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A Proof of Theorem 2.1

To prove Theorem 2.1, we need the following two lemmas, which are extensions of [1, Lemmas 5, 7].

Lemma A.1. LetM be a general Riemannian manifold and E ⊆M be a connected and compact
set with a C2 boundary ∂E . Denote f, g : Ao → R as two C2 functions defined on an open set Ao
with E ⊆ Ao ⊆M. With the following assumptions:

• For all x ∈ ∂E and t ∈ [0, 1],

tgrad f(x) + (1− t)grad g(x) 6= 0. (A.1)

• The Hessians of f and g are close, i.e.,

‖hess f(x)− hess g(x)‖2 ≤
η

2
. (A.2)

• For all x ∈ E , the minimal eigenvalue of hess g(x) satisfies

|λmin(hess g(x))| ≥ η. (A.3)

Then, we have the following statements hold:

(a) Both g and f have at most a finite number of local minima in E . Furthermore, if g has K (K =
0, 1, 2, · · · ) local minima in E , then f also has K local minima in E .

(b) If g has a strict saddle in E , then if f has any critical points in E , they must be strict saddle points.

The proof of Lemma A.1 is given in Appendix B.

The following lemma is a parallel result of [1, Lemma 7] for the case when

λmin(hess g(x)) ≥ η, λmin(hess f(x)) ≥ η

2
,

and can be proved similarly.

Lemma A.2. Denote B(l) as a compact and connected subset in a general manifoldM with l being
its parameters.1 Let g : B(l) → R be a C2 function satisfying λmin(hess g(x)) ≥ η in D with

1The subset B(l) can vary in different applications. For example, we define B(l) , {U ∈ RN×k
∗ :

‖UU>‖F ≤ l} in matrix sensing and B(l) , {x ∈ RN : ‖x‖2 ≤ l} in phase retrieval.
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D , {x ∈ B(l) : ‖grad g(x)‖2 ≤ ε}. Denote x1, x2, · · · , xK as the local minima of function g.
Then, there exist disjoint compact sets {Di}i∈N such that

D = ∪∞i=1Di
with each maximal connected componentDi containing at most one local minimum. Namely, xi ∈ Di
for 1 ≤ i ≤ K, and Di with i ≥ K + 1 contains no local minima.

Now, we are ready to prove Theorem 2.1. Denote x1, · · · ,xK as the K local minima of g(x). Define
D , {x ∈ B(l) : ‖grad g(x)‖2 ≤ ε}. By applying Lemma A.2, we can partition D as D = ∪∞i=1Di,
where each Di is a disjoint connected compact component containing at most one local minimum.
Explicitly, xi ∈ Di for 1 ≤ i ≤ K, and Di with i ≥ K + 1 contains no local minima. We also have
‖grad g(x)‖2 = ε for x ∈ ∂Di by the continuity of grad g(x).

Hereafter, we assume the two Assumptions 2.2 and 2.3 hold. It follows from (2.2) that

sup
x∈∂Di

‖grad f(x)− grad g(x)‖2 ≤
ε

2
.

Then, for ∀ t ∈ [0, 1], we have

sup
x∈∂Di

t‖grad f(x)− grad g(x)‖2 ≤
ε

2
,

which is equivalent to

ε− sup
x∈∂Di

t‖grad f(x)− grad g(x)‖2 ≥
ε

2
, ∀ t ∈ [0, 1].

Recall that ‖grad g(x)‖2 = ε for x ∈ ∂Di. Then, we have

inf
x∈∂Di

‖grad g(x)‖2 − sup
x∈∂Di

t‖grad f(x)− grad g(x)‖2 ≥
ε

2
, ∀ t ∈ [0, 1],

which further gives us

inf
x∈∂Di

{‖grad g(x)‖2 − t‖grad f(x)− grad g(x)‖2} ≥
ε

2
, ∀ t ∈ [0, 1].

Consequently, we obtain

inf
x∈∂Di

‖(1− t)grad g(x) + tgrad f(x)‖2 ≥
ε

2
, ∀ t ∈ [0, 1].

LetD in the statement of Theorem 2.1 be one of theDis. ThenD contains at most one local minimum.
The rest of Theorem 2.1 follows from Lemma A.1.

B Proof of Lemma A.1

Using the Nash embedding theorem [2], we first embed the Riemannian manifoldM isometrically
into a Euclidean space RN̄ for sufficiently large N̄ . This allows us to viewM as a Riemannian
submanifold of RN̄ and identify the tangent spaces ofM as subspaces of RN̄ . We also identify the
norm ‖ · ‖2 induced by the Riemannian metric with the Euclidean norm in RN̄ . Recall that E is a
connected set. Then, assumption (A.3) implies that any point x ∈ E satisfy either λmin(hess g(x)) ≥
η or λmin(hess g(x)) ≤ −η. There cannot exist two points x1,x2 ∈ E such that λmin(hess g(x1)) ≥
η and λmin(hess g(x2)) ≤ −η. Otherwise, since the continuous image of any connected set must
also be a connected set, there must exist another point x3 ∈ E such that−η < λmin(hess g(x3)) < η,
which contradicts assumption (A.3).

Note that

|λmin(hess f(x))− λmin(hess g(x))| ≤ ‖hess f(x)− hess g(x)‖2 ≤
η

2
,

where the first inequality follows from [3, Theorem 5] and the last inequality follows from assump-
tion (A.2). Together with the assumption (A.3), we obtain{

λmin(hess f(x)) ≥ η
2 , if λmin(hess g(x)) ≥ η,

λmin(hess f(x)) ≤ −η2 , if λmin(hess g(x)) ≤ −η. (B.1)
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1) When λmin(hess g(x)) ≥ η for all x ∈ E , we have λmin(hess f(x)) ≥ η
2 for all x ∈ E . This

implies that the critical points of g(x) and f(x) in E are all local minima and are all isolated. Since E
is a compact set, there can only exist a finite number of critical points of g(x) and f(x) in E , which
are denoted as x1, x2, · · · , xK and x̂1, x̂2, · · · , x̂K̂ , respectively.

For ε > 0 small enough, define a set

E−ε , {x ∈ E : d(x, Ec) ≥ ε},

where d(x,S) , inf{‖x− y‖2 : y ∈ S} is the distance between x and a set S. Define w : Ao →
[0, 1] as a C1 bump function with

w(x) =

{
0, x ∈ Ao\E ,
1, x ∈ E−ε.

Define two C1 vector fields as

ξ0(x) = grad g(x),

ξ1(x) = (1− w(x))grad g(x) + w(x)grad f(x).

Note that ξ0|∂E = ξ1|∂E since w(x) = 0 when x ∈ ∂E . With assumption (A.1), we have

inf
x∈∂E

inf
t∈[0,1]

‖(1− t)grad g(x) + tgrad f(x)‖2 > 0

by a continuity argument. Then, we can choose ε > 0 small enough such that

ξ1(x) 6= 0, hess f(x) 6= 0

holds for all x ∈ E\E−ε. This implies that the critical points of ξ1
2 are all in E−ε and coincide with

the critical points of f since ξ1(x) = grad f(x) in E−ε. Therefore, x̂1, x̂2, · · · , x̂K̂ are also the
critical points of ξ1 in E−ε.

For a non-degenerate critical point x0 of a smooth vector field ξ : E → RN̄ , we define the index of
x0 as the sign of the Jacobian determinant [1, 4], namely

indx0
(ξ) = sign det

(
Dξx0

)
, (B.2)

where Dξx0
: Tx0M→ RN̄ is the differential of the vector field. Note that the map Dξx0

can be
considered as a linear transformation from Tx0M to itself and hence has a well-defined determinant.
When ξ is the Riemannian gradient, the differential Dξx0

reduces to the Riemannian Hessian [5,
Definition 5.5.1 and equation (5.15)].

Since λmin(hess g(x)) ≥ η and λmin(hess f(x)) ≥ η
2 , both hess g(x) and hess f(x) are non-

degenerate matrices whose determinants are positive. Recall that ξ1(x) = grad f(x) when x ∈ E−ε.
Then, for 1 ≤ i ≤ K̂, we have

indx̂i
(ξ1) = sign det (D(ξ1)x̂i

) = sign det (hess f(x̂i)) = 1.

Define ξ̂(x) , ξ(x)/‖ξ(x)‖2 wherever ξ(x) 6= 0 as the Gauss map. Denote x1, x2, · · · , xK
as the critical points of function g in E . It follows from [1, Lemma 6], [6, Theorem 1.1.2], and [4,
Theorem 14.4.4] that the sum of indices of the critical points inside E is equal to the degree of the
Gauss map restricted to the boundary of E , hence, we have

K̂ =

K̂∑
i=1

indx̂i
(ξ1) = deg

(
ξ̂1|∂E

)
¬
= deg

(
ξ̂0|∂E

)
=

K∑
i=1

indxi
(ξ0)

­
=

K∑
i=1

sign det (D(ξ0)xi
)

=

K∑
i=1

sign det (hess g(xi)) = K,

2For a smooth vector field ξ : E → TM, defined on E ⊆ M, a critical point is defined as a point x0 ∈ E
satisfying ξ(x0) = 0. Here TM is the tangent bundle ofM.
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where deg
(
ξ̂|∂E

)
denotes the degree of the Gauss map restricted to the boundary of E . Here, ¬

follows from ξ0|∂E = ξ1|∂E and ­ follows from (B.2). Then, we can conclude that the number of
critical points of f and g are both equal to K = K̂. Since the minimal eigenvalues of g and f are
both positive, the critical points are also local minima. Thus, we finish the proof for first part of
Lemma A.1.

2) When λmin(hess g(x)) ≤ −η, we have λmin(hess f(x)) ≤ −η2 . This immediately implies the
second part of Lemma A.1.

C Proof of Corollary 2.1

Let {x̂k}Kk=1 and {xk}Kk=1 denote the local minima of the empirical risk f and its population risk g.
Recall thatD = {x ∈ B(l) : ‖grad g(x)‖2 ≤ ε}. Using Lemma A.2, we partitionD asD = ∪∞k=1Dk
with xk, x̂k ∈ Dk for 1 ≤ k ≤ K, and Dk for k ≥ K + 1 contains no local minima.

Fix k ∈ {1, 2, . . . ,K}. Let Txk
M be the tangent space of the Riemannian manifoldM at xk and

0xk
be the zero vector of Txk

M. Let Expxk
: Txk

M → M denote the exponential map at xk.
Suppose N̂xk

is an open ball in Txk
M around 0xk

with radius ρ, the injectivity radius ofM. Then
Expxk

is a diffeomorphism in N̂xk
[5, pp.148-149]. Define Nxk

, Expxk
(N̂xk

) as the image of
N̂xk

under the exponential map Expxk
. Then the Riemannian distance

dist(z1, z2) = ‖Exp−1
xk

(z1)− Exp−1
xk

(z2)‖2,∀z1, z2 ∈ Nxk

is equivalent to the distance in the tangent space (induced by the Riemannian metric) [5, Section 4.5.1].
The corollary’s assumptions ensure in particular that x̂k ∈ Dk ⊆ Nxk

. We next bound the radius of
the set Dk.

Consider the pullback ĝ = g ◦ Expxk
: Txk

M → R that “pulls back” the cost function g from
the manifoldM to the vector space Txk

M. Since the exponential map is a retraction of at least
second-order, the gradient and Hessian of the pullback3 satisfy [7, Proposition 2.11, Corollary 2.13]

∇ĝ(0xk
) = grad g(xk) = 0xk

, ∇2ĝ(0xk
) = hess g(xk).

This together with the Lipschitz Hessian condition imply that [8, Lemma 1]

‖∇ĝ(v)− hess g(xk)[v]‖2 = ‖∇ĝ(v)−∇ĝ(0xk
)−∇2ĝ(0xk

)[v]‖2 ≤
LH
2
‖v‖22.

Since λmin(hess g(xk)) ≥ η, we conclude

‖∇ĝ(v)‖2 ≥ ‖hess g(xk)[v]‖2 −
LH
2
‖v‖22 ≥ η‖v‖2 −

LH
2
‖v‖22. (C.1)

Since the gradient of the pullback ĝ at v and the Riemannian gradient of g at Expxk
(v) satisfy [9,

Lemma 5.2]

∇ĝ(v) =
(
DExpxk

(v)
)∗ [

grad g
(
Expxk

(v)
)]
,

where the differential DExpxk
(v) is a linear operator mapping vectors from the tangent space at xk

to the tangent space at Expxk
(v), and the star indicates the adjoint, the corollary’s assumptions imply

‖∇ĝ(v)‖2 ≤ ‖DExpxk
(v)‖‖ grad g

(
Expxk

(v)
)
‖2 ≤ σ‖ grad g

(
Expxk

(v)
)
‖2.

Combining this with (C.1) yields

‖ grad g
(
Expxk

(v)
)
‖2 ≥

η

σ
‖v‖2 −

LH
2σ
‖v‖22. (C.2)

Define D̃k , {x = Expxk
(v) ∈ Nxk

: η
σ‖v‖2 −

LH

2σ ‖v‖
2
2 ≤ ε}. It follows from (C.2) that

Dk ⊆ D̃k. Let r0 =
η−
√
η2−2σLHε

LH
and r1 =

η+
√
η2−2σLHε

LH
. For ε ≤ η2/(2σLH), we have

3Since the pullback is defined on a vector space, its gradient and Hessian can be computed using the regular
∇ and∇2 operators with appropriate choice of basis for TxkM. Our notation highlights this fact.
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D̃k = B(r0)∪B(r1)c with B(r1)c being the complement of B(r1). Here B(r0) = {x = Expxk
(v) :

‖v‖2 ≤ r0} = {x ∈M : dist(x,xk) ≤ r0}. Note that sinceDk is connected and xk ∈ Dk∩B(r0),
we then have Dk ⊆ B(r0), which together with x̂k ∈ Dk further indicates that

dist(x̂k,xk) ≤ r0 ≤ 2σε/η,

where the last inequality follows from ε ≤ η2/(2σLH) and the elementary inequality
√

1− x ≥ 1−x
for x ∈ [0, 1]. This completes the proof since k ∈ {1, 2, . . . ,K} is arbitrary.

D Proof of Lemma 3.1

We present the Riemannian gradient and Hessian of population risk on the quotient manifoldM as
follows

grad g(U) = PU(∇g(U)) = (UU> −X)U

hess g(U)[D,D] = 〈PU(∇2g(U)[D]),D〉 = ∇2g(U)[D,D]− 〈UΩ,D〉 = ∇2g(U)[D,D]

for any D ∈ HUM. Here, 〈UΩ,D〉 = 〈Ω,U>D〉 = 0 follows from the fact that Ω is a skew-
symmetric matrix and D>U = U>D.

D.1 Determining critical points

By setting grad g(U) = 0, we get XU = UU>U. Denote U = WuΛ
1
2
uQ> as an SVD of U with

Wu ∈ RN×k, Λu ∈ Rk×k and Q ∈ Rk×k. It follows from XU = UU>U that

XWuΛ
1
2
uQ> = WuΛ

3
2
uQ>,

which further gives us
XWu = WuΛu.

For i = 1, . . . , k, denote wui and λui as the i-th column of Wu and i-th diagonal entry of Λu,
respectively. Then, we have

Xwui = λuiwui,

which implies that λui is one of the eigenvalues of X and wui is the corresponding eigenvector.
Therefore, any U ∈ U is a critical point of g(U) and we finish the proof of property (1).

D.2 Strongly convexity in regionR1

Recall that U? = WkΛ
1
2

kQ> with Λk = diag([λ1, · · · , λk]) containing the largest k eigenvalues of
X. It follows from the Eckart-Young-Mirsky theorem [10] that any U? ∈ U? is a global minimum of
g(U). Note that we can rewrite X as

X = WkΛkW
>
k + W⊥

k Λ⊥k W⊥
k

>
= U?U?> + W⊥

k Λ⊥k W⊥
k

>
, (D.1)

where W⊥
k ∈ RN×(r−k) is a matrix that contains eigenvectors of X corresponding to eigenvalues

in Λ⊥k = diag([λk+1, · · · , λr]). For any D ∈ RN×k∗ that belongs to the horizontal spaceHU?M at
any U? ∈ U?, we have D>U? = U?>D, which implies that

〈Ω,U?>D〉 = 0,

since Ω is a skew-symmetric matrix. Then, for ∀D ∈ HU?M, we have
hess g(U?)[D,D] = 〈∇2g(U?)[D],D〉 − 〈U?Ω,D〉

¬
= 〈∇2g(U?)[D],D〉
= 〈(U?D> + DU?>)U? + (U?U?> −X)D,D〉

= 〈WkΛkW
>
k ,DD>〉+ 〈QΛkQ

>,D>D〉 − 〈W⊥
k Λ⊥k W⊥

k

>
,DD>〉

­
≥ λk‖D‖2F + λk‖D‖2F − λk+1‖D‖2F
®
≥ 1.91λk‖D‖2F .
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Here, ¬ follows from 〈U?Ω,D〉 = 〈Ω,U?>D〉 = 0, ­ follows from [11, Lemma 7], and ® follows
from the assumption λk+1 ≤ 1

12λk. Then, we have

λmin(hess g(U?)) ≥ 1.91λk > 0, (D.2)

which also implies that any U? ∈ U? is a strict local minimum of g(U).

Next, we characterize the strong convexity in region R1. Note that for ∀ x1, x2 ∈ R, we have
x1 − x2 ≥ −|x1 − x2|, i.e., x1 ≥ x2 − |x1 − x2|, which implies that

hess g(U)[D,D] ≥ hess g(U?)[D,D]− | hess g(U)[D,D]− hess g(U?)[D,D]|, (D.3)

where D belongs to the horizontal spaceHUM at any U ∈ R1, i.e., U>D = D>U. For notational
simplicity, we denote U?P? with P? = arg minP∈Ok

‖U − U?P‖F as U?. In the rest of this
section, we bound the two terms in the right hand side of (D.3) in sequence.

Term 1: Note that hess g(U?)[D] is the projection of∇2g(U?)[D] onto the horizontal spaceHUM,
namely, hess g(U?)[D] = ∇2g(U?)[D]−UΩ with Ω being a skew-symmetric matrix that solves
the following Sylvester equation

ΩU>U + U>UΩ = U>∇2g(U?)[D]−∇2g(U?)[D]>U. (D.4)

Then, we have
hess g(U?)[D,D] = 〈∇2g(U?)[D],D〉 − 〈UΩ,D〉

= 〈∇2g(U?)[D],D〉,
(D.5)

where the second line follows from 〈UΩ,D〉 = 〈Ω,U>D〉, U>D = D>U and Ω + Ω> = 0.
Defining Eu , U−U?, together with U>D = D>U, we obtain

(U? + Eu)>D = D>(U? + Eu),

which further gives us

D>U? = U?>D + E>uD−D>Eu. (D.6)

By combining (D.5) and (D.6), we can bound the first term with

hess g(U?)[D,D] = 〈∇2g(U?)[D],D〉
=〈(U?D> + DU?>)U? + (U?U?> −X)D,D〉

=〈D>U?,U?>D〉+ 〈U?>U?,D>D〉 − 〈W⊥
k Λ⊥k W⊥

k

>
,DD>〉

=〈U?>D + E>uD−D>Eu,U
?>D〉+ 〈QΛkQ

>,D>D〉 − 〈W⊥
k Λ⊥k W⊥

k

>
,DD>〉

=〈U?U?>,DD>〉+〈E>uD,U?>D〉−〈D>Eu,U
?>D〉+ 〈QΛkQ

>,D>D〉−〈W⊥
k Λ⊥k W⊥

k
>,DD>〉

≥λk‖D‖2F − 0.2λk‖D‖2F − 0.2λk‖D‖2F + λk‖D‖2F −
1

12
λk‖D‖2F

≥1.51λk‖D‖2F ,

where the first inequality follows from [11, Lemma 7], the Matrix Hölder Inequality [12], the
assumption λk+1 ≤ 1

12λk, and the following two inequalities

〈E>uD,U?>D〉 ≥ −‖E>uD‖F ‖U?>D‖F ≥ −‖Eu‖F ‖U?‖2‖D‖2F
≥ −0.2κ−1

√
λk
√
λ1‖D‖2F = −0.2λk‖D‖2F ,

〈D>Eu,U
?>D〉 ≤ ‖D>Eu‖F ‖U?>D‖F ≤ ‖Eu‖F ‖U?‖2‖D‖2F

≤ 0.2κ−1
√
λk
√
λ1‖D‖2F = 0.2λk‖D‖2F .

Term 2: By plugging hess g(U)[D,D] = 〈(UD> + DU>)U + (UU> − X)D,D〉 and
hess g(U?)[D,D] = 〈(U?D> + DU?>)U? + (U?U?> − X)D,D〉 into the second term, we
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obtain

|hess g(U)[D,D]− hess g(U?)[D,D]|
=|2〈UU> −U?U?>,DD>〉 − 〈U?E>u ,DD>〉+ 〈D>Eu,U

?>D〉+ 〈U>U−U?>U?〉|
=|3〈U?>D,E>uD〉+ 2〈E>uD,E>uD〉+ 〈D>Eu,U

?>D〉+ 2〈DE>u ,DU?>〉+ 〈DE>u ,DE>u 〉|
≤6‖U?‖2‖Eu‖F ‖D‖2F + 3‖Eu‖2F ‖D‖2F
≤1.2λk‖D‖2F + 0.12κ−2λ‖D‖2F
≤1.32λk‖D‖2F ,

where the first inequality follows from the Triangle Inequality and the Matrix Hölder Inequality [12],
and the last two inequalities follow from ‖U?‖2 =

√
λ1 and ‖Eu‖F ≤ 0.2κ−1

√
λk with κ ≥ 1.

As a consequence, we have

hess g(U)[D,D] ≥ hess g(U?)[D,D]− | hess g(U)[D,D]− hess g(U?)[D,D]|
≥ 0.19λk‖D‖2F ,

which implies that

λmin(hess g(U)) ≥ 0.19λk

holds for any U ∈ R1. Thus, we finish the proof of property (2).

D.3 Negative curvature in regionR′2

For any U?
s ∈ U?s , let U?

s = WsΛ
1
2
s Q> be an SVD of U?

s with Ws ∈ RN×k, Λs ∈ Rk×k and
Q ∈ Ok. According to the definition of U?s , Λs ∈ Rk×k contains any k non-zero eigenvalues of
X except the largest k eigenvalues. Denote Λs = diag([λs1, · · · , λsk]) with λs1 ≥ · · · ≥ λsk > 0,
we have λsk ≤ λk+1. Let qk denote the k-th column of Q. w? ∈ RN is one column chosen from
Wk satisfyingw?>Ws = 0. Then, we show that the function g(U) at U?

s has directional negative
curvature along the direction D = w?q>k . Note that

D>U?
s = qkw

?>U?
s = 0,

U?
s
>D = U?

s
>w?q>k = 0,

which verifies that this direction D = w?q>k belongs to the horizontal spaceHU?
s
M at U?

s . It can
be seen that

hess g(U?
s)[D,D] = 〈(U?

sD
> + DU?

s
>)U?

s + (U?
sU

?
s
> −X)D,D〉

= 〈U?
s
>U?

s,D
>D〉 − 〈W⊥

s Λ⊥s W⊥
s

>
,DD>〉

= 〈QΛsQ
>, qkq

>
k 〉 − 〈W⊥

s Λ⊥s W⊥
s

>
,w?w?>〉

≤ λsk − λk ≤ −0.91λk = −0.91λk‖D‖2F ,

where W⊥
s ∈ RN×(r−k) is a matrix that contains eigenvectors of X corresponding to eigenvalues in

Λ⊥s , i.e., eigenvalues of X not contained in Λs. The first inequality follows since w? is a column of
both W⊥

s and Wk. The second inequality follows from λsk ≤ λk+1 ≤ 1
12λk. Therefore, we have

λmin(hess g(U?
s)) ≤ −0.91λk.

Next, we show that the function g(U) has directional negative curvature for any U ∈ R′2 along the
direction

D = U−U?P? with P? = arg min
P∈Ok

‖U−U?P‖F .

For notational simplicity, we still denote U?P? as U?, i.e., D = U−U?. First, we need to verify
that this direction belongs to the horizontal spaceHUM at U. As is shown in [13, proof of Lemma
6], U>U? is a symmetric PSD matrix. Then, we have

D>U = U>U−U?>U = U>U−U>U? = U>D,

7



which implies that D ∈ HUM.

Note that minimizing g(U) is equivalent to the following minimization problem

min
U∈RN×k

∗

1

2
‖UU> −U?U?>‖2F − 〈UU>,W⊥

k Λ⊥k W⊥
k

>〉.

Define two functions g1(U) and g2(U) as

g1(U) ,
1

2
‖UU> −U?U?>‖2F − 〈UU>,W⊥

k Λ⊥k W⊥
k

>〉,

g2(U) , −〈UU>,W⊥
k Λ⊥k W⊥

k

>〉.
Then, we have

∇g2(U) = −2W⊥
k Λ⊥k W⊥

k

>
U,

∇2g2(U)[D,D] = −2〈W⊥
k Λ⊥k W⊥

k

>
,DD>〉.

Together with [13, Lemma 7], we get

2 hess g(U)[D,D] = 2∇2g(U)[D,D] = ∇2g1(U)[D,D]

=‖DD>‖2F−3‖UU>−U?U?>‖2F +4〈∇g1(U),D〉+∇2g2(U)[D,D]−4〈∇g2(U),D〉,
(D.7)

where the first equality follows from 〈UΩ,D〉 = 0, similar to Appendix D.3.

Note that the first two terms in (D.7) can be bounded with

‖DD>‖2F − 3‖UU> −U?U?>‖2F
≤− ‖UU> −U?U?>‖2F
≤− 2(

√
2− 1)λk‖D‖2F

≤− 0.82λk‖D‖2F

(D.8)

by using Lemma 6 in [13].

Note that

‖D‖F = ‖U−U?‖F ≥ ‖diag([σ1(U)−
√
λ1, · · ·, σk(U)−

√
λk])‖F ≥ σk(U)−

√
λk ≥

1

2

√
λk,

where the first inequality follows from [3, Theorem 5], and the last inequality follows from σk(U) ≤
1
2

√
λk. Then, the third term in (D.7) can be bounded with

〈∇g1(U),D〉 ≤‖∇g1(U)‖F ‖D‖F = 2‖ grad g(U)‖F ‖D‖F

≤ 1

40
λ

3
2

k ‖D‖F =
1

20
λk‖D‖F

1

2

√
λk ≤

1

20
λk‖D‖2F .

(D.9)

Next, we bound the last two terms in (D.7) with
∇2g2(U)[D,D]− 4〈∇g2(U),D〉

=− 2〈W⊥
k Λ⊥k W⊥

k

>
,DD>〉+ 8〈W⊥

k Λ⊥k W⊥
k

>
U,D〉

=8〈W⊥
k Λ⊥k W⊥

k
>U,U−U?〉 − 2〈W⊥

k Λ⊥k W⊥
k
>,UU>−U?U>−UU?>+U?U?>〉

¬
=6〈W⊥

k Λ⊥k W⊥
k

>
,UU>〉 = 6〈Λ⊥k ,W⊥

k

>
UU>W⊥

k 〉
­
≤6λk+1‖W⊥

k

>
U‖2F

®
= 6λk+1‖W⊥

k

>
(U−U?)‖2F

≤1

2
λk‖D‖2F ,

(D.10)

where ¬ and ® follow from W⊥
k

>
U? = 0, and ­ follows from [11, Lemma 7].

By plugging inequalities (D.8), (D.9) and (D.10) into (D.7), we obtain
hess g(U)[D,D] ≤− 0.41λk‖D‖2F + 0.1λk‖D‖2F + 0.25λk‖D‖2F = −0.06λk‖D‖2F ,

which implies that
λmin(hess g(U)) ≤ −0.06λk

holds for all U ∈ R′2, and we finish the proof of property (3).
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D.4 Large gradient in regionsR′′2 ,R′3 andR′′3

It is easy to see that the first inequality in property (4) is true due to the definition of R′′2 . In this
section, we mainly focus on showing the gradient is large in regionsR′3 andR′′3 .

D.4.1 Large gradient in regionR′3
To show ‖ grad g(U)‖F is large for any U ∈ R′3, we rewrite U as

U = WkΛ̃
1
2

u Q̃>u + Ẽu, (D.11)

where Wk ∈ RN×k contains the k eigenvectors of X associated with the k largest eigenvalues of
X, Λ̃u ∈ Rk×k is a diagonal matrix, Q̃u ∈ Ok is an orthogonal matrix, and Ẽ>uWk = 0. Note that

WkΛ̃
1
2

u Q̃>u can be viewed as a compact SVD form of the projection of U onto the column space of
Wk. Plugging (D.11) and (D.1) into ‖ grad g(U)‖2F gives

‖ grad g(U)‖2F = ‖(UU> −X)U‖2F

=‖WkΛ̃
1
2

u(Λ̃u−Λk)Q̃
>
u+WkΛ̃

1
2

uQ̃
>
uẼ
>
uẼu+ẼuQ̃uΛ̃uQ̃

>
u+ẼuẼ

>
uẼu−W⊥k Λ⊥k W⊥k

>Ẽu‖2F

=‖ẼuQΛ̃uQ̃
>
u+ẼuẼ

>
uẼu−W⊥kΛ

⊥
kW
⊥
k
>Ẽu‖2F +‖WkΛ̃

1
2

u(Λ̃u−Λk)Q̃
>
u+WkΛ̃

1
2

uQ̃
>
uẼ
>
uẼu‖2F ,

(D.12)
where the last equality follows from Ẽ>uWk = 0. Next, we show at least one of the above two terms
is large for any U ∈ R′3 by considering the following two cases.

Case 1: ‖Ẽu‖F ≥ 0.1κ−1
√
λk. The square root of the first term in (D.12) can be bounded with

‖ẼuQ̃uΛ̃uQ̃
>
u + ẼuẼ

>
u Ẽu −W⊥

k Λ⊥k W⊥
k

>
Ẽu‖F

≥‖Ẽu(Q̃uΛ̃uQ̃
>
u + Ẽ>u Ẽu)‖F − ‖W⊥

k Λ⊥k W⊥
k

>
Ẽu‖F

¬
≥σk(U>U)‖Ẽu‖F − λk+1‖Ẽu‖F
­
>

1

6
λk‖Ẽu‖F ≥

1

60
κ−1λ

3
2

k

(D.13)

where ¬ follows from U>U = Q̃uΛ̃uQ̃
>
u + Ẽ>u Ẽu and [11, Corollary 2], and ­ follows from

σk(U) > 1
2

√
λk and the assumption λk+1 ≤ 1

12λk.

Case 2: ‖Ẽu‖F < 0.1κ−1
√
λk. Denote λ̃ui as the i-th diagonal entry of Λ̃u with λ̃u1 ≥ · · · ≥ λ̃uk,

i.e.,
√
λ̃ui is the i-th singular value of WkΛ̃

1
2

u Q̃>u . By using Weyl’s inequality for the perturbation
of singular values [14] and (D.11), we get

σk(U)−
√
λ̃uk ≤ ‖Ẽu‖2 ≤ ‖Ẽu‖F ,

which further gives √
λ̃uk ≥ σk(U)− ‖Ẽu‖F > (0.5− 0.1κ−1)

√
λk.

To bound the second term in (D.12), we still need a lower bound on ‖Λ̃u − Λk‖F . Recall that
Q ∈ Ok contains the right singular vectors of U?. According to the definition ofR′3, we have

0.2κ−1
√
λk < min

P∈Ok

‖U−U?P‖F ≤ ‖U−U?QQ̃>u ‖F

=‖WkΛ̃
1
2

u Q̃>u + Ẽu −WkΛ
1
2

k Q̃>u ‖F ≤ ‖Wk(Λ̃
1
2

u −Λ
1
2

k )Q̃>u ‖F + ‖Ẽu‖F

=‖Λ̃
1
2

u −Λ
1
2

k ‖F + ‖Ẽu‖F ,
which implies

‖Λ̃
1
2

u −Λ
1
2

k ‖F > 0.2κ−1
√
λk − 0.1κ−1

√
λk = 0.1κ−1

√
λk.
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Then, we can bound ‖Λ̃u −Λk‖F with

‖Λ̃u −Λk‖F =

√√√√ k∑
i=1

(λ̃ui − λi)2 =

√√√√ k∑
i=1

(

√
λ̃ui −

√
λi)2(

√
λ̃ui +

√
λi)2

≥(

√
λ̃uk +

√
λk)

√√√√ k∑
i=1

(

√
λ̃ui −

√
λi)2

>(1.5− 0.1κ−1)
√
λk‖Λ̃

1
2

u −Λ
1
2

k ‖F
>0.1κ−1(1.5− 0.1κ−1)λk.

Now, we are ready to bound the square root of the second term in (D.12). In particular, we have

‖WkΛ̃
1
2

u (Λ̃u −Λk)Q̃>u + WkΛ̃
1
2

u Q̃>u Ẽ>u Ẽu‖F
¬
=‖Λ̃

1
2

u [(Λ̃u −Λk)Q̃>u + Q̃>u Ẽ>u Ẽu]‖F
­
≥
√
λ̃uk‖(Λ̃u −Λk)Q̃>u + Q̃>u Ẽ>u Ẽu‖F

≥
√
λ̃uk(‖Λ̃u −Λk‖F − ‖Ẽu‖2F )

>(0.5− 0.1κ−1)
√
λk(0.1κ−1(1.5− 0.1κ−1)λk − 0.01κ−2λk)

=(0.5− 0.1κ−1)(0.15κ−1 − 0.02κ−2)λ
3
2

k ,

(D.14)

where ¬ follows from W>
k Wk = Ik, and ­ follows from [11, Corollary 2].

Note that

(0.5− 0.1κ−1)(0.15κ−1 − 0.02κ−2) ≥ 1

60
κ−1

always holds for κ ≥ 1. By combining (D.12), (D.13) and (D.14), we get

‖ grad g(U)‖F >
1

60
κ−1λ

3
2

k .

Thus, we finish the proof of second inequality in property (4).

D.4.2 Large gradient in regionR′′3

For any U ∈ RN×k∗ , denote {σi}ki=1 as its singular values. Then, by using the Cauchy-Schwarz
inequality, we have

‖U‖2F =

k∑
i=1

σ2
i ≤
√
k

√√√√ k∑
i=1

σ4
i =
√
k‖UU>‖F . (D.15)

On one hand, we have

〈grad g(U),U〉 ≤ ‖ grad g(U)‖F ‖U‖F ≤ k
1
4 ‖ grad g(U)‖F ‖UU>‖

1
2

F . (D.16)
On the other hand, we have
〈grad g(U),U〉 =〈(UU> −X)U,U〉

=〈UU> −U?U?>,UU>〉 − 〈W⊥
k Λ⊥k W⊥

k

>
,UU>〉

¬
≥‖UU>‖2F − ‖U?U?>‖F ‖UU>‖F − ‖W⊥

k Λ⊥k W⊥
k

>‖2‖UU>‖∗
­
>

1

8
‖UU>‖2F − λk+1

√
k‖UU>‖F ,

®
>

1

7
‖UU>‖F ‖U?U?>‖F −

1

12
λk
√
k‖UU>‖F

≥1

7

√
kλk‖UU>‖F −

1

12

√
kλk‖UU>‖F

=
5

84

√
kλk‖UU>‖F

(D.17)
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where ¬ follows from the Matrix Hölder Inequality [12], and ­ and ® follow from ‖U?U?>‖F <
7
8‖UU>‖F and λk+1 ≤ 1

12λk. Combining (D.16) and (D.17), we get

‖ grad g(U)‖F >
5

84
k

1
4λk‖UU>‖

1
2

F >
5

84
k

1
4λk‖U?U?>‖

1
2

F ≥
5

84
k

1
4λk‖U?‖2 ≥

5

84
k

1
4λ

3
2

k ,

where the second to last inequality follows from ‖U?U?>‖F ≥ ‖U?‖22. Thus, we finish the proof of
the third inequality in property (4).

E Proof of Lemma 3.2

We present the Riemannian gradient and Hessian of the empirical risk on the quotient manifoldM as
follows

grad f(U) = PU(∇f(U)) = A∗A(UU> −X)U

hess f(U)[D,D] = 〈PU(∇2f(U)[D]),D〉 = ∇2f(U)[D,D]− 〈UΩ,D〉 = ∇2f(U)[D,D]

for any D ∈ HUM. Here, 〈UΩ,D〉 = 〈Ω,U>D〉 = 0 follows from the fact that Ω is a skew-
symmetric matrix and D>U = U>D.

Denote B : RN×N → RM as a linear operator with the m-th entry of the observation y = B(X)
as ym = 〈Bm,X〉. According to the way we construct the symmetric linear operator A, i.e.,
Am = 1

2 (Bm + B>m), we have that

‖A(Z)‖22 =

M∑
m=1

〈Am,Z〉2 =

M∑
m=1

〈Bm,Z〉2 = ‖B(Z)‖22

holds for any symmetric matrix Z ∈ RN×N . Therefore, the constructed symmetric linear operator A
satisfies the RIP condition (3.4) as long as the linear operator B satisfies the RIP condition (3.4).

Since the linear operator A satisfies the RIP condition (3.4) for any matrix Z ∈ RN×N with rank at
most r + k, we have

‖A∗A(Z)− Z‖F ≤ δr+k‖Z‖F . (E.1)

To set the radius of the ball B(l) = {U ∈ RN×k∗ : ‖UU>‖F ≤ l}, we first bound ‖ grad f(U)‖F in
R′′3 . On one hand, we have

〈grad f(U),U〉 ≤ ‖ grad f(U)‖F ‖U‖F ≤ k
1
4 ‖ grad f(U)‖F ‖UU>‖

1
2

F ,

which follows from the Matrix Hölder Inequality [12] and (D.15). On the other hand, we have

〈grad f(U),U〉

=‖A(UU>)‖22 − 〈A(U?U?>),A(UU>)〉 − 〈A(W⊥
k Λ⊥k W⊥

k

>
),A(UU>)〉

¬
≥‖A(UU>)‖22−‖A(U?U?>)‖2‖A(UU>)‖2−‖A(W⊥

k Λ⊥k W⊥
k

>
)‖2‖A(UU>)‖2

­
≥(1−δr+k)‖UU>‖2F−(1+δr+k)‖U?U?>‖F ‖UU>‖F−(1+δr+k)‖W⊥

k Λ⊥k W⊥
k

>‖F ‖UU>‖F
®
≥1

7
(1− 15δr+k)‖U?U?>‖F ‖UU>‖F − (1 + δr+k)‖W⊥

k Λ⊥k W⊥
k

>‖F ‖UU>‖F
¯
≥(

5

84
− 15

7
δr+k)

√
kλk‖UU>‖F .

Here, ¬ follows from the Hölder’s Inequality. ­ follows from the RIP condition in (3.4),
rank(UU>) = rank(U?U?>) = k ≤ r+k and rank(W⊥

k Λ⊥k W⊥
k

>
) = r−k ≤ k ≤ r+k. ® fol-

lows from ‖UU>‖F ≥ 8
7‖U

?U?>‖F . ¯ follows from ‖U?U?>‖F = ‖Λk‖F =
√∑k

i=1 λ
2
i ≥

11



√
kλk and ‖W⊥

k Λ⊥k W⊥
k

>‖F ≤
√
k‖W⊥

k Λ⊥k W⊥
k

>‖2 =
√
kλk+1 ≤ 1

12

√
kλk. It follows that

‖ grad f(U)‖F ≥ k−
1
4 ‖UU>‖−

1
2

F 〈grad f(U),U〉

≥ (
5

84
− 15

7
δr+k)k

1
4λk‖UU>‖

1
2

F

≥ (
5

84
− 15

7
δr+k)k

1
4λk‖U?U?>‖

1
2

F

≥ (
5

84
− 15

7
δr+k)k

1
4λk‖U?‖2

≥ (
5

84
− 15

7
δr+k)k

1
4λ

3
2

k .

Then, we can conclude that ‖ grad f(U)‖F ≥ ( 5
84 −

15
7 δr+k)k

1
4λ

3
2

k holds when ‖UU>‖F ≥
8
7‖U

?U?>‖F . Therefore, we can set the radius of B(l) = {U ∈ RN×k∗ : ‖UU>‖F ≤ l} as

l =
8

7
‖U?U?>‖F .

Inside the ball B(l), we then have

‖ grad f(U)− grad g(U)‖F = ‖[A∗A(UU> −X)− (UU> −X)]U‖F
≤ ‖A∗A(UU> −X)− (UU> −X)‖F ‖U‖F
≤ δr+k‖UU> −X‖F k

1
4

√
l

≤ δr+k(l + ‖X‖F )k
1
4

√
l,

which implies that

‖ grad f(U)− grad g(U)‖F ≤
ε

2
if δr+k ≤ ε

2(l+‖X‖F )k
1
4
√
l
. As a result, if the linear operator A satisfies the RIP condition (3.4) with

δr+k ≤ min

 ε

2
√

8
7k

1
4 ( 8

7‖U?U?>‖F + ‖X‖F )‖U?U?>‖
1
2

F

,
1

36

 ,

the Assumption 2.2 is verified. Here, the term 1
36 comes from the requirement that 15

7 δr+k <
5
84 .

To verify Assumption 2.3, it is enough to show that

|hess f(U)[D,D]− hess g(U)[D,D]| ≤ η

2

holds for any D ∈ HUM and ‖D‖F = 1. Note that

|hess f(U)[D,D]− hess g(U)[D,D]|

=

∣∣∣∣12‖A(UD>+DU>)‖22−
1

2
‖UD>+DU>‖2F +〈A∗A(UU>−X),DD>〉−〈UU>−X,DD>〉

∣∣∣∣
≤1

2

∣∣‖A(UD> + DU>)‖22 − ‖UD> + DU>‖2F
∣∣+
∣∣〈A∗A(UU> −X)− (UU> −X),DD>〉

∣∣
≤2δr+k

√
kl + δr+k(l + ‖X‖F ) = δr+k(2

√
kl + l + ‖X‖F ),

where the last inequality follows from∣∣‖A(UD> + DU>)‖22 − ‖UD> + DU>‖2F
∣∣

≤δr+k‖UD> + DU>‖2F ≤ 4δr+k‖U‖2F ≤ 4δr+k
√
k‖UU>‖F ≤ 4δr+k

√
kl

and ∣∣〈A∗A(UU> −X)− (UU> −X),DD>〉
∣∣

≤‖A∗A(UU> −X)− (UU> −X)‖F ‖DD>‖F
≤δr+k(l + ‖X‖F )
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by using the assumption that the linear operator A satisfies the RIP condition (3.4) and the fact
that UD> + DU> has rank at most 2k with 2k ≤ r + k. Therefore, we can now conclude that
Assumption 2.3 is verified as long as the linear operator A satisfies the RIP condition (3.4) with

δr+k ≤
η

2( 16
7

√
k‖U?U?>‖F + 8

7‖U?U?>‖F + ‖X‖F )
.

F Proof of Lemma 3.3

We first consider the critical point x = 0 and its neighborhoodR1. Note that

∇2g(0) = −4x?x?> − 2‖x?‖22IN ,

whose minimal eigenvalue and corresponding eigenvector are given as

λmin(∇2g(0)) = −6‖x?‖22 < 0,

vmin(0) =
x?

‖x?‖2
.

Therefore, x = 0 is a strict saddle point. For any x ∈ R1, we have ‖x‖2 < 1
2‖x

?‖2. Denote
vmin(x) as the eigenvector of ∇2g(x) corresponding to the smallest eigenvalue λmin(∇2g(x)). It
follows that

λmin(∇2g(x)) = vmin(x)>∇2g(x)vmin(x) ≤ vmin(0)>∇2g(x)vmin(0)

¬
= 12

1

‖x?‖22
(x>x?)2 + 6‖x‖22 − 6‖x?‖22

­
≤ 18‖x‖22 − 6‖x?‖22

®
≤ −3

2
‖x?‖22,

where ¬ follows by plugging vmin(0) = x?

‖x?‖2 and ∇2g(x) = 12xx> − 4x?x?> + 6‖x‖22IN −
2‖x?‖22IN . ­ follows Cauchy-Schwarz inequality. ® follows from ‖x‖2 ≤ 1

2‖x
?‖2.

Next, we consider the critical point x = x? and its neighborhood. The argument for another critical
point x = −x? is similar so we omit the proof here. Note that

∇2g(x?) = 8x?x?> + 4‖x?‖22IN ,

whose minimal eigenvalue is

λmin(∇2g(x?)) = 4‖x?‖22 > 0

with the corresponding eigenvector satisfying vmin(x?)>x? = 0. Therefore, x = x? is a local
minimum of g(x). Moreover, g(x?) = 0 = minx g(x) further implies that x = x? is a global
minimum. For any x ∈ R2, we have ‖x− x?‖2 ≤ 1

10‖x
?‖2. Denote vmin(x) as the eigenvector of

∇2g(x) corresponding to the smallest eigenvalue λmin(∇2g(x)). It follows that

λmin(∇2g(x)) = vmin(x)>∇2g(x)vmin(x)

=vmin(x)>∇2g(x?)vmin(x)−
(
vmin(x)>∇2g(x?)vmin(x)− vmin(x)>∇2g(x)vmin(x)

)
≥vmin(x)>∇2g(x?)vmin(x)−

∣∣vmin(x)>
(
∇2g(x)−∇2g(x?)

)
vmin(x)

∣∣ .
Then, we bound the two terms on the right hand side in sequence. For the first term, we have

vmin(x)>∇2g(x?)vmin(x) = 8(x?>vmin(x))2 + 4‖x?‖22 ≥ 4‖x?‖22.

Define e = x− x?. For the second term, we have∣∣vmin(x)>
(
∇2g(x)−∇2g(x?)

)
vmin(x)

∣∣
=
∣∣24vmin(x)>x?e>vmin(x) + 12(e>vmin(x))2 + 12e>x? + 6‖e‖22

∣∣
≤36‖x?‖2‖e‖2 + 18‖e‖22
≤3.78‖x?‖22,
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where the last two inequalities follow from the Cauchy-Schwarz inequality and ‖e‖2 ≤ 1
10‖x

?‖2.
Therefore, we have

λmin(∇2g(x)) ≥ 4‖x?‖22 − 3.78‖x?‖22 = 0.22‖x?‖22.

Then, we consider the critical points x = 1√
3
‖x?‖2w, with w>x? = 0, ‖w‖2 = 1 and its

neighborhoodR3. The argument for the other critical point x = − 1√
3
‖x?‖2w is similar so we omit

the proof here. Note that

∇2g(
1√
3
‖x?‖2w) = 4‖x?‖22ww> − 4x?x?>,

whose minimal eigenvalue and corresponding eigenvector are given as

λmin(∇2g(
1√
3
‖x?‖2w)) = −4‖x?‖22 < 0,

vmin(0) =
x?

‖x?‖2
.

Therefore, x = 1√
3
‖x?‖2w withw>x? = 0, ‖w‖2 = 1 are strict saddle points. For any x ∈ R3, we

have ‖x− 1√
3
‖x?‖2w‖2 ≤ 1

5‖x
?‖2. Denote vmin(x) as the eigenvector of∇2g(x) corresponding

to the smallest eigenvalue λmin(∇2g(x)). It follows that

λmin(∇2g(x)) = vmin(x)>∇2g(x)vmin(x) ≤ vmin(0)>∇2g(x)vmin(0)

¬
= 12

1

‖x?‖22
(x>x?)2 + 6‖x‖22 − 6‖x?‖22

­
≤ 18‖x‖22 − 6‖x?‖22

= 18

∥∥∥∥x− 1√
3
‖x?‖2w +

1√
3
‖x?‖2w

∥∥∥∥2

2

− 6‖x?‖22

≤ 18

∥∥∥∥x− 1√
3
‖x?‖2w

∥∥∥∥2

2

+
1

3
‖x?‖22 +

36√
3

∥∥∥∥x− 1√
3
‖x?‖2w

∥∥∥∥
2

‖x?‖2 − 6‖x?‖22

®
≤ −0.78‖x?‖22,

where ¬ follows by plugging vmin(0) = x?

‖x?‖2 and ∇2g(x) = 12xx> − 4x?x?> + 6‖x‖22IN −
2‖x?‖22IN . ­ follows from the Cauchy-Schwarz inequality. ® follows from ‖x− 1√

3
‖x?‖2w‖2 ≤

1
5‖x

?‖2.

Finally, we show that the gradient∇g(x) has a sufficiently large norm when x ∈ R4. Let x = αx?+
β‖x?‖2w with α, β ∈ R, w>x? = 0, and ‖w‖2 = 1. Then, ‖x‖2 > 1

2‖x
?‖2, minγ∈{−1,1} ‖x −

γx?‖2 > 1
10‖x

?‖2 and minγ∈{1,−1}

∥∥∥x− γ 1√
3
‖x?‖2w

∥∥∥
2
> 1

5‖x
?‖2 are equivalent to

α2 + β2 > 1
4 ,

minγ∈{−1,1}(α− γ)2 + β2 > 1
100 ,

minγ∈{−1,1} α
2 +

(
β − 1√

3
γ
)2

> 1
25 .

Note that

‖∇g(x)‖22 =
∥∥∥6‖x‖22x− 2‖x?‖22x− 4(x?>x)x?

∥∥∥2

2

= 4
(
9α2(α2 + β2 − 1)2 + β2(3α2 + 3β2 − 1)2

)
‖x?‖62

> 0.1571‖x?‖62.

Then, we have

‖∇g(x)‖2 > 0.3963‖x?‖32.
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G Proof of Lemma 3.4

The gradient and Hessian of the empirical risk (1.1) are given as

∇f(x) =
2

M

M∑
m=1

(am〈am,x〉3 − am〈am,x〉〈am,x?〉2),

∇2f(x) =
2

M

M∑
m=1

(3ama
>
m〈am,x〉2 − ama>m〈am,x?〉2).

Observe that

‖∇f(x)−∇g(x)‖2

=2

∥∥∥∥∥ 1

M

M∑
m=1

am〈am,x〉3−3‖x‖22x−
1

M

M∑
m=1

am〈am,x〉〈am,x?〉2 + ‖x?‖22x+ 2(x?>x)x?

∥∥∥∥∥
2

≤2

∥∥∥∥∥ 1

M

M∑
m=1

am〈am,x〉3−3‖x‖22x

∥∥∥∥∥
2

+2

∥∥∥∥∥ 1

M

M∑
m=1

am〈am,x〉〈am,x?〉2−‖x?‖22x−2(x?>x)x?

∥∥∥∥∥
2

.

To bound the above two terms, we need the following lemma, which is a direct result from [15, Claim
5] by setting A = IN and k = d = N .
Lemma G.1. Suppose am ∈ RN is a Gaussian random vector with entries satisfying N (0, 1).
Denote a⊗4

m = am ⊗ am ⊗ am ⊗ am ∈ RN×N×N×N as a fourth order tensor. Then, we have∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)∥∥∥∥∥
2

≤ Õ

(
N2

M
+

√
N

M

)
, h(N,M)

holds with probability at least 1− e−CN log(M).

For the first term, we have

2

∥∥∥∥∥ 1

M

M∑
m=1

am〈am,x〉3 − 3‖x‖22x

∥∥∥∥∥
2

=2

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)
×1 x×2 x×3 x

∥∥∥∥∥
2

≤2

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)∥∥∥∥∥
2

‖x‖32

≤2h(N,M)l3,

where the last inequality follows from Lemma G.1 and ‖x‖2 ≤ l.
For the second term, we have

2

∥∥∥∥∥ 1

M

M∑
m=1

am〈am,x〉〈am,x?〉2 − ‖x?‖22x− 2(x?>x)x?

∥∥∥∥∥
2

=2

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)
×1 x×2 x

? ×3 x
?

∥∥∥∥∥
2

≤2

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)∥∥∥∥∥
2

‖x‖2‖x?‖22

≤2h(N,M)l‖x?‖22,

where the last inequality follows from Lemma G.1 and ‖x‖2 ≤ l.
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Therefore, we have that

‖∇f(x)−∇g(x)‖2 ≤ 2h(N,M)l(l2 + ‖x?‖22) ≤ ε

2

holds with probability at least 1− e−CN log(M) if

h(N,M) ≤ ε

4l(l2 + ‖x?‖22)
. (G.1)

As is stated in Lemma 3.3, we have shown that ‖∇g(x)‖2 ≥ ε in R4. Set the radius of the ball
BN (l) , {x ∈ RN : ‖x‖2 ≤ l} as l = 1.1‖x?‖2. It can be seen that the region outside the ball
BN (l) is a subset of R4. Thus, we still have ‖∇g(x)‖2 ≥ ε when x /∈ BN (l). Then, for any
x /∈ BN (l), we have that

‖∇f(x)‖2 = ‖∇g(x) + (∇f(x)−∇g(x))‖2
≥ ‖∇g(x)‖2 − ‖∇f(x)−∇g(x)‖2 ≥

ε

2

holds with probability at least 1− e−CN log(M). Here, we have used ‖∇f(x)−∇g(x)‖2 ≤ ε
2 with

high probability and ‖∇g(x)‖2 ≥ ε.
Since f(x) has a large gradient when x /∈ BN (l) with l = 1.1‖x?‖2, we only need to consider the
geometry of f(x) with x ∈ BN (l). Then, by plugging l = 1.1‖x?‖2 and ε = 0.3963‖x?‖32 into
(G.1), we get

h(N,M) ≤ 0.0407.

Similarly, we can show that

‖∇2f(x)−∇2g(x)‖2

≤6

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)
×1 x×2 x

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)
×1 x

? ×2 x
?

∥∥∥∥∥
2

≤6

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)∥∥∥∥∥
2

‖x‖22 + 2

∥∥∥∥∥ 1

M

M∑
m=1

(
a⊗4
m − Ea⊗4

m

)∥∥∥∥∥
2

‖x?‖22

≤2h(N,M)(3l2 + ‖x?‖22) ≤ η

2

holds with probability at least 1− e−CN log(M) if

h(N,M) ≤ η

4(3l2 + ‖x?‖22)
. (G.2)

Plugging l = 1.1‖x?‖2 and η = 0.22‖x?‖22 into (G.2), we get

h(N,M) ≤ 0.0118.
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