPTT
θ (t) of BPTT on the other hand, satisfy different

recurrence relationships in general. Except when F is of the form F (x, s, θ) = ∂Φ
∂s (x, s, θ) ; in this

case the Jacobian matrix of the transition function F is the Hessian of Φ, thus is symmetric:
∂F

∂s
(x, s, θ)

>
=
∂2Φ

∂s2
(x, s, θ) =

∂F

∂s
(x, s, θ) . (27)

7Note that the stability of the steady state implies that the eigenvalues of the Jacobian ∂F
∂s

(x, s∗, θ) are
smaller than 1 in magnitude. As a consequence of Lemma 2, the gradients ∇BPTT

θ (t) decay (i.e. vanish)
exponentially fast, which ensures that the full gradient

∑K−1
t=0 ∇BPTT

θ (t) converges, even if K → ∞. In the
context of convergent RNNs with a static input, vanishing gradients of BPTT are consequently not a problem, as
it is the case when learning from temporal data with RNNs.

12

A.2 Backpropagation Through Time (BPTT)

Recall that we are considering an RNN (with fixed input x and target y) whose dynamics
s0, s1, . . . , sT and loss L are defined by8

∀t = 0, 1, . . . T − 1, st+1 = F (x, st, θt = θ) , L = ` (sT , y) . (28)

We denote the gradients computed by BPTT

∀t = 0, 1, . . . T, ∇BPTT
s (t) =

∂L
∂sT−t

, (29)

∀t = 1, 2, . . . T, ∇BPTT
θ (t) =

∂L
∂θT−t

. (30)

The gradients ∇BPTT
s (t) and ∇BPTT

θ (t) are the ‘elementary gradients’ (as illustrated in Fig. 5)
computed as intermediary steps in BPTT in order to compute the ‘full gradient’ ∂L∂θ .

Proposition 4 (Backpropagation Through Time). The gradients ∇BPTT
s (t) and ∇BPTT

θ (t) can be
computed using the recurrence relationship

∇BPTT
s (0) =

∂`

∂s
(sT , y) , (31)

∀t = 1, 2, . . . , T, ∇BPTT
s (t) =

∂F

∂s
(x, sT−t, θ)

> · ∇BPTT
s (t− 1), (32)

∀t = 1, 2, . . . , T, ∇BPTT
θ (t) =

∂F

∂θ
(x, sT−t, θ)

> · ∇BPTT
s (t− 1). (33)

Proof of Proposition 4. This is a direct application of the chain rule of differentiation, using the fact
that st+1 = F (x, st, θ)

A.3 Equilibrium Propagation (EP) – A Formulation with Arbitrary Transition Function F

In this section, we show (Lemma 3 below) that the neural updates ∆EP
s (t) and weight updates ∆EP

θ (t)
of EP satisfy a recurrence relation similar to the one for the gradients of BPTT (Proposition 4, or
more specifically Lemma 2).

In section 3 we have presented EP in the setting where the transition function F derives from a scalar
function Φ, i.e. with F of the form F (x, s, θ) = ∂Φ

∂s (x, s, θ). This hypothesis is necessary to show
equality of the updates of EP and the gradients of BPTT (Theorem 1). To better emphasize where this
hypothesis is used, we first show an intermediary result (Lemma 3 below) which holds for arbitrary
transition function F .

First we formulate EP for arbitrary transition function F , inspired by the ideas of Scellier et al. [2018].
Recall that at the beginning of the second phase of EP the state of the network is the steady state
sβ0 = s∗ characterized by

s∗ = F (x, s∗, θ) , (34)

and that, given some value β > 0 of the hyperparameter β, the successive neural states sβ1 , s
β
2 , . . . are

defined and computed as follows:

∀t ≥ 0, sβt+1 = F
(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
. (35)

In this more general setting, we redefine the ‘neural updates’ and ‘weight updates’ as follows9:

∀t ≥ 0, ∆EP
s (β, t) =

1

β

(
sβt+1 − s

β
t

)
, (36)

∀t ≥ 1, ∆EP
θ (β, t) =

1

β

∂F

∂θ

(
x, sβt−1, θ

)>
·
(
sβt − s

β
t−1

)
. (37)

8Note that we choose here a different convention for the definition of θt compared to the definition of Section
2.2. We motivate this index shift in Appendix B.3.

9Note the index shift in the definition of ∆EP
θ (β, t) compared to the definition of Eq. 10. We motivate this

index shift in Appendix B.3.

13

Figure 5: Top. Computational graph of an RNN with fixed input x and target y, unfolded in
time. As usual for RNNs, the parameters θ0, θ1, . . . , θT−1 at each time step share the same value
θ. The terminal state of the network is the steady state, i.e. sT = s∗. Bottom. Backpropagation
Through Time (BPTT) computes the gradients ∂L

∂sT
, ∂L
∂sT−1

, . . . , ∂L∂s1 and ∂L
∂θT−1

, ∂L
∂θT−2

, . . . , ∂L∂θ0 as

intermediary steps in order to compute the total gradient ∂L∂θ as in Eq. 4.

In contrast, recall that in the gradient-based setting of section 3 we had defined

∆EP
θ (β, t) =

1

β

(
∂Φ

∂θ

(
x, sβt , θ

)
− ∂Φ

∂θ

(
x, sβt−1, θ

))
. (38)

When F = ∂Φ
∂s , the definitions of Eq. 37 and Eq. 38 are slightly different, but what matters is that

both definitions coincide in the limit β → 0. Now that we have redefined ∆EP
s (β, t) and ∆EP

θ (β, t)
for general transition function F , we can recall our intermediary result:
Lemma 3. Let ∆EP

s (t) = limβ→0 ∆EP
s (β, t) and ∆EP

θ (t) = limβ→0 ∆EP
θ (β, t) be the neural and

weight updates of EP in the limit β → 0. They satisfy the recurrence relationship

∆EP
s (0) = −∂`

∂s
(s∗, y) , (24)

∀t ≥ 0, ∆EP
s (t+ 1) =

∂F

∂s
(x, s∗, θ) ·∆EP

s (t), (25)

∀t ≥ 0, ∆EP
θ (t+ 1) =

∂F

∂θ
(x, s∗, θ)

> ·∆EP
s (t). (26)

Proof of Lemma 3. First of all, in the limit β → 0, the weight update ∆EP
θ (β, t) of Eq. 37 rewrites

∆EP
θ (t) =

∂F

∂θ
(x, s∗, θ)

> ·∆EP
s (t). (39)

Hence Eq. 26. Now we prove Eq. 24-25. Note that the neural update ∆EP
s (β, t) of Eq. 36 rewrites

∆EP
s (t) =

∂sβt+1

∂β

∣∣∣∣∣
β=0

− ∂sβt
∂β

∣∣∣∣∣
β=0

. (40)

14

This is because for every t ≥ 0 we have sβt → s∗ as β → 0 : starting from s0
0 = s∗, if you set β = 0

in Eq. 35, then s0
1 = s0

2 = . . . = s∗.

Differentiating Eq. 35 with respect to β, we get

∀t ≥ 0,
∂sβt+1

∂β
=
∂F

∂s

(
x, sβt , θ

)
· ∂s

β
t

∂β
− ∂`

∂s

(
sβt , y

)
− β ∂

2`

∂s2

(
sβt , y

)
· ∂s

β
t

∂β
. (41)

Letting β → 0, we have sβt → s∗, so that

∀t ≥ 0,
∂sβt+1

∂β

∣∣∣∣∣
β=0

=
∂F

∂s
(x, s∗, θ) ·

∂sβt
∂β

∣∣∣∣∣
β=0

− ∂`

∂s
(s∗, y) . (42)

Since at time t = 0 the initial state of the network sβ0 = s∗ is independent of β, we have

∂sβ0
∂β

= 0. (43)

Using Eq. 42 for t = 0 and Eq. 43, we get the initial condition (Eq. 24)

∆EP
s (0) =

∂sβ1
∂β

∣∣∣∣∣
β=0

− ∂sβ0
∂β

∣∣∣∣∣
β=0

= −∂`
∂s

(s∗, y) . (44)

Moreover, if we take Eq. 42 and subtract itself from it at time step t− 1, we get

∆EP
s (t+ 1) =

∂F

∂s
(x, s∗, θ) ·∆EP

s (t). (45)

Hence Eq. 25. Hence the result.

B Notations

In this Appendix we motivate some of the distinctions that we make and the notations that we adopt.
This includes:

1. the distinction between the loss L∗ = ` (s∗, y) and the loss L = ` (sT , y), which could
seem unnecessary since T is chosen such that sT = s∗,

2. the distinction between the ‘primitive function’ Φ(x, s, θ) introduced in this paper and the
‘energy function’ E(x, s, θ) used in Scellier and Bengio [2017, 2019],

3. the index shift in the definition of the processes∇BPTT
θ (t) and ∆EP

θ (t).

B.1 Difference between L∗ and L

There is a difference between the loss at the steady state L∗ and the loss after T iterations L. To see
why the functions L∗ and L (as functions of θ) are different, we have to come back to the definitions
of s∗ and sT . Recall that

• L∗ = ` (s∗, y) where s∗ is the steady state, i.e. characterized by s∗ = F (x, s∗, θ),
• L = ` (sT , y) where sT is the state of the network after T time steps, following the dynamics
s0 = 0 and st+1 = F (x, st, θ).

For the current value of the parameter θ, the hyperparameter T is chosen such that sT = s∗, i.e. such
that the network reaches steady state after T time steps. Thus, for this value of θ we have numerical
equality L(θ) = L∗(θ). However, two functions that have the same value at a given point are not
necessarily equal. Similarly, two functions that have the same value at a given point don’t necessarily
have the same gradient at that point. Here we are in the situation where

1. the functions L and L∗ (as functions of θ) have the same value at the current value of θ, i.e.
L(θ) = L∗(θ) numerically,

2. the functions L and L∗ (as functions of θ) are analytically different, i.e. L 6= L∗.

Since the functions L and L∗ (as functions of θ) are different, the gradients ∂L∗
∂θ and ∂L

∂θ are also
different in general.

15

B.2 Difference between the Primitive Function Φ and the Energy Function E

Previous work on EP [Scellier and Bengio, 2017, 2019] has studied real-time dynamics of the form:

dst
dt

= −∂E
∂s

(x, st, θ) . (46)

In contrast, in this paper we study discrete-time dynamics of the form

st+1 =
∂Φ

∂s
(x, st, θ) . (47)

Here we explain why we changed the sign convention in the dynamics and why we called Φ a
‘primitive function’ rather than an ‘energy function’.

While it is useful to think of the primitive function Φ in the discrete-time setting as an equivalent
of the energy function E in the real-time setting, there is an important difference between E and Φ.
We argue next that, rather than an energy function, Φ is much better thought of as a primitive of the
transition function F . First we show how the two settings are related.

Casting real-time dynamics to discrete-time dynamics. The real-time dynamics of Eq. (46) can
be cast to the discrete-time setting of Eq. (47) as follows. The Euler scheme of Eq. (46) with
discretization step ε reads:

st+1 = st − ε
∂E

∂s
(x, st, θ) . (48)

This equation rewrites

st+1 =
∂Φε
∂s

(x, st, θ) , where Φε(x, s, θ) =
1

2
‖s‖2 − ε E(x, s, θ). (49)

However, although the real-time dynamics can be mapped to the discrete-time setting, the discrete-
time setting is more general. The primitive function Φ cannot be interpreted in terms of an energy in
general, as we show next.

Why not keep the notation E and the name of ‘energy function’ in the discrete-time frame-
work? In the real-time setting, st follows the gradient of E, so that E (st) decreases as time
progresses until st settles to a (local) minimum of E. This property motivates the name of ‘energy
function’ for E by analogy with physical systems whose dynamics settle down to low-energy config-
urations. In contrast, in the discrete-time setting, st is mapped onto the gradient of Φ (at the point st).
In general, there is no guarantee that the discrete-time dynamics of Eq. (47) optimizes Φ and there
is no guarantee that the dynamics of st converges to an optimum of Φ. For this reason, there is no
reason to call Φ an ‘energy function’, since the intuition of optimizing an energy does not hold.

The scalar function Φ is better thought of as a primitive function of F . The name of ‘primitive
function’ for Φ is motivated by the fact that Φ is a primitive of the transition function F , whose
property better captures the assumptions under which the theory of EP holds. To see this, we first
rewrite Eq. (47) in the form

st+1 = F (x, st, θ) , (50)
where F is a transition function (in the state space) of the form

F (x, s, θ) =
∂Φ

∂s
(x, s, θ) , (51)

with Φ(x, s, θ) a scalar function. For the theory of EP to hold (in particular Theorem 1), the following
two conditions must be satisfied (see Lemma 2 and Lemma 3 in Appendix A):

1. The steady state s∗ (at the end of the first phase and at the beginning of the second phase)
must satisfy the condition

s∗ = F (x, s∗, θ) , (52)

2. the Jacobian of the transition function F must be symmetric, i.e.

∂F

∂s
(x, s, θ)> =

∂F

∂s
(x, s, θ). (53)

16

The condition of Eq. (53) is equivalent to the existence of a scalar function Φ(x, s, θ) such that
Eq. (51) holds. Going from Eq. (51) to Eq. (53) is straightforward: in this case the Jacobian of F is
the Hessian of Φ, which is symmetric. Indeed ∂F

∂s (x, s, θ) = ∂2Φ
∂s2 (x, s, θ) = ∂F

∂s (x, s, θ)>. Going
from Eq. (53) to Eq. (51) is also true – though less obvious – and is a consequence of Green’s theorem.
10 We say that F derives from the scalar function Φ, or that Φ is a primitive of F . Hence the name of
‘primitive function’ for Φ.

Assumption of Convergence in the Discrete-Time Setting. In the real-time setting the gradient
dynamics of Eq. 46 guarantees convergence to a (local) minimum of E. In contrast, in the discrete-
time setting, no intrinsic property of F or Φ a priori guarantees that the dynamics of Eq 47 settles to
steady state. This discussion is out of the scope of this work and we refer to Scarselli et al. [2009]
where sufficient (but not necessary) conditions are discussed to ensure convergence based on the
contraction map theorem.

B.3 Index Shift in the Definition of∇BPTT
θ (t) and ∆EP

θ (t)

The convention that we have chosen in Appendix A to define ∇BPTT
θ (t) and ∆EP

θ (t) could seem
strange at first glance for two reasons:

• the state update ∆EP
s (t) is defined in terms of sβt and sβt+1, whereas the weight update

∆EP
θ (t) is defined in terms of sβt−1 and sβt ,

• at time t = 0, the state gradient∇BPTT
s (0) and the state update ∆EP

s (0) are defined, but the
weight gradient∇BPTT

θ (0) and the weight update ∆EP
θ (0) are not defined.

Here we explain why – when we dive deeper in the technical details – the convention adopted in
Appendix A is in fact more natural than the one adopted in Sections 2.2 and 3.

First, recall from Appendix A.2 that we have defined the gradients of BPTT as

∀t = 0, 1, . . . , T, ∇BPTT
s (t) =

∂L
∂sT−t

, (54)

∀t = 1, 2, . . . , T, ∇BPTT
θ (t) =

∂L
∂θT−t

, (55)

where
∀t = 0, 1, . . . T − 1, st+1 = F (x, st, θt = θ) , L = ` (sT , y) , (56)

and from Appendix A.3 that we have defined the neural and weight updates of EP as

∀t ≥ 0, ∆EP
s (t) = lim

β→0

1

β

(
sβt+1 − s

β
t

)
, (57)

∀t ≥ 1, ∆EP
θ (t) = lim

β→0

1

β

(
∂Φ

∂θ

(
x, sβt , θ

)
− ∂Φ

∂θ

(
x, sβt−1, θ

))
, (58)

where

sβ0 = s∗, ∀t ≥ 0, sβt+1 = F
(
x, sβt , θ

)
− β ∂`

∂s

(
sβt , y

)
. (59)

B.3.1 Index Shift

Let us introduce
Φβ(x, s, y, θ) = Φ(x, s, θ)− β `(s, y), (60)

so that the dynamics in the second phase rewrites

sβt+1 =
∂Φβ

∂s

(
x, sβt , y, θ

)
. (61)

10Another equivalent formulation is that the curl of F is null, i.e. ~rot ~F = ~0.

17

It is then readily seen that the neural updates ∆EP
s and the weight updates ∆EP

θ both rewrite in the
form

∆EP
s (0) = lim

β→0

1

β

(
∂Φβ

∂s

(
x, sβ0 , y, θ

)
− ∂Φ

∂s

(
x, sβ0 , θ

))
, (62)

∀t ≥ 1, ∆EP
s (t) = lim

β→0

1

β

(
∂Φβ

∂s

(
x, sβt , y, θ

)
− ∂Φβ

∂s

(
x, sβt−1, y, θ

))
, (63)

∀t ≥ 1, ∆EP
θ (t) = lim

β→0

1

β

(
∂Φβ

∂θ

(
x, sβt , y, θ

)
− ∂Φβ

∂θ

(
x, sβt−1, y, θ

))
. (64)

Written in this form, we see a symmetry between ∆EP
s (t) and ∆EP

θ (t) and there is no more index
shift.

B.3.2 Missing Weight Gradient∇BPTT
θ (0) and Weight Update ∆EP

θ (0)

We can naturally extend the definition of ∇BPTT
θ (0) and ∆EP

θ (0) following Eq. 55. In the setting
studied in this paper, they both take the value 0 because the cost function `(s, y) does not depend on
the parameter θ. But suppose now that ` depends on θ, i.e. that ` is of the form `(s, y, θ). Then the
loss of Eq. 56 takes the form L = ` (sT , y, θT = θ), so that:

∇BPTT
θ (0) =

∂L
∂θT

=
∂`

∂θ
(sT , y, θ) . (65)

As for the missing weight update ∆EP
θ (0), we follow the definition of Eq. 62 and define:

∆EP
θ (0) = lim

β→0

1

β

(
∂Φβ

∂θ

(
x, sβ0 , y, θ

)
− ∂Φ

∂θ

(
x, sβ0 , θ

))
= − ∂`

∂θ
(s∗, y, θ) . (66)

Since sT = s∗ (the state at the end of the first phase is the state at the beginning of the second phase,
and it is the steady state), we have ∆EP

θ (0) = −∇BPTT
θ (0).

18

C Experiments: Demonstrating the GDU Property

C.1 Definition of the Relative Mean Square Error (RelMSE)

We introduce a relative mean squared error (RelMSE) 11 between two continuous functions f and g
in a given layer L as:

RelMSE(f, g) =

〈
‖f − g‖2,K

max(‖f‖2,K , ‖g‖2,K)

〉
L

, (67)

where ‖f‖2,K =
√

1
K

∫K
0
f2(t)dt and 〈·〉L denotes an average over all the elements of layer L. For

example, RelMSE(∆EP
W01

,−∇BPTT
W01

) averages the squared distance between ∆EP
W01

and −∇BPTT
W01

averaged over all the elements of W01. Also, instead of computing ∆EP and ∇BPTT processes on
a single sample presentation and bias the RelMSE by the choice of this sample, ∆EP and ∇BPTT

processes have been averaged over a mini-batch of 20 samples before their distance in terms of
RelMSE was measured.

C.2 Details on section 4.2

Figure 6: Toy model architecture

Equations. The toy model is an architecture where input, hidden and output neurons are connected
altogether, without lateral connections. Denoting input neurons as x, hidden neurons as s1 and output
neurons as s0, the primitive function for this model reads:

Φ
(
x, s0, s1

)
= (1− ε)1

2

(
||s0||2 + ||s1||2

)
+ε
(
σ(s0) ·W01 · σ(s1) + σ(s0) ·W0x · σ(x) + σ(s1) ·W1x · σ(x)

)
,

where ε is a discretization parameter. Furthermore the cost function ` is

`
(
s0, y

)
=

1

2
‖s0 − y‖2. (68)

As a reminder, we define the following convention for the dynamics of the second phase: ∀t ∈ [0,K] :

sn,βt = snt+T where T is the length of the first phase. The equations of motion read in the first phase
read

∀t ∈ [0, T] :

{
s0
t+1 = (1− ε)s0

t + εσ′(s0
t))� (W01 · σ(s1

t) +W0x · σ(x))
s1
t+1 = (1− ε)s1

t + εσ′(s1
t)� (W>01 · σ(s0

t) +W1x · σ(x)),

11We choose the RelMSE metric rather than a more conventional one such as the cos metric. Indeed, although
the cos metric is also meaningful, it lacks an important property in our context: the cos between f and g is
maximal if and only if f and g are proportional, whereas we aim at reaching equality (Theorem 1). In contrast,
our RelMSE metric is such that RelMSE(f, g) = 0 ⇔ f(t) = g(t).

19

Table 3: Table of hyperparameters used to demonstrate Theorem 1. "EB" and "P" respectively denote
"energy-based" and "prototypical", "-#h" stands for the number of hidden layers.

Activation T K β ε

Toy model tanh 5000 80 0.01 0.08

EB-1h tanh 800 80 0.001 0.08

EB-2h tanh 5000 150 0.01 0.08

EB-3h tanh 30000 200 0.02 0.08

P-1h tanh 150 10 0.01 -

P-2h tanh 1500 40 0.01 -

P-3h tanh 5000 40 0.015 -

P-conv hard sigmoid 5000 10 0.02 -

In the second phase

∀t ∈ [0,K] :


s0,β
t+1 = (1− ε)s0,β

t + εσ′(s0,β
t)� (W01 · σ(s1,β

t) +W0x · σ(x))

+εβ(y − s0,β
t)

s1,β
t+1 = (1− ε)s1,β

t + εσ′(s1,β
t)� (W>01 · σ(s0,β

t) +W1x · σ(x)),

(69)

where y denotes the target. In this case and according to the definition Eq. (10), the EP error processes
for the parameters θ = {W01,W0x,W1x} read:

∀t ∈ [0,K] :


∆EP
W01

(t) = 1
β

(
σ(s0,β

t+1) · σ(s1,β
t+1)> − σ(s0,β

t) · σ(s1,β
t)>

)
∆EP
W0x

(t) = 1
β

(
σ(s0,β

t+1) · σ(x)> − σ(s0,β
t) · σ(x)>

)
∆EP
W1x

(t) = 1
β

(
σ(s1,β

t+1) · σ(x)> − σ(s1,β
t) · σ(x)>

)
,

Experiment: theorem demonstration on dummy data. We took 5 output neurons, 50 hidden
neurons and 10 visible neurons, using σ(x) = tanh(x). The experiment consists of the following:
we define a dummy uniformly distributed random input x ∼ U [0, 1] (of size 1× 10) and a dummy
random one-hot encoded target (of size 1 × 5). We take ε = 0.08 and perform the first phase for
T = 5000 steps. Then, we perform on the one hand BPTT over K = 80 steps (to compute the
gradients∇BPTT), on the other hand EP over K = 80 steps with β = 0.01 (to compute the neural
updates ∆EP) and compare the gradients and neural updates provided by the two algorithms. The
resulting curves can be found in the main text (Fig. 2).

C.3 Details on subsection 4.3: Definition of the fully connected layered model in the
energy-based setting

Figure 7: Layered architecture

20

Equations. The fully connected layered model is an architecture where the neurons are only
connected between two consecutive layers. We denote neurons of the n-th layer as sn with n ∈
[0, N − 1]. Layers are labelled in a backward fashion: n = 0 labels the output layer, n = 1 the first
hidden starting from the output layer, and n = N − 1 the visible layer so that there are N − 2 hidden
layers. As a reminder, we define the following convention for the dynamics of the second phase:
∀t ∈ [0,K] : sn,βt = snt+T where T is the length of the first phase. The primitive function of this
model is defined as:

Φ
(
x, s0, s1, . . . , sN

)
=

1

2
(1− ε)

(
N∑
n=1

||sn||2
)

+ ε

N−1∑
n=0

σ(sn) ·Wnn+1 · σ(sn+1) (70)

so that the equations of motion read:

∀t ∈ [0, T] :

{
s0
t+1 = (1− ε)s0

t + εσ′(s0
t))�W01 · σ(s1

t)
snt+1 = (1− ε)snt + εσ′(snt))� (Wnn+1 · σ(sn+1

t) +W>n−1n · σ(sn−1
t)) ∀n ∈ [1, N − 2]

∀t ∈ [0,K] :

 s0,β
t+1 = (1− ε)s0,β

t + εσ′(s0,β
t))�W01 · σ(s1,β

t) + βε(y − s0,β(t))

sn,βt+1 = (1− ε)sn,βt + εσ′(sn,βt))� (Wnn+1 · σ(sn+1,β
t) +W>n−1n · σ(sn−1,β

t))
∀n ∈ [1, N − 2]

(71)

In this case and according to the definition Eq. 10, the EP error processes for the parameters
θ = {Wnn+1} read:

∀t ∈ [0,K], ∀n ∈ [0, N−2] : ∆EP
Wnn+1

(t) =
1

β

(
σ(sn,βt+1) · σ(sn+1,β

t+1)> − σ(sn,βt) · σ(sn+1,β
t)>

)
Experiment: theorem demonstration on MNIST. For this experiment, we consider architectures
of the kind 784-512-. . . -512-10 where we have 784 input neurons, 10 ouput neurons, and each hidden
layer has 512 neurons, using σ(x) = tanh(x). The experiment consists of the following: we take
a random MNIST sample (of size 1 × 784) and the associated target (of size 1 × 10). For a given
ε, we perform the first phase for T = 2000 steps. Then, we perform on the one hand BPTT over
K = steps (to compute the gradients ∇BPTT), on the other hand EP over K steps with a given β (to
compute the neural updates ∆EP) and compare the gradients and neural updates provided by the two
algorithms. Precise values of the hyperparameters ε, T, K, beta are given in Tab. 3.

C.4 Details on subsection 4.3: Fully connected layered architecture in the prototypical
setting

Equations. The dynamics of the fully connected layered model are defined by the following set of
equations:

∀t ∈ [0, T] :

{
s0
t+1 = σ(W01 · s1

t)
snt+1 = σ(Wnn+1 · sn+1

t +W>n−1n · sn−1
t) ∀n ∈ [1, N − 2]

∀t ∈ [0,K] :

{
s0,β
t+1 = σ(W01 · s1,β

t) + β(y − s0,β(t))

sn,βt+1 = σ(Wnn+1 · sn+1,β
t +W>n−1n · s

n−1,β
t) ∀n ∈ [1, N − 2],

where y denotes the target. Considering the function:

Φ
(
x, s0, s1, . . . , sN

)
=

N−1∑
n=0

sn ·Wnn+1 · sn+1, (72)

and ignoring the activation function, we have:

21

snt ≈
∂Φ

∂sn
(x, s0

t−1, · · · , sN−1
t−1) (73)

so that in this case, we define the EP error processes for the parameters θ = {Wnn+1} as:

∀t ∈ [0,K], ∀n ∈ [0, N − 2] : ∆EP
Wnn+1

(t) =
1

β

(
sn,βt+1 · s

n+1,β>

t+1 − sn,βt · sn+1,β>

T+t

)
Experiment: theorem demonstration on MNIST. The experimental protocol is the exact same
as the one used on the fully connected layered architecture in the energy-based setting, using the
same activation function σ(x) = tanh(x). Precise values of the hyperparameters ε, T , K, beta are
given in Tab. 3.

22

C.5 Figures Demonstrating the GDU Property

Figure 8: Demonstrating the GDU property in the energy-based setting (as predicted by Theorem 1)
with the fully connected layered architecture with one hidden layer on MNIST.

Figure 9: Demonstrating the GDU property in the energy-based setting (as predicted by Theorem 1)
with the fully connected layered architecture with two hidden layers on MNIST.

23

Figure 10: Demonstrating the GDU property in the energy-based setting (as predicted by Theorem 1)
with the fully connected layered architecture with three hidden layers on MNIST.

Figure 11: Demonstrating the GDU property in the prototypical setting (as predicted by Theorem 1)
with the fully connected layered architecture with one hidden layer on MNIST.

24

Figure 12: Demonstrating the GDU property in the prototypical setting (as predicted by Theorem 1)
with the fully connected layered architecture with two hidden layers on MNIST.

25

Figure 13: Demonstrating the GDU property in the prototypical setting (as predicted by Theorem 1)
with the fully connected layered architecture with three hidden layers on MNIST.

C.6 Why are the ∇BPTT
s and ∆EP

s processes saw teeth shaped in the prototypical setting ?

In the prototypical setting, in the case of a layered architecture (without lateral and skip-layer
connections), the ∇BPTT and ∆EP processes are saw teeth shaped, i.e. they take the value zero
every other time step (as seen per Fig. 4, Fig. 11, Fig. 12 and Fig. 13). We provide an explanation
for this phenomenon both from the point of view of BPTT and from the point of view of EP. Fig. 14
illustrates this phenomenon in the case of a network with two layers: one output layer s0 and one
hidden layer s1.

• Point of view of BPTT. In the forward-time pass (first phase), s0
t+1 is determined by s1

t ,
while s1

t+1 is determined by s0
t . This gives rise to a zig-zag shaped connectivity pattern in

the computational graph of the the network unrolled in time (Fig. 14). In particular, the gray
nodes of Fig. 14 are not involved in the computation of the loss L, i.e. their gradients are
equal to zero. In other words∇BPTT

s1 (0) = 0, ∇BPTT
s0 (1) = 0, ∇BPTT

s1 (2) = 0, etc.

• Point of view of EP. At the beginning of the second phase (at time step t = 0), the network
is at the steady state ; in particular s1,β

0 = s1
∗. At time step t = 1, only the output layer

s0 is influenced by y ; the hidden layer s1 is still at the steady state, i.e. s1,β
1 = s1

∗. From
s1,β

0 = s1,β
1 , it follows that s0,β

1 = s0,β
2 . In turn, from s0,β

1 = s0,β
2 it follows that s1,β

2 = s1,β
3 .

Etc. In other words ∆EP
s1 (0) = 0, ∆EP

s0 (1) = 0, ∆EP
s1 (2) = 0, etc.

The above argument can be generalized to an arbitrary number of layers. In this case we group
the layers of even index (resp. odd index) together. We call et =

(
s0
t , s

2
t , s

4
t , . . .

)
and ot =(

s1
t , s

3, t, s5
t , . . .

)
. The crucial property is that ot+1 (resp. et+1) is determined by et (resp. ot).

26

One consequence of this analysis is that, in the prototypical setting of EP, half of the computations
are redundant and could be avoided. Avoiding such redundant computations would lead to an
implementation where the layers of even indices and the layers of odd indices are updated alternatively,
similar to the one proposed in section 4.3 of Scellier and Bengio [2016].

Figure 14: Explanation of the saw teeth shape of the ∇BPTT
s and ∆EP

s processes in the prototypical
setting (layered architecture without lateral or skip-layer connections). Forward-time pass (top
left): gray nodes in the computational graph indicate nodes that are not involved in the computation
of the loss L. BPTT (bottom left): red arrows indicate the differentiation path through the output
units s0. The gradients in the gray nodes are equal to 0. EP (bottom right): nodes of the same color
have the same value.

In contrast, the saw teeth shaped curves are not observed in the energy based setting. This is due to
the different topology of the computational graph in this setting. In the energy-based setting, the
assumptions under which we have shown the saw teeth shape are not satisfied since neurons are
subject to leakage, e.g. s1

t+1 depends not just on s0
t but also on s1

t . Therefore the reasoning developed
above no longer holds.

C.7 Demonstrating Theorem 1 on MNIST with the convolutional model.

The convolutional model is defined in Appendix D.

We have implemented an architecture with 2 convolution-pooling layers and 1 fully connected layer.
The first and second convolution layers are made up of 5× 5 kernels with 32 and 64 feature maps
respectively. Convolutions are performed without padding and with stride 1. Pooling is performed
with 2× 2 filters and with stride 2.

The experimental protocol is the exact same as the one used on the fully connected layered architecture.
The only difference is the activation function that we have used here is σ(x) = max(min(x, 1), 0)

27

which we shall refer to here for convenience as ‘hard sigmoid function’. Precise values of the
hyperparameters ε, T, K, beta are given in Tab. 3.

We show on Fig. 4 that ∆EP and−∇BPTT processes qualitatively very well coincide when presenting
one MNIST sample to the network. Looking more carefully, we note that some ∆EP

s processes
collapse to zero. This signals the presence of neurons which saturate to their maximal or minimal
values, as an effect of the non linearity used. Consequently, as these neurons cannot move, they
cannot carry the error signals. We hypothesize that this accounts for the discrepancy in the results
obtained with EP on the convolutional architecture with respect to BPTT.

Figure 15: RelMSE analysis in the convolutional architecture.

28

D Convolutional model (subsection 4.4)

Figure 16: Convolutional architecture. Summary of the operations, notations and conventions adopted
in this section.

Definition of the operations. In this section, we define the following operations:

• the convolution of a filter W of size F with Cout output channels and Cin input channels by
a vector X as:

(W ∗X)cout,i,j :=

Cin∑
cint=1

F∑
r,s=1

Wcout,cin,r,sXcin,i+r−1,j+s−1., (74)

• the associated transpose convolution is defined as the convolution of kernel W̃ (also called
"flipped kernel"):

W̃cin,cout,r,s = Wcout,cin,F−r+1,F−s+1, (75)

with an input padded with P̃ = F − 1 − P where P denotes the padding applied in the
forward convolution: in this way transpose convolution recovers the original input size
before convolution. Whenever W̃ is applied on a vector, we shall implicitly assume this
padding.

• We define the general dot product between two vectors X1 and X2 as:

X1 •X2 =

Cin∑
cin=1

d∑
i,j=1

X1
cin,i,jX

2
cin,i,j . (76)

• We define the pooling operation with filter size F and stride F as:

P(X;F)c,i,j = max
r,s∈[0,F−1]

{
Xc,F (i−1)+1+r,F (j−1)+1+s

}
. (77)

We also introduce the relative indices within a pooling zone for which the maximum is
reached as:

ind(X;F)c,i,j = arg max
r,s∈[0,F−1]

{
Xc,F (i−1)+1+r,F (j−1)+1+s

}
= (r∗(X, i), s∗(X, j)). (78)

• We define the inverse pooling operation as:

P−1(Y, ind(X))c,p,q =

{
Yc,dp/Fe,dq/Feif p = F (dp/F e − 1) + 1 + r∗(X, dp/F e),

q = F (dq/F e − 1) + 1 + s∗(X, dq/F e)
0 otherwise

(79)
In layman terms, the inverse pooling operation applied to a vector Y given the indices of
another vector X up-samples Y to a vector of the same size of X with the elements of Y
located at the maximal elements of X within each pooling zone, and zero elsewhere.

29

Note that Eq. (79) can be written more conveniently as:

P−1(Y, ind(X))c,p,q =
∑
i,j

Yc,i,j · δp,F (i−1)+1+r∗(X,i) · δq,F (j−1)+1+s∗(X,j). (80)

• The flattening operation which maps a vector X into its flattened shape, i.e. F : C in ×D ×
D → 1× C inD2. We denote its inverse operation, i.e. the inverse flattening operation as
F−1.

Equations. The model is a layered architecture composed of a fully connected part and a convolu-
tional part. We therefore distinguish between the flat layers (i.e. those of the fully connected part) and
the convolutional layers (i.e. those of the convolutional part). We denote Nfc and Nconv the number
of flat layers and of convolutional layers respectively.

As previously, layers are labelled in a backward fashion: s0 labels the output layer, s1 the first hidden
starting from the output layer (i.e. the first flat layer), and sNfc−1 the last flat layer. Fully connected
layers are bi-dimensional12, i.e. si,j where i and j label one pixel.

The layer h0 denotes the first convolutional layer that is being flattened before being fed to the classifier
part. From there on, h1 denotes the second convolutional layer, hNconv−1 the last convolutional layer
and hNconv labels the visible layer. Convolutional layers are three-dimensional 13, i.e. sc,i,j where c
labels a channel, i and j label one pixel of this channel.

A convolutional layer hn is deduced from an upstream convolutional layer hn−1 by the composition
of a convolution and a pooling operation, which we shall respectively denote by ∗ and P . Conversely,
a convolutional layer hn is deduced from a downstream convolutional layer hn+1 by the composition
of a unpooling operation and of a transpose convolution. We note W fc and W conv the fully connected
weights and the convolutional filters respectively, so that W fc is a two-order tensor and W conv is
a four order tensor, i.e. W conv

cout,cin,i,j
is the element (i, j) of the feature map connecting the input

channel cin to the output channel cout. We denote the filter size by F. We keep the same notation x
for the input data.

With this set of notations, the equations in the fully connected layers read in the first phase:

∀t ∈ [0, T] :


s0
t+1 = σ

(
W fc

01 · s1
t

)
(output layer)

snt+1 = σ
(
W fc
nn+1 · sn+1

t +W fc>

n−1n · sn−1
t

)
∀n ∈ [1, Nfc − 2]

sNfc−1
t+1 = σ

(
W fc
Nfc−1,Nfc

· F(h0
t) +W fc>

Nfc−2,Nfc−1 · s
Nfc−2
t

)
(last fully connected layer)

,

and in the second phase:

∀t ∈ [0, T] :


s0
t+1 = σ

(
W fc

01 · s1
t

)
+ β(y − s0) (nudged output layer)

snt+1 = σ
(
W fc
nn+1 · sn+1

t +W fc>

n−1n · sn−1
t

)
∀n ∈ [1, Nfc − 2]

sNfc−1
t+1 = σ

(
W fc
Nfc−1,Nfc

· F(h0
t) +W fc>

Nfc−2,Nfc−1 · s
Nfc−2
t

)
(last fully connected layer)

,

where y denotes the target. Conversely, convolutional layers read the following set of equations at all
time:

∀t ∈ [0, T] :

 h0
t+1 = σ

(
P
(
W conv

01 ∗ h1
t

)
+ F−1

(
W fc>

Nfc−1,Nfc
· sNfc−1
t

))
(first convolutional layer)

hnt+1 = σ
(
P
(
W conv
n,n+1 ∗ hn+1

t

)
+ W̃ conv

n−1,n ∗ P−1
(
hn−1
t , ind(W conv

n−1,n ∗ hnt−1)
))
∀n ∈ [1, Nconv − 1]

,

where by convention hNconv = x. From here on, we shall omit the second argument of inverse
pooling P−1 - i.e. the locations of the maximal neuron values before applying pooling - to improve
readability of the equations and proofs. Considering the function:

12Three-dimensional in practice, considering the mini-batch dimension.
13Four-dimensional in pratice, considering the mini-batch dimension.

30

Φ(x, s0, · · · , sNfc−1, h0, · · · , hNfc−1) =

Nfc−1∑
n=0

sn> ·W fc
n,n+1 · sn+1 + sNfc−1 ·W fc

Nfc−1,Nfc
· F(h0

t)

+

Nconv−1∑
n=1

hn • P
(
W conv
n,n+1 ∗ hn+1

)
,

and ignoring the activation function, we have:{
∀n ∈ [0, Nfc − 1] : snt ≈ ∂Φ

∂sn (x, s0, · · · , sNfc−1, h0, · · · , hNfc−1)
∀n ∈ [0, Nconv − 1] : hnt ≈ ∂Φ

∂hn (x, s0, · · · , sNfc−1, h0, · · · , hNfc−1)
, (81)

so that in this case, we define the EP error processes for the parameters θ = {W fc
nn+1,W

conv
nn+1} as:

∀t ∈ [0,K],∀n ∈ [0, Nfc − 2] : ∆EP
W fc
nn+1

(t) =
1

β

(
snT+t+1 · sn+1>

T+t+1 − s
n
T+t · sn+1>

T+t

)

∀t ∈ [0,K] : ∆EP
W fc
Nfc−1,Nfc

(t) =
1

β

(
sNfc−1
T+t+1 · F

(
h0
T+t+1

)> − sNfc−1
T+t · F

(
h0
T+t

)>)

∀t ∈ [0,K],∀n ∈ [0, Nconv−2] : ∆EP
W conv
nn+1

(t) =
1

β

(
P−1(hnT+t+1) ∗ hn+1

T+t+1 − P
−1(hnT+t) ∗ hn+1

T+t

)
(82)

To further justify Eq. (81) and Eq. (82), we state and prove the following lemma.
Lemma 5. Taking:

Φ = Y • P (W ∗X) ,

and denoting Z = W ∗X , we have:

∂Φ

∂Z
= P−1 (Y) (83)

∂Φ

∂X
= W̃ ∗ P−1 (Y) (84)

∂Φ

∂W
= P−1 (Y) ∗X (85)

∂Φ

∂Y
= P (W ∗X) (86)

Proof of Lemma 5. Let us prove Eq. (83). We have:

∂Φ

∂Zc,x,y
=
∑
c′,i,j

Yc′,i,j
∂P(Z)c′,i,j
∂Zc,x,y

=
∑
c′,i,j

Yc′,i,j
∂Zc′,F (i−1)+1+r∗(i),F (j−1)+1+s∗(j)

∂Zc,x,y

=
∑
i,j

Yc,i,jδx,F (i−1)+1+r∗(i)δy,F (j−1)+1+s∗(j)

= P−1(Y)c,x,y,

31

where we used Eq. (80) at the last step.

We can now proceed to proving Eq. (84). We have:

∂Φ

∂Xc,p,q
=
∑
c′,x,y

∂Φ

∂Zc′,x,y
· ∂Zc

′,x,y

∂Xc,p,q

=
∑
c′,x,y

P−1(Y)c′,x,y ·
∂

∂Xc,p,q

∑
c′′,r,s

Wc′,c′′,r,sXc′′,x+r−1,y+s−1


=
∑
c′,x,y

∑
r,s

P−1(Y)c′,x,yWc′,c,r,sδp,x+r−1δq,y+s−1

=
∑
c′,r,s

Wc′,c,r,sP−1(Y)c′,p−(r−1),q−(s−1).

Using the flipped kernel W̃ and performing the change of variable r ← F −r+1 and s← F −s+1,
we obtain:

∂Φ

∂Xc,p,q
=
∑
c′,r,s

W̃c,c′,r,s · P−1(Y)c′,p+r−F,q+s−F . (87)

Note in Eq. (87) thatP−1(Y) indices can exceed their boundaries. Also, as stated previously, P−1(Y)

should be padded with P̃ = F − 1− P so that we recover the size of X after transpose convolution.
Without loss of generality, we assume P = 0. We subsequently defined the padded input P−1(Y) as:

P−1(Y)c,p,q =

{
P−1(Y)c,p−F+1,q−F+1 if p, q ∈ [F,N + F − 1]
0 if p, q ∈ [1, F − 1] ∪ [N + F,N + 2(F − 1)]

, (88)

where N denotes the dimension of P−1(Y). Finally Eq. (87) can conveniently be rewritten as:

∂Φ

∂Xc,p,q
=
(
W̃ ∗ P−1(Y)

)
p,q
. (89)

For the sake of readability, the padding is implicitly assumed whenever transpose convolution is
performed so that we drop the bar notation.

We can now proceed to proving Eq. (85). We have:

∂Φ

∂Wc′,c,r,s
=
∑
c′′,x,y

∂Φ

∂Zc′′,x,y
· ∂Zc

′′,x,y

∂Wc′,c,r,s

=
∑
c′′,x,y

P−1(Y)c′′,x,y ·
∂

∂Wc′,c,r,s

 ∑
k,r′,s′

Wc′′,k,r′,s′Xk,x+r′−1,y+s′−1


=
∑
x,y

P−1(Y)c′,x,y ·Xc,r+x−1,s+y−1

=
(
P−1(Y) ∗X

)
c′,c,r,s

Finally, proving Eq. (86) is straightforward.

32

E Training Experiments (Table 1)

Simulation framework. Simulations have been carried out in Pytorch. The code has been attached
to the supplementary materials upon submitting this work on the CMT interface. We have also
attached a readme.txt with a specification of all dependencies, packages, descriptions of the python
files as well as the commands to reproduce all the results presented in this paper.

Data set. Training experiments were carried out on the MNIST data set. Training set and test set
include 60000 and 10000 samples respectively.

Optimization. Optimization was performed using stochastic gradient descent with mini-batches of
size 20. For each simulation, weights were Glorot-initialized. No regularization technique was used
and we did not use the persistent trick of caching and reusing converged states for each data sample
between epochs as in [Scellier and Bengio, 2017].

Hyperparameter search for EP. We distinguish between two kinds of hyperparameters: the
recurrent hyperparameters - i.e. T , K and β - and the learning rates. A first guess of the recurrent
hyperparameters T and β is found by plotting the ∆EP and∇BPTT processes associated to synapses
and neurons to see qualitatively whether the theorem is approximately satisfied, and by conjointly
computing the proportions of synapses whose ∆EP

W processes have the same sign as its ∇BPTT
W

processes. K can also be found out of the plots as the number of steps which are required for
the gradients to converge. Morever, plotting these processes reveal that gradients are vanishing
when going away from the output layer, i.e. they lose up to 10−1 in magnitude when going from
a layer to the previous (i.e. upstream) layer. We subsequently initialized the learning rates with
increasing values going from the output layer to upstreams layers. The typical range of learning
rates is [10−3, 10−1], [10, 1000] for T, [2, 100] for K and [0.01, 1] for β. Hyperparameters where
adjusted until having a train error the closest to zero. Finally, in order to obtain minimal recurrent
hyperparameters - i.e. smallest T and K possible, both in the energy-based and prototypical setting
for a fair comparison - we progressively decreased T and K until the train error increases again.

Activation functions, update clipping. For training, we used two kinds of activation functions:

• σ(x) = 1
1+exp(−4(x−1/2)) . Although it is a shifted and rescaled sigmoid function, we shall

refer to this activation function as ‘sigmoid’.
• σ(x) = max(min(x, 1), 0). It is the ‘hard’ version of the previous activation function so

that we call it here for convenience ‘hard sigmoid’.

The sigmoid function was used for all the training simulations except the convolutional architecture
for which we used the hard sigmoid function - see Table 4. Also, similarly to [Scellier and Bengio,
2017], for the energy-based setting we clipped the neuron updates between 0 and 1 so that at each
time step, when an update ∆s was prescribed, we have implemented: s← max(min(s+ ∆s, 1), 0).

Benchmarking EP with respect to BPTT. In order to compare EP and BPTT directly, for each
simulation trial we used the same weight initialization to train the network with EP on the one hand,
and with BPTT on the other hand. We also used the same learning rates, and the same recurrent
hyperparameters: we used the same T for both algorithms, and we truncated BPTT to K steps, as
prescribed by the theory.

33

Table 4: Table of hyperparameters used for training. "EB" and "P" respectively denote "energy-based"
and "prototypical", "-#h" stands for the number of hidden layers.

Activation T K β ε Epochs Learning rates

EB-1h sigmoid 100 12 0.5 0.2 30 0.1-0.05

EB-2h sigmoid 500 40 0.8 0.2 50 0.4-0.1-0.01

P-1h sigmoid 30 10 0.1 - 30 0.08-0.04

P-2h sigmoid 100 20 0.5 - 50 0.2-0.05-0.005

P-3h sigmoid 180 20 0.5 - 100 0.2-0.05-0.01-0.002

P-conv hard sigmoid 200 10 0.4 - 40 0.15-0.035-0.015

Algorithm 1 Discrete-time Equilibrium Propagation (EP)
Input: static input x, parameter θ, learning rate α.
Output: parameter θ.

1: while θ not converged do
2: for each mini-batch x do
3: ∆θ ← 0
4: for t ∈ [1, T] do
5: st+1 ← ∂Φ

∂s (x, st, θ) . 1st phase: common to EP and BPTT
6: end for
7: for t ∈ [1,K] do
8: sβt+1 ← ∂Φβ

∂s (x, st, θ) . 2nd phase: forward-time computation

9: ∆EP
θ ← 1

β

(
∂Φ
∂θ (x, sβt+1, θ)− ∂Φ

∂θ (x, sβt , θ)
)

10: ∆θ ← ∆θ + ∆EP
θ

11: end for
12: θ ← θ + α∆θ
13: end for
14: end while

Algorithm 2 Backpropagation Through Time (BPTT)
Input: static input x, parameter θ, learning rate α.
Output: parameter θ.

1: while θ not converged do
2: for each mini-batch x do
3: ∆θ ← 0
4: for t ∈ [1, T] do
5: st+1 ← ∂Φ

∂s (x, st, θ) . 1st phase: common to EP and BPTT
6: end for
7: for t ∈ [1,K] do
8: ∇BPTT

θ ← ∂L
∂θT−t

. 2nd phase: backward-time computation
9: ∆θ ← ∆θ +∇BPTT

θ
10: end for
11: θ ← θ − α∆θ
12: end for
13: end while

34

E.1 Training Curves

Figure 17: Train and test error achieved on MNIST by the fully connected layered architecture with
one hidden layer (784-512-10) in the energy-based setting throughout learning, over five trials. Plain
lines indicate mean, shaded zones delimiting mean plus/minus standard deviation.

Figure 18: Train and test error achieved on MNIST by the fully connected layered architecture with
two hidden layers (784-512-512-10) in the energy-based setting throughout learning, over five trials.
Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation.

Figure 19: Train and test error achieved on MNIST by the fully connected layered architecture with
one hidden layer (784-512-10) in the prototypical setting throughout learning, over five trials. Plain
lines indicate mean, shaded zones delimiting mean plus/minus standard deviation.

35

Figure 20: Train and test error achieved on MNIST by the fully connected layered architecture with
two hidden layers (784-512-512-10) in the prototypical setting throughout learning, over five trials.
Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation.

Figure 21: Train and test error achieved on MNIST by the fully connected layered architecture with
three hidden layers (784-512-512-512-10) in the prototypical setting throughout learning, over five
trials. Plain lines indicate mean, shaded zones delimiting mean plus/minus standard deviation.

Figure 22: Train and test error achieved on MNIST by the convolutional architecture in the prototypi-
cal setting throughout learning, over five trials. Plain lines indicate mean, shaded zones delimiting
mean plus/minus standard deviation.

36

