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A Proof of Theorem 2.1

To prove Theorem 2.1, we need the following two lemmas, which are extensions of [1, Lemmas 5, 7].

Lemma A.1. Let M be a general Riemannian manifold and £ C M be a connected and compact
set with a C* boundary OE. Denote f,g : A, — R as two C? functions defined on an open set A,
with € C A, C M. With the following assumptions:

e Forallx € O€ andt € [0,1],
tgrad f(x) + (1 — t)grad g(x) # 0. (A.1)

e The Hessians of f and g are close, i.e.,

|hess f(x) — hess g(x)||2 < g (A2)

e Forall x € £, the minimal eigenvalue of hess g(x) satisfies

[Amin (hess g(x))| > n. (A.3)

Then, we have the following statements hold:

(a) Both g and f have at most a finite number of local minima in E. Furthermore, if g has K (K =
0,1,2,--+) local minima in &, then f also has K local minima in E.

(b) If g has a strict saddle in E, then if f has any critical points in &, they must be strict saddle points.

The proof of Lemma[A.T]is given in Appendix [B]

The following lemma is a parallel result of [[1, Lemma 7] for the case when
)\min (hess g(m)) Z n, )\min(hess f(w)) 2 gv

and can be proved similarly.

Lemma A.2. Denote B(1) as a compact and connected subset in a general manifold M with 1 being
its parameters.E] Let g : B(l) = R be a C? function satisfying Amin(hess g(x)) > n in D with

'The subset B(l) can vary in different applications. For example, we define B(l) £ {U € RM** .
[UUT | r <1} in matrix sensing and B(I) £ {z € R" : ||z||> < I} in phase retrieval.
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D2 {zecB():|grad g(x)||2 < €}. Denote x1, T, -+ , Tx as the local minima of function g.
Then, there exist disjoint compact sets {D; };en such that
D =U2,D;

with each maximal connected component D; containing at most one local minimum. Namely, x; € D;
for1l <i < K, and D; withi > K + 1 contains no local minima.

Now, we are ready to prove Theorem 2.1. Denote @1, - - - , & i as the K local minima of g(x). Define
D2 {x € B(l) : ||grad g(z)||2 < €}. By applying Lemma[A.2] we can partition D as D = U, D;,
where each D; is a disjoint connected compact component containing at most one local minimum.
Explicitly, ; € D; for 1 <1¢ < K, and D; with ¢ > K + 1 contains no local minima. We also have
|lgrad g()||2 = € for € ID; by the continuity of grad g(x).

Hereafter, we assume the two Assumptions 2.2 and 2.3 hold. It follows from (2.2) that

sup |[|grad f(x) — grad g(x)|[2 < 5
x€ID;

Then, for V ¢ € [0, 1], we have

€
sup t[|grad f(z) — grad g(z)l|2 < 7,
x€0D; 2
which is equivalent to
€ — sup t|lgrad f(x) — grad g(x)||2 > E, Vtelo,1].
x€dD; 2

Recall that ||grad g()||2 = € for € OD;. Then, we have

. €
inf |[|grad g(z)||2 — sup t[grad f(z) — grad g(x)|l2 > 5, YVt €[0,1],
z€dD; z€dD; 2

which further gives us
inf _{l|grad g(z)l|2 — tl|grad f(z) — grad g(x)||2} =
x€0D;

Consequently, we obtain

t €0,1].

l\.’)\m

inf /(1 t)grad (=) + tgrad f(@)]]2 > % Vitelo,1].

xed

Let D in the statement of Theorem 2.1 be one of the D;s. Then D contains at most one local minimum.
The rest of Theorem 2.1 follows from Lemma[A_ 1]

B Proof of Lemma[A.1]

Using the Nash embedding theorem [2]], we first embed the Riemannian manifold M isometrically
into a Euclidean space R¥ for sufficiently large N. This allows us to view M as a Riemannian
submanifold of R™V and identify the tangent spaces of M as subspaces of R"Y. We also identify the
norm || - |2 induced by the Riemannian metric with the Euclidean norm in R". Recall that £ is a
connected set. Then, assumption (A.3)) implies that any point z € & satisfy either Ay, (hess g(x)) >
7 0F Ain (hess g(x)) < —n. There cannot exist two points &1, 2 € & such that Ay, (hess g(x1)) >
7 and Apin (hess g(x2)) < —n. Otherwise, since the continuous image of any connected set must
also be a connected set, there must exist another point &3 € £ such that —n < Apnin (hess g(x3)) < 7,
which contradicts assumption (A.3)).

Note that
[Amin (hess f(2)) — Amin(hess g(x))| < ||hess f(x) — hess g(x)]|2 < 2

where the first inequality follows from [3, Theorem 5] and the last inequality follows from assump-
tion (A.2). Together with the assumption (A.3)), we obtain

{)\min (hCSS f(m)) Z g7 lf /\min (hess g(x)) Z m,
- <

Amin(hess f(x)) < =2, if Ayin(hess g(x)) (B.1

=N



1) When Ayin(hess g(x)) > n for all x € £, we have Ayin(hess f(x)) > Z for all x € £. This
implies that the critical points of g(x) and f () in £ are all local minima and are all isolated. Since £
is a compact set, there can only exist a finite number of critical points of g(x) and f(x) in £, which
are denoted as 1, €2, -, Tk and 1, T, -, T, respectively.

For € > 0 small enough, define a set
E_ . E2{x e dzE) > €},

where d(x,S) £ inf{||x — y||2 : y € S} is the distance between x and a set S. Define w : A, —
[0,1] as a C! bump function with

0, xec A\E,
w(m):{l a:eé'_\.

Define two C! vector fields as
§o(x) = grad g(z),
§1(x) = (1 —w(z))grad g(x) + w(z)grad f(z).
Note that £y|oe = &; s since w(x) = 0 when x € 9. With assumption (A-T]), we have

inf inf |[(1 —t)grad tgrad >0
mlélagte%,ﬂ It g g(w) +tgrd j(z)]l

by a continuity argument. Then, we can choose € > 0 small enough such that
§1(x) #0, hess f(z) #0

holds for all & € £\E_.. This implies that the critical points of & 1E] are all in £_. and coincide with
the critical points of f since &, (x) = grad f(x) in £_.. Therefore, Z1, X, --- , Ty are also the
critical points of £; in €_..

For a non-degenerate critical point x¢ of a smooth vector field £ : £ — RY, we define the index of
x( as the sign of the Jacobian determinant [[1, 4], namely

indg, (&) = sign det (D&, ) , (B.2)

where D€, : T, M — RY is the differential of the vector field. Note that the map D&, can be
considered as a linear transformation from 77, M to itself and hence has a well-defined determinant.
When £ is the Riemannian gradient, the differential D, reduces to the Riemannian Hessian [3,
Definition 5.5.1 and equation (5.15)].

Since Amin(hess g(x)) > 7 and Anin(hess f(x)) > 3, both hess g(x) and hess f(x) are non-
degenerate matrices whose determinants are positive. Recall that &, (x) = grad f(x) when @ € £_..

Then, for1 <3 < K , we have
indg, (&;) = sign det (D(&;)z,) = sign det (hess f(Z;)) = 1.

Define E(m) £ &(x)/||€(x)||2 wherever £(z) # O as the Gauss map. Denote @1, x2, -+, Tf
as the critical points of function g in £. It follows from [1, Lemma 6], [[6} Theorem 1.1.2], and [4}
Theorem 14.4.4] that the sum of indices of the critical points inside £ is equal to the degree of the
Gauss map restricted to the boundary of £, hence, we have

K= iind@ (&,) = deg (El\ag) 2 deg (Eobs)
i=1

K K
=D inda, (€) = D sign det (D(€)a.)

i=1

i=1
K

= Z sign det (hess g(x;)) = K,
i=1

For a smooth vector field & : £ — T'M, defined on £ C M, a critical point is defined as a point g € £
satisfying &(x¢) = 0. Here T'M is the tangent bundle of M.



where deg (E\ag) denotes the degree of the Gauss map restricted to the boundary of £. Here, ©

follows from &;|se = &;|se and @ follows from (B.2). Then, we can conclude that the number of

critical points of f and g are both equal to K = K. Since the minimal eigenvalues of g and f are
both positive, the critical points are also local minima. Thus, we finish the proof for first part of

LemmalA1]

2) When A, (hess g(x)) < —n, we have Ayin(hess f(x)) < —3. This immediately implies the
second part of Lemma[A.T]

C Proof of Corollary 2.1

Let {Z }5_, and {z\ }/< | denote the local minima of the empirical risk f and its population risk g.
Recall that D = {x € B(l) : ||grad g(z)|2 < €}. Using Lemma we partition D as D = U2, Dy,
with ¢y, Z) € Dy for 1 < k < K, and Dy, for k > K + 1 contains no local minima.

Fix k € {1,2,..., K}. Let T, M be the tangent space of the Riemannian manifold M at xj, and
0, be the zero vector of Tz, M. Let Exp,, : Tz, M — M denote the exponential map at .

Suppose ./\7m . 18 an open ball in 7, M around 0, with radius p, the injectivity radius of M. Then

~

Exp,, is a diffeomorphism in N, [5, pp.148-149]. Define N, = Exp,, (N, ) as the image of
J\A/'m , under the exponential map Exp,,, . Then the Riemannian distance
dist(z1, z2) = HExp;k1 (z1) — Exp‘;k1 (22)||2, V21, 22 € N,

is equivalent to the distance in the tangent space (induced by the Riemannian metric) [5| Section 4.5.1].
The corollary’s assumptions ensure in particular that Z, € Dy, C N, . We next bound the radius of
the set D;,.

Consider the pullback § = g o Exp,, : Tz, M — R that “pulls back” the cost function g from
the manifold M to the vector space T, M. Since the exponential map is a retraction of at least
second-order, the gradient and Hessian of the pullbac satisfy [[7, Proposition 2.11, Corollary 2.13]

V3(0g,) = grad g(zx) = 04,, VZ2G(04,) = hess g(x}).
This together with the Lipschitz Hessian condition imply that [8, Lemma 1]

N N N N L
IVg(v) — hess g(zi)[v][l2 = [ VG(v) = V§(0z,) — V*5(0z, ) [v]]2 < THHUII%
Since Amin (hess g(xy)) > n, we conclude
N Ly Ly
V() > || hess a(ae)ollla — 2L oll3 > nllwlls — 2L ol <

Since the gradient of the pullback g at v and the Riemannian gradient of g at Exp,, (v) satisfy [9}
Lemma 5.2]

V§(v) = (DExp,, (v))" [grad g (Exp,, (v))],

where the differential DExp,,, (v) is a linear operator mapping vectors from the tangent space at xy,
to the tangent space at Exp,, (v), and the star indicates the adjoint, the corollary’s assumptions imply

IV3(v)ll2 < |DExp,, (v)|||| grad g (Exp,, (v)) [l2 < of| grad g (Exp,, (v)) [l2-
Combining this with (C.I)) yields
Ly

Ui
lerad g (Expg, (v)) [l > —[lvll> = 5 -]z (€2

~ —/m?—20L Vn?—20L
Dy C Di. Letrg = % and r; = w For ¢ < n?/(20Ly), we have

Define Dy, £ {x = Exp,, (v) € No, : L|v|lz — £Z[[v||3 < €}. It follows from (C-2) that

3Since the pullback is defined on a vector space, its gradient and Hessian can be computed using the regular
V and V2 operators with appropriate choice of basis for T, M. Our notation highlights this fact.



Dy, = B(ro) UB(r1 )¢ with B(r1 )¢ being the complement of B(r1). Here B(rg) = {x = Expg, (v) :
lvll2 < 7o} = {x € M : dist(x, x) < ro}. Note that since Dy, is connected and ), € Dy, NB(rg),
we then have Dy, C B(rg), which together with Zy, € Dy, further indicates that

dist(Zg, zr) < ro < 20¢€/7,

where the last inequality follows from € < 1?/(20 L) and the elementary inequality /1 — 2 > 1—x
for z € [0, 1]. This completes the proof since k € {1,2,..., K} is arbitrary.

D Proof of Lemma 3.1

We present the Riemannian gradient and Hessian of population risk on the quotient manifold M as
follows

gradg(U) = Py(Vg(U)) = (UUT - X)U
hess g(U)[D, D] = (Py (V?¢(U)[D]), D) = V2¢(U)[D, D] — (U, D) = V?¢(U)[D, D]

for any D € HyM. Here, (UQ, D) = (2, U D) = 0 follows from the fact that €2 is a skew-
symmetric matrix and DU = U D.

D.1 Determining critical points

By setting grad g(U) = 0, we get XU = UU " U. Denote U = WuA,%QT as an SVD of U with
W, € RVXk A, € RF¥F and Q € RF*F, Tt follows from XU = UU U that
XW,AiQ" = W,AiQ,
which further gives us
XW, = W,A,.

For: = 1,...,k, denote w,,; and \,; as the i-th column of W, and ¢-th diagonal entry of A,,
respectively. Then, we have

XWyi = Ay Wi,

which implies that \,; is one of the eigenvalues of X and w,; is the corresponding eigenvector.
Therefore, any U € U is a critical point of g(U) and we finish the proof of property (1).

D.2 Strongly convexity in region R

Recall that U* = W, A? Q" with Ay, = diag([A1, - - - , Ax]) containing the largest k eigenvalues of
X. It follows from the Eckart-Young-Mirsky theorem [10] that any U* € {/* is a global minimum of
¢(U). Note that we can rewrite X as

X = WiAe W, + WEAFWE T = U U T + WEALFWLE D.1)

where W,J; € RV*(r=k) is a matrix that contains eigenvectors of X corresponding to eigenvalues
in Air = diag([Ary1,- -+, Ar]). For any D € RY*F that belongs to the horizontal space Hy+ M at
any U* € U*, we have DT U* = U* "D, which implies that
(Q,U*'D) =0,
since €2 is a skew-symmetric matrix. Then, for VD € Hy« M, we have
hess g(U*)[D, D] = (V?¢(U*)[D], D) — (U*Q, D)

)
= (V?¢(U")[D], D)
= (U*DT + DU*")U* + (U*U*" — X)D, D)
— (W,AW/,DD") + (QA,Q",D'D) — (W} AW} ,DD")
@ 2 2 2
> Xe|[DfI7 + XDl — Akt D7
©]
> 1.91| D] 7.



Here, @ follows from (U*Q, D) = (€2, U*TD> = 0, @ follows from [11, Lemma 7], and ® follows
from the assumption A;41 < %)\k. Then, we have

Amin (hess g(U*)) > 1,910, > 0, (D.2)

which also implies that any U* € U* is a strict local minimum of ¢g(U).

Next, we characterize the strong convexity in region R;. Note that for V =1, x2 € R, we have
xr1 — T > —|I1 — l‘2|, i.e.,r1 > 19 — |I1 — I2|, which 1mpl1es that
hess g(U)[D, D] > hess g(U*)[D, D] — | hess ¢(U)[D, D] — hess ¢(U*)[D, D]|, (D.3)

where D belongs to the horizontal space HyM atany U € Ry, i.e., UTD = D' U. For notational
simplicity, we denote U*P* with P* = argminpcpo, ||[U — U*P||r as U*. In the rest of this
section, we bound the two terms in the right hand side of in sequence.

Term 1: Note that hess g(U*)[D] is the projection of V2g(U*)[D] onto the horizontal space Hy M,
namely, hess g(U*)[D] = V2g(U*)[D] — UQ with € being a skew-symmetric matrix that solves
the following Sylvester equation

QU'U+U'UQ =UV(U" D] - V?¢(U*)[D]"U. (D.4)
Then, we have
hess g(U*)[D, D] = (V?¢(U*)[D], D) — (U, D)
= (V?g(U")[D], D),
where the second line follows from (UQ,D) = (2, U'D), U D =D Uand Q + Q" = 0.
Defining E, £ U — U*, together with UTD = D" U, we obtain

D.5)

(U*+E,)'D=D"(U*+E,),
which further gives us

D'U*=U"'D+E/D-D'E,. (D.6)

By combining (D.3)) and (D.6), we can bound the first term with
hess g(U*)[D, D] = (V?¢(U*)[D], D)
=((U*D" + DU*"U* 4+ (U*U*" — X)D, D)
—(D"U*, U D) + (U TU*,D'D) — (W:A-Wi ', DDT)
—(U*'D+E/D-D'E,, U D)+ (QA:Q",D'D) — (W}A+W ' . DDT)
=(U*U*",DD")+(E]D, U D)~ (D'E,, U*'D) + (QA,Q",D' D)~ (W} A} W7, DD
1
>Me|[D[F = 022 [D[5 = 020 [D[[% + A D7 — Al
>1.51A[|D|I%,

where the first inequality follows from [11, Lemma 7], the Matrix Holder Inequality [12], the
assumption Ag 41 < %)\k, and the following two inequalities

(E;D,U"'D) > —|E;D||¢|[U* ' Dl|r > —||E,| | U*|2| DI
> 026" 'V e/ M |D|% = —0.20 | D%,

(D'E,,U*'D) < |D"E,|¢|U" D] < |Eu]r|U*|2|DIf%
< 0.2 /A v/ A1 [ D)7 = 0.2X¢ D[

Term 2: By plugging hessg(U)[D,D] = ((UD'" + DU")U + (UU'T — X)D,D) and
hess g(U*)[D,D] = (U*DT + DU*")U* + (U*U*" — X)D, D) into the second term, we



obtain

| hess g(U)[D, D] — hess g(U™)[D, D]|
—[2(uu’ —U*U*",DD") — (U*E],DD") + (D'E,, U* 'D) + (U'U — U* ' U*)|
—|3(U*'D,E/D) + 2(E/D,E/ D) + (D"E,, U*'D) + 2(DE ,DU*") + (DE, ,DE] )|
<6/|U*[|2|[Ew || [ D% + 3| Eull7 D%
<1.20;|D|% + 0.125 2\ D||%
<1.32)|D||%,

where the first inequality follows from the Triangle Inequality and the Matrix Holder Inequality [12]],
and the last two inequalities follow from ||[U*|| = /A1 and |E,||r < 0.2671y/ A, with & > 1.

As a consequence, we have
hess g(U)[D, D] > hess g(U*)[D, D] — | hess g(U)[D, D] — hess g(U*)[D, D]
> 0.19[|D |13,
which implies that
Amin (hess g(U)) > 0.19);
holds for any U € R;. Thus, we finish the proof of property (2).

D.3 Negative curvature in region R/

For any U* € UF, let U% = WSAS%QT be an SVD of U? with W, € RV*F A, € RF*k and
Q € Oy. According to the definition of U}, A, € R**% contains any k non-zero eigenvalues of
X except the largest k eigenvalues. Denote A; = diag([As1, -, As]) with Agp > -+ > A > 0,
we have g, < Ag41. Let g denote the k-th column of Q. w* € R*Y is one column chosen from

W), satisfying w* ' W, = 0. Then, we show that the function g(U) at U7 has directional negative
curvature along the direction D = w*q, . Note that

D'U: = qkw*TU’g =0,
U.'D=U;"w'gl =0,
which verifies that this direction D = w*q,  belongs to the horizontal space Huy: M at U, It can
be seen that
hess g(U%)[D,D] = ((U:D' + DU} ")U? + (U:U:' — X)D,D)
= (U:TUL,D'D) — (WAALWL ' DDT)
= (QA.Q". quq)) — (WHALWE T wrwT)
< Ak — Ap < =091\, = —0.91);||D||%,
where W € RV*("=%) is a matrix that contains eigenvectors of X corresponding to eigenvalues in

Asl, i.e., eigenvalues of X not contained in A . The first inequality follows since w* is a column of
both WSL and Wy,. The second inequality follows from Ay < Apq1 < 1—12/\k. Therefore, we have

Amin (hess g(U%)) < —0.91\;.
Next, we show that the function g(U) has directional negative curvature for any U € R/, along the
direction
D =U — U'P* with P* = arg min ||U - U*P||g.
PecOy
For notational simplicity, we still denote U*P* as U*, i.e., D = U — U™. First, we need to verify

that this direction belongs to the horizontal space Hy M at U. As is shown in [13] proof of Lemma
6],U'U*isa symmetric PSD matrix. Then, we have

D'U=UU-U""U=U"U-U'U*=U'D,



which implies that D € Hy M.

Note that minimizing g(U) is equivalent to the following minimization problem

1
min = [UUT - U U} - (UUT, WEALWL ).
UeR;

Define two functions g1 (U) and g2 (U) as
1 T T
7(U) £ Z||UUT — U U7 — (UUT, Wi A W),

%(U) 2 —(UUT, WEAEWE ).
Then, we have
Vgo(U) = 2WEAF WU,
V20:(U)[D, D] = ~2(W} Af W} ,DD").
Together with [13, Lemma 7], we get
2hess g(U)[D, D] = 2V?¢(U)[D, D] = V¢, (U)[D, D]

T2 T oy el (|2 2 (D.7)
=[DD' [z =3[[UU" —U"U" [|z+4(Vg1(U),D)+V7g>(U)[D, D] -4(Vg(U), D),
where the first equality follows from (U2, D) = 0, similar to Appendix|D.3]
Note that the first two terms in can be bounded with
STk T
DD % — 3|UUT —~UTU* |3

<-|uuT -UU;

(D.8)

<—2(v2-)\|D]
< — 082D 7
by using Lemma 6 in [[13].

Note that
. 1
IDl|F = [[U-U"||r > | diag([e1(U) =/ A1, -+, 0k (U) = V)|l F > 0(U) =/ A > 3V Ak,

where the first inequality follows from [3, Theorem 5], and the last inequality follows from o (U) <
2/ Then, the third term in (D.7) can be bounded with

(Vg1(U), D) <[[Va1(U)|[r[ D]l r = 2|/ grad g(U)|[ | D]l »

<AAIDlr = s MlDlr sy € XD
Next, we bound the last two terms in (D.7) with
V292(U)[Dv D] - 4(Vg2(U),D)
— _ 2WLAFWE DDT) + 8(WEAFWE U, D)
=8(WL AW U U-U") —2(WEA- WL, UUT —U*U T —UuUu*T + U U*")
CGWLATWL, UUT) = 6(AL, Wi UUTWE) (D.10)
6Nt [WE I 2 6 [ W (U U")|3

1

where ® and @ follow from W,JC-TU* = 0, and @ follows from [11, Lemma 7].
By plugging inequalities (D.g), and into (D.7), we obtain
hess g(U)[D, D] < — 0.41\¢|D||% + 0.1)||D||3 + 0.25) || D||3. = —0.06); | D||%,
which implies that
Amin (hess g(U)) < —0.06
holds for all U € RY, and we finish the proof of property (3).



D.4 Large gradient in regions R}, R and RY

It is easy to see that the first inequality in property (4) is true due to the definition of RY. In this
section, we mainly focus on showing the gradient is large in regions R% and RY.

D.4.1 Large gradient in region R

To show || grad g(U)|| r is large for any U € R}, we rewrite U as

~ 1 ~
U=W,A’Q, +E,, (D.11)

where W}, € RVXF contains the k eigenvectors of X associated with the & largest eigenvalues of
X, A, € R¥** ig a diagonal matrix, Q,, € O, is an orthogonal matrix, and ET W}, = 0. Note that

1
Wi Au QI can be viewed as a compact SVD form of the projection of U onto the column space of

W, Plugging and into || grad g(U)||% gives
lgrad g(U)||% = I(UUT - X)U[3
:|\Wk7xf(7xu—Ak)QI+WkaQIEIEu+EuQuKUQT+E BB, Wi AL W, B
= [BUQAQ+ BB~ WEA W T2+ [ WiA R~ A QI+ WeA QTETEuH%],) b

where the last equality follows from EI W, = 0. Next, we show at least one of the above two terms
is large for any U € R, by considering the following two cases.

Case 1: |E, |z > 0.15x~1\/X. The square root of the first term in (D.12) can be bounded with
HEuquuQT + EuETE - W]Jg_AIJ;WJ_TEuHF
> By (QuALQ] +EJE)|r — [WEAEWE Eyllr
B ~ (D.13)
Zak(U U)HEuHF _)‘k+1||Eu||F
@1 ~ 1 3
> A |Eullr > —r7IA?
g M Bullr 2 55r7 A

where @ follows from UTU = Q,A,Q + ETE, and [I1} Corollary 2], and @ follows from
0,(U) > 1v/A; and the assumption Ay 41 < 75k

Case 2: HEuHF < 0.15~1/\y. Denote \,; as the i-th diagonal entry of Ay With Ayt > -+ > Auks

= 1
i.e., \/ Ay is the i-th singular value of WA > Q.. By using Weyl’s inequality for the perturbation
of singular values [14] and (D-TT)), we get

o1(U) =\ Auk < [Bull2 < [Eullr,
which further gives

V Ak = 01(U) = |Eyllr > (0.5 — 0.167 )/ M.

To bound the second term in (D.12), we still need a lower bound on ||A,, — Ag||r. Recall that
Q € O, contains the right singular vectors of U*. According to the definition of R, we have

0.2~ 1/ A\ < Join |[U—U"P|lp < |[U- U QQ, ||Ir
~ 1l ~ ~1 1
—|WiAZQ] + B, - WA Q! < [Wi(AZ — A2)QL|lr + |Bullr

~ 1 1
=A% — A llF + IEullp,

which implies

1 N
1A — Afllr > 0.26 "/ Ak — 0.1/1_1@ = 0.1/1_1@.



Then, we can bound ||A,, — A || with

k

k
1A = Al = S 0w = 202 = | S0 S = VA2 R + VA2

i=1 i=1

k

> (R V) S R - VA2

i=1

~ 1 1
>(15— 0.1 VM| AL — A2 ||p
>0.167 (1.5 — 0.1 ") Ay
Now, we are ready to bound the square root of the second term in (D.12). In particular, we have

WAL Ry~ AWQ] + WeA: Q) ETE,r
%A [(Ay — ADQL + QUEIEL|x
SV AR — AOQ] + QIEIB ¢
>\ Rk (1K = Arllr — [Bull3)
>(0.5 — 0.167 )/ Ak(0.167 (1.5 — 0.1k~ )X — 0.01572A)
=(0.5— 0.1571)(0.155" — 002522,

where @ follows from W;Wk = I, and @ follows from [11} Corollary 2].
Note that

(D.14)

1
(0.5 — 0.1k 1) (0.1557 — 0.02572) > @n_l
always holds for x > 1. By combining (D.12), (D.13)) and (D.14)), we get
1 .3
%KZ 1A,§ .
Thus, we finish the proof of second inequality in property (4).

| grad g(U)||F >

D.4.2 Large gradient in region R

For any U € RY** denote {o;}¥_, as its singular values. Then, by using the Cauchy-Schwarz
inequality, we have

k
> ot = VE[UUT | p. (D.15)

i=1

k
IO =) of <Vk
i=1

On one hand, we have

1
(grad g(U), U) < || grad g(U)||p|[U||p < k¥ grad g(U)||p[|UUT| 2. (D.16)
On the other hand, we have

(grad¢(U), U) =((UU" - X)U, U)
—(uuT —UrU* T, UUT) — (WEAFWET uuT)
@ T
>|[UUT |7 — [UU* " [[p[[UUT |[p — [[WEAF W [|2[UUT .

@1

>-|lUUT % = A1 VE|UU T ||,
Al 7 — Ae+1VE| | F D.17)

o1 1

>;|IUUTIIFHU*U*TIIF - EM\/EHUUTIIF

1 1
> VEMIUU || — 5 VEMUUT 1

_5 T
—84\/E)\k||UU (F2

10



where @ follows from the Matrix Holder Inequality [12]], and @ and ® follow from ||[U*U* " || <
Z|UUT||p and Aj41 < 35Ak. Combining (D-16) and (D-17), we get

3
2

5 1 1 5 1 T,% ) 5 1
leradg(U)llr > 2k M [UUT [} > Sk A[UTU* 17 > qk MllU* 2 2 7 RTAL,

where the second to last inequality follows from |[U*U* T ||z > |[U*||2. Thus, we finish the proof of
the third inequality in property (4).

E Proof of Lemma 3.2

We present the Riemannian gradient and Hessian of the empirical risk on the quotient manifold M as
follows

grad f(U) = Py(Vf(U)) = A*A(UUT - X)U
hess f(U)[D, D] = (Pu(V*f(U)[D]), D) = V*f(U)[D, D] - (UQ, D) = V*{(U)[D, D]

for any D € HyM. Here, (UQ, D) = (2, U D) = 0 follows from the fact that £2 is a skew-
symmetric matrix and DU = U D.

Denote B : RV*N — RM a5 a linear operator with the m-th entry of the observation y = B(X)
as Y, = (B, X). According to the way we construct the symmetric linear operator A4, i.e.,
A,, = 1(B,, + B},), we have that

M M
JAZ)Z =D (Am,Z)* = (B, Z)* = |B(Z)|3
m=1 =

m=1

holds for any symmetric matrix Z € R™ <" Therefore, the constructed symmetric linear operator A
satisfies the RIP condition (3.4) as long as the linear operator B satisfies the RIP condition (3.4).

Since the linear operator A satisfies the RIP condition (3.4) for any matrix Z € RV > with rank at
most 7 + k, we have

IA*A(Z) = Z||F < br4l|Z]| - (E.1)

To set the radius of the ball B(I) = {U € RY*k : |[UUT ||¢ < I}, we first bound || grad f(U)| ¢ in
RY. On one hand, we have

1 1
(grad f(U), U) < [[grad f(U)|r[|U||r < k* | grad f(U)] | UU ||,
which follows from the Matrix Holder Inequality [12] and (D.I3). On the other hand, we have

(grad f(U), U)
= A(UUT)[3 - (A(U*U*T), AUUT)) — (AWEAFWE D), AUUT))

* * T
AUUD 3~ AUT*) |2 [AUU ) 2~ AW Ay Wi )2 AUTT )2

-
(1=0r ) [[UU )5~ (146, ) [T U p U~ (140,40 Wi A Wi |[£[UUT|0

Ve Ve Ve

~| -

* * T
(1= 156, 0)[UU* T £ [UUT |5 = (14 6,40) [Wir ALy Wik [|#]|UUT ||

5 15

o1~ 7 o) VEAUUT .

Here, @ follows from the Holder’s Inequality. @ follows from the RIP condition in (3.4),
rank(UUT) = rank(U*U*T) = k < r+k and rank(WEAFWL ) = r—k < k < r+k. ® fol-
lows from |[UUT ||z > 3[[U*U*"||p. @ follows from |[U*U* " [|p = [|A4][r = \/Soh, A2 >

11



VA, and [WEAFWE | o < VEIWEAFWE |3 = Vi1 < 25V Tt follows that

lgrad £(U)||F > &+ [UUT | * (grad £(U), U)

> (2~ ok UUT
> (2= ok AU
> (& - 2ok AU

> (834 - 1755r+k)k%>‘§-

Then, we can conclude that || grad f(U)||r > (& — 1—755r+k)ki)\§ holds when |[UUT | >

%HU*U*THF. Therefore, we can set the radius of B(l) = {U € RY** : |[UU T ||p <} as
8 T
1= 2|U U 5.
Ut U
Inside the ball B(1), we then have
| grad f(U) — grad g(U)||r = [[[A"A(UU" —X) — (UU" — X)]U||r
< JATA(UUT - X) — (UUT = X)||7|U]F
< 6,%|UUT = X||pkiVi
< pin(+ X[ )RV,
which implies that
€
I grad f(U) — grad g(U)|[r < 5

if 01 < ———<——. As aresult, if the linear operator A satisfies the RIP condition (3.4) with
201+ X p)kT VI

6 1
2\/364 0T [+ X U0 T30

Or4+k < min

the Assumption 2.2 is verified. Here, the term 3—16 comes from the requirement that 1—755T+k < 8%.

To verify Assumption 2.3, it is enough to show that

| hess f(U)[D, D] — hess g(U)[D, D]| <

o3

holds for any D € HyM and |D||r = 1. Note that
| hess f(U)[D, D] — hess g(U)[D, D|

= %||A(UDT+DUT)||§ - % [UD'"+DU ||+ (A"A(UU'-X),DD")—(UU' -X,DD’)

g% AUD' + DU - [UD" + DU 7| + [(A"A(UUT - X) - (UU' —X),DD")|

<26, 6 VR4 8 (L + X ) = 6 (2VEL+ L+ X[ 7).
where the last inequality follows from
[A(UDT +DU")|; - [UD' + DU |%|
<614 |UDT + DUT|[% < 46,41 |U||% < 46,41 VE|UUT | p < 46,4, VE
and
[(A*A(UUT —X) — (UU' —X),DD ")
<||4"A(UUT — X) - (UUT - X)|| ¢|DD7 |+
<Ok (L + [1X| 7)

12



by using the assumption that the linear operator A satisfies the RIP condition (3.4) and the fact
that UD " 4+ DU has rank at most 2k with 2k < r + k. Therefore, we can now conclude that
Assumption 2.3 is verified as long as the linear operator .4 satisfies the RIP condition (3.4) with

n
(EVEUUT |+ 20U | + X )

Orn <
+h S 3

F Proof of Lemma 3.3

We first consider the critical point = 0 and its neighborhood R ;. Note that
V?g(0) = —4z*x* " - 2|lz*|51n,
whose minimal eigenvalue and corresponding eigenvector are given as
Amin(VZ9(0)) = —6]|z*[|3 < 0,

m*

e

Therefore, = O is a strict saddle point. For any € R1, we have ||z|> < 3||*||>. Denote

Vmin () as the eigenvector of V2g(x) corresponding to the smallest eigenvalue Ay, (V2g()). Tt
follows that

/\min(VQQ(w)) = vmin(w)TVQQ(w)vmin(x) < vmin(O)TVQQ(m)Umin(O)

© 1
=12 @ @)? + 6l - 6o
2

IN®

® 3
18]|2[I3 — 6ll=*[3 < 3 ll=*|3,

where @ follows by plugging v, (0) = ﬁ and V2g(x) = 12xx| — dx*z* | + 6|31y —
2||z*||31. @ follows Cauchy-Schwarz inequality. ® follows from [|z[|s < % |z*||2.

Next, we consider the critical point & = * and its neighborhood. The argument for another critical
point x = —x* is similar so we omit the proof here. Note that

Vig(z*) = 8z*e* " + 42" 3Ly,
whose minimal eigenvalue is
Amin (Vg (2*)) = 4]lz*[|3 > 0

with the corresponding eigenvector satisfying vy, (z*) T@* = 0. Therefore, x = x* is a local

minimum of g(x). Moreover, g(x*) = 0 = ming g(z) further implies that z = x* is a global
.. * 1 * 1

minimum. For any & € Ry, we have || — 2*||2 < 75/«*||2. Denote vp,in () as the eigenvector of

V2g(zx) corresponding to the smallest eigenvalue A, (VZg(z)). It follows that

)‘min(v29($)) = vmin(w)TVQQ(w)vmin(w)
=vmin(@) ' V29(2")0min(®) — (Vmin(®) T V(2" )Vmin (@) — Vinin (@) T V29(2)Vmin(2))
>Vin (@) T Vg (2*)Opin () — ’vmin(:c)—r (Vgg(:c) — Vgg(:c*)) vmin(w)| .
Then, we bound the two terms on the right hand side in sequence. For the first term, we have
Ui (€) T V2 9(&" ) Vmin () = 8(@* " vimin (2))? + 4”3 > 4|2 5.
Define e =  — x*. For the second term, we have
’vmin(w)—r (Vzg(m) - Vzg(w*)) vmin(a:)|
= ]24vmin(w)Tac*eTvmin(a:) + 12(eTvmin(a:))2 +12e"z* + 6||e\|§’
<36]|2*2]le]l> + 18]ell3
<3.78||* |3,
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where the last two inequalities follow from the Cauchy-Schwarz inequality and [le]|; < &||*]|2.
Therefore, we have

Amin (V2g(x)) > 4]|2*[13 — 3.78]| =[5 = 0.22[|* |3

Then, we consider the critical points & = %Haz*ﬂgw, with me* = 0, |wlz = 1 and its
neighborhood R 3. The argument for the other critical point x = ——= Hac* Hg'w is similar so we omit

the proof here. Note that

1 T
2 * * |2 * pak
— || w) = 4||x ww —4xx s

whose minimal eigenvalue and corresponding eigenvector are given as

1 x
Amin (VZ9(—7= )) = —4ll=*[3 <0,

¥ w

w*

[Ead /Py

Therefore, @ = —=||x*||2w with w " @* = 0, [|w||2 = 1 are strict saddle points. For any x € R3, we
have ||z — %Hw*ngHg < L{|x*||2. Denote vyin () as the eigenvector of V2g(x) corresponding
to the smallest eigenvalue A\, (VZg()). It follows that

)\min(VQ,g(m)) - vmin(x)TV2g(w)vmin(m) S vmin(O)TVQ,g(m)vmin(O)

@ 1 a2 2 «
= 12”33*”2(33 z*)? + 6|lz||3 — 6]|z* |3 < 18||z||3 — 6]|=*3

1 2
=18 ||z — —|z*|w + —=||z*|ow|| — 6]lx*||3

e+ e’ fow| 6"

2
<18 _ * T lae* 2 * * — 6llx* 2
< 18|z \[H-’B sz +gllz"lz + H \fllﬂ3 low Hfﬂ l2 — 6] |5
® * (|2
< —-0.78]z7 |3,
where @ follows by plugging v,,,;,(0) = Hw*\lz and V2g(x) = 12z’ — dz*x* " + 6|31y —

2||z*||3Iy. @ follows from the Cauchy-Schwarz inequality. ® follows from ||x — % lz*|ow]2 <
sl l2.

Finally, we show that the gradient Vg() has a sufficiently large norm when « € Ry4. Letx = ax™ +
Blla*|2w with o, B € R, w'@* = 0, and ||wl||z = 1. Then, |z|2 > ||z*||2, min,e(_11} [|& —

y&*||2 > 75/|x*]|2 and min, e, x — V%Hm*ngHQ > L||x*||; are equivalent to

a?+p2>1
min, ey 13 (e —7)% + 5% > %%7
min'ye{fl,l} o? + (ﬂ - %7) > %
Note that
.
IVg(@)I3 = ||6llzl3e - 2|o* |3z - 42" 2)2*

=4(902(a® + 7 — 1)? + B*(3a% + 382 — 1)?) |=*|§
> 0.1571|x*||S.

Then, we have

IVg(z)|l2 > 0.3963||z" 5.
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G Proof of Lemma 3.4

The gradient and Hessian of the empirical risk (1.1) are given as

SIS
NE

Vf(“") = (aM<amv $>3 - am<am’ w><am’ :l:*>2>,
m=1
5 M

2 _ “ T 2 _ T *\ 2
Vof(z) = Mrngl(?)amam(am,m) @, (o, *)7).
Observe that
HVf( ) = Vg(z)]2
M
Zam A, ) 3|z 52 — M Z (@, ) (@, )2 + ||2* |22 + 2(z* " )2
m=1 2

Zam (am,x 3H:B||2(L' +2

Zam A, ) (A, %) — ||| —2(2* ) ™

2

To bound the above two terms, we need the following lemma, which is a direct result from [15} Claim
5] by setting A =Iy andk =d = N.

Lemma G.1. Suppose a,, € RY is a Gaussian random vector with entries satisfying N'(0,1).
Denote a®* = a,, @ @y @ Ay @ @y, € RNNXNXN g6 g fourth order tensor. Then, we have

. 2
—Ea®Y)| <O (N + N) £ W(N,M)

M M

2
holds with probability at least 1 — e~ CN los(M),

For the first term, we have

XM
2 i A (@, ) — 3| |32
m=1 2
1M
=2 i Z (a?;f —Ea?ff) X1 Xo & X3
m=1 2
M
<2|| 53" (agt —EaZh)| el
m=1 2
<2h(N, M)I3,

where the last inequality follows from Lemma G.1|and ||z||> < L.

For the second term, we have

am<am,x><am,w*>2 — ||a:*||§as — Q(w*Tac)as

<[ =
B

3
ﬂ‘

2

Il
[\
N
NE
’S
3

®4 —Eaf?f) X1 & X9 x* X3 x*

3

ST

2

a2 fl2* 13
2

1
®4 ®4
<2 i z:l(am —Ea; )
<2h(N, M)l||z*3,
where the last inequality follows from Lemma|G.1]and ||z||s < .
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Therefore, we have that

IVf(z) = Vg(z)|l2 < 2h(N, M)I(I* + [|2*3) <

|

holds with probability at least 1 — e~ ¢V 1og(M) jf

€

MNM) S e

(G.1)

As is stated in Lemma 3.3, we have shown that ||Vg(x)|l2 > € in R4. Set the radius of the ball

BN(l) & {& € RY : ||x|» <1} as | = 1.1||z*|2. It can be seen that the region outside the ball
BN (1) is a subset of Ry. Thus, we still have |[Vg(z)|2 > € when & ¢ B (). Then, for any
x ¢ BN (1), we have that

IV (@) = [[Vg(z) + (VI (2) - Vg(2))]|2
> [[Vg(@)|2 = IVf(2) - Vg(@)l2 =

NN e

holds with probability at least 1 — e~“V1°6(M)_Here, we have used ||V f(x) — Vg(z)||2 < § with
high probability and |Vg(x)||2 > €.

Since f(x) has a large gradient when = ¢ B™ (1) with | = 1.1||2*||2, we only need to consider the
geometry of f(x) with € BY(l). Then, by plugging [ = 1.1||z*||2 and € = 0.3963||z*||3 into
, we get

h(N, M) < 0.0407.

Similarly, we can show that

||V2 flx) = V3g(x)|l

M M
Z_ —Eal!) x1z x2 MZ —Ea%*) xq * xo ¥ 2
1 M

S6 M (ag;l - Ea®4) HCL’”% +2 'm ]Ea®4) ||.’B*H§

m=1 2 2

2 * n
<2h(N, M)(31° + [|l2*[|3) < 5
holds with probability at least 1 — e~ N 10g(M) jf
h(N, M) < —— T (G.2)

~ABE + [2x13)
Plugging [ = 1.1||z*||2 and n = 0.22||z*||3 into (G.2), we get
h(N, M) < 0.0118.
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