
A ε-greedy, UCB and Thompson sampling are optimistic sampling rules

A.1 Descriptions of ε-greedy, UCB and Thompson sampling rules

ε-greedy, UCB, and Thomson sampling have the following sampling rules.

• ε-greedy algorithm : For any k ∈ [K] and t ∈ [T ],

νt(k) =

{
1− ε if k = argmaxj∈[K] µ̂j(t− 1),
ε

K−1 otherwise.

• UCB : For any k ∈ [K] and t ∈ [T ],

νt(k) =

{
1 if k = argmaxj∈[K] µ̂j(t− 1) + ut−1(Sj(t− 1), Nj(t− 1)),

0 otherwise,

where (s, n) 7→ ut−1(s, n) is a non-negative function which is increasing and decreasing
with respect to the first and second inputs respectively for each t. For example, a simple

version of UCB uses ut−1(s, n) =
√

2 log(1/δ)
n for a properly chosen constant δ ∈ (0, 1).

• Thompson sampling : For any k ∈ [K] and t ∈ [T ],

νt(k) ∝ π(k = argmax
j

µj | A1, Y1, . . . , At−1, Yt−1).

where π is a prior on (µ1, . . . , µK) or, more generally, on parameters of arms (θ1, . . . , θK).
In particular, if underlying arms are Gaussian with common variance σ2 and if we impose
independent Gaussian prior N(µk,0, σ

2
0) on each arm k, the corresponding Thompson

sampling is statistically equivalent to the following rule.

νt(k) =

{
1 if k = argmaxj∈[K] µ̃j(t− 1) + σj(t− 1)Zj,t−1
0 otherwise,

where each Zj,t−1 is an independent draw from N(0, 1) and µ̃j(t− 1), σk(t− 1) are the
posterior mean and standard deviation of arm j, given as

µ̃j(t−1) =
µj,0/σ

2
0 +Nj(t− 1)µ̂j(t− 1)/σ2

1/σ2
0 +Nj(t− 1)/σ2

, σj(t−1) =
(
1/σ2

0 +Nj(t− 1)/σ2
)−1/2

.

A.2 Exploit and IIO conditions are sufficient for optimistic sampling

In Fact 3, we claimed that “Exploit” and “IIO” conditions in Nie et al. [2018] are jointly a sufficient
condition for a sampling rule being optimistic. In this subsection, we formally restate Exploit and
IIO conditions of Nie et al. [2018] in terms of our notations and prove Fact 3.

First, fix a deterministic stopping time T . Given any t ∈ [T ], k ∈ [K], define respectively the data
from arm k until time t, and the data from all arms except k until time t, as

D(k)
t :=

{
X∗i,k

}Nk(t)

i=1
and D(−k)

t := Dt \ D(k)
t =

⋃
j 6=k

{
X∗i,j

}Nj(t)

i=1
∪ {W−1,W0, . . . ,Wt},

where Dt is the sample history up to time t under a tabular model D∗∞. Let D∗
′

∞ be another tabular
model. Under D∗

′

∞, we define D′t,D
′(k)
t and D′(−k)t in the same way. The Exploit condition in Nie

et al. [2018] can be rewritten as following.

Definition 2 (Exploit). Given any t ∈ [T ], k ∈ [K], suppose D(k)
t and D′(k)t have the same size (that

is N ′k(t) = Nk(t)) and D(−k)
t = D′(−k)t . If the sample mean µ̂k(t) under D(k)

t is less than or equal
to the sample mean µ̂′k(t) under D′t

(k), then

1(At = k) := ft,k

(
D(k)
t ∪ D

(−k)
t

)
≤ ft,k

(
D′(k)t ∪ D

(−k)
t

)
=: 1(A′t = k).
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For the IIO condition, we present a specific version in the MAB setting which was originally used in
Eq.(8) in the proof of Theorem 1 in Nie et al. [2018].
Definition 3 (Independence of Irrelevant Options (IIO)). For each t, k, the sampling random variable
At can be written in terms of deterministic functions ft,k and gt,k such that

At =

{
k if ft,k (Dt−1) = 1

j if ft,k (Dt−1) = 0 and gt,k

(
D(−k)
t−1

)
= j for some j 6= k.

Intuitively, ft,k is simply the indicator of whether arm k was pulled at time t; the crucial part is gt,k,
which specifies which arm is selected when arm k is not, and the IIO condition requires that gt,k
ignores the data from arm k in order to determine which j 6= k to pull instead.

It can be checked that ε-greedy, UCB and Thompson sampling under Gaussian arms and Gaussian
priors satisfy both conditions. Indeed, if arm k is not the arm with the highest mean or highest UCB
(for example), determining which other arm does get pulled in the next step does not depend on
the data from arm k. In Appendix A.3, we present a sufficient condition for Thompson sampling
to satisfy both conditions, and thus to be optimistic which shows Thompson sampling is optimistic
for many commonly used exponential family arms including Gaussian, Bernoulli, exponential and
Possion arms with their conjugate priors.

Before we prove Fact 3, we first introduce a lemma related to the IIO condition as follows.

Lemma 9. Fix a k ∈ [K]. Let D∗∞ and D∗
′

∞ be two MAB tabular representation that agree with each
other except in their k-th column. Let Nj(t) and N ′j(t) be the numbers of draws from arm j for all

j ∈ [K] under D∗∞ and D∗
′

∞ respectively. Then, under IIO, the following implication holds:

Nk(t) ≤ N ′k(t)⇒ Nj(t) ≥ N ′j(t), for all j 6= k. (9)

By switching the roles of D∗∞ and D∗
′

∞, we also have

Nk(t) ≥ N ′k(t)⇒ Nj(t) ≤ N ′j(t), for all j 6= k, (10)

and therefore,
Nk(t) = N ′k(t)⇒ Nj(t) = N ′j(t), for all j 6= k. (11)

Proof of Lemma 9. It is enough to prove the first statement. We follow the logic in the proof of
Property 1 in Nie et al. [2018]. If Nk(t) = t or N ′k(t) = t then the claimed statement holds trivially
since Nj(t) +Nk(t) ≤ t and N ′j(t) +N ′k(t) ≤ t for all j 6= k. Therefore, for the rest of the proof,
we assume Nk(t) ≤ N ′k(t) < t.

For each t, define s1 < · · · < st−Nk(t) to be the sequence of times at which arm k was not sampled
before time t under D∗∞. Similarly, let s′1 < · · · < s′t−Nk(t)

be the sequence of times at which arm k

was not sampled before time t under D∗
′

∞. From the IIO condition and the assumption that D∗∞ and
D∗
′

∞ agree with each other except in their k-th column, we have

Asu = As′u , for all u ∈ {1, . . . , t−N ′k(t)}, (12)

which implies that

N ′j(t) = N ′j(s
′
t−N ′k(t)

) = Nj(st−N ′k(t)) ≤ Nj(st−Nk(t)) = Nj(t),

where the first and the last identities stem from the definition of s and s′, the second identity is due
to (12), and the inequality follows from the assumption that Nk(t) ≤ N ′k(t) along with the fact that
u 7→ su and s 7→ Nj(s) are increasing.

Proof of Fact 3. Let us fix an arm k and a deterministic stopping time T , and a time t ≤ T , as
required by Exploit and IIO conditions. The arguments below are inspired by case 1 in the proof of
Theorem 1 in Nie et al. [2018].

Let X∗
′

i,k be an independent copy of X∗i,k and define X∗
′

∞ as a N×K table which equals X∗∞ on all

entries except the (i, k)-th entry, which contains X∗
′

i,k. Let D∗
′

∞ = X∗
′

∞ ∪ {W−1,W0, . . . } denote
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the corresponding dataset, which only differs from D∗∞ in one element. Let Nk(T ) and N ′k(T ) be
numbers of draws from arm k up to time T based on D∗∞ and D∗

′

∞ respectively. Also for each t ≤ T ,
let At and A′t be sampled arms based on D∗∞ and D∗

′

∞ respectively.

To prove the claim, it is enough to show that if X∗i,k ≤ X∗
′

i,k then Nk(T ) ≤ N ′k(T ) under Exploit
and IIO conditions. Suppose, for the sake of deriving a contradiction, that there exist i ∈ N and
k ∈ [K] such that X∗i,k ≤ X∗

′

i,k but Nk(T ) > N ′k(T ). Note that since As and A′s are functions
of the history up to time s − 1, we know that As = A′s for all s ≤ t, where t is defined as
t = min {s ≥ 1 : Nk(s) = N ′k(s) = i}. If t ≥ T , we have thatNk(T ) = Nk(t) = N ′k(t) = N ′k(T ),
which contradicts our assumption. Hence, we may assume t < T for the rest of the proof.

Define s0 := min {s ≥ 1 : Nk(s) > N ′k(s)}. From the definition of s0, we know that Nk(s0− 1) =

N ′k(s0 − 1). Since D∗∞ and D∗
′

∞ are identical except for their (i, k)-th entry, by Lemma 9, we have
that Nj(s0 − 1) = N ′j(s0 − 1) for all j, which also implies that Ds0−1 and D′s0−1 are identical
except for the Nk(t)-th observation from arm k. Therefore, the sample mean from arm k up to time
s0 − 1 under D′s0−1 is larger than the one under Ds0−1.

Then, by the Exploit condition, As0 = k implies that A′s0 = k. This contradicts the assumption
that Nk(s0) > N ′k(s0). Therefore, if X∗i,k ≤ X∗

′

i,k then Nk(T ) must be less than or equal to N ′k(T ).
Since it holds for any i ∈ N, k ∈ [K] and T , the sampling strategy is optimistic, proving our claim
that Exploit and IIO conditions are jointly a special case of an optimistic sampling rule.

A.3 Sufficient conditions for Thompson sampling to be optimistic

In the previous subsection A.2, we show that Exploit and IIO conditions are jointly a sufficient
condition for a sampling rule to be optimistic. In this subsection, we present a sufficient condition for
Thompson sampling to satisfy both conditions, and thus to be optimistic.

For each k, let θk be the parameter of the distribution of arm k, and let µk = µ(θk). If we use an
independent prior π on θ := (θ1, . . . , θK), it can be easily shown that posterior distributions of θ
and µ(θ) := (µ(θ1), . . . , µ(θK)) are also coordinate-wise independent conditionally on the data.
Therefore, the IIO condition is trivially satisfied for the Thompson sampling algorithms. However,
it is difficult to check whether the Exploit condition is satisfied because there is no closed form for
π(k = argmaxj∈[K] µ(θj)|Dt) in general.

One way to detour this issue is to study whether there exists a posterior sampling method such that
the following statistically equivalent sampling algorithm satisfies the Exploit condition.

νt(k) =

{
1 if k = argmaxj∈[K] µj(θj,t−1)

0 otherwise,

where θj,t−1 is a draw from the posterior distribution π(θj |Dt−1) at time t− 1. If there exists such
sampling method, we know that the sample mean from this Thompson sampling is negatively biased
for any fixed k and T . With a slight abuse of notation, we say the Thompson sampling is optimistic
in this case.

For example, in Appendix A.2, we show that Thompson sampling under Gaussian arm and Gaussian
prior is optimistic by using a standard Gaussian posterior sampling method described in Appendix A.1.
Similarly, for the Bernoulli arm with parameters {pk}Kk=1 and beta prior with non-negative integer
parameters (n,m) case, we can check that the corresponding Thompson sampling is optimistic using
the equivalent optimistic sampling rule

νt(k) =

{
1 if k = argmaxj∈[K]

aj,t−1

aj,t−1+bj,t−1

0 otherwise,

where aj,t−1 = −
∑n+Sk(t−1)
i=1 logUi,k, bj,t−1 = −

∑m+Nk(t−1)−Sk(t−1)
i=1 logWi,k and each Ui,k

and Wi,k are independent draws from U(0, 1).

In general, we have the following sufficient condition for the Thompson sampling to be optimistic.
Corollary 10. Suppose the distributions of the arms belong to a one-dimensional exponential family
with density pη(x) = exp{ηT (x) − A(η)} with respect to some dominating measure λ and with
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η ∈ E. Let π be a conjugate prior on η with a density proportional to exp{τη − n0A(η)}. If
π(η ≤ x | τ, n0) is a decreasing function of τ for any given x and n0, and if η 7→ µ(η) and
x 7→ T (x) are both increasing or decreasing mappings, then Thompson sampling is optimistic.

Proof. Fix a an arm k ∈ [K]. By the conjugacy, the posterior distribution for ηk given the data up to
time t is given by

π (ηk|Dt) ∝ exp
{(
τ + STk (t)

)
ηk − (n0 +Nk(t))A(ηk)

}
,

where STk (t) :=
∑t
s=1 1(As = k)T (Ys). Let F

(
x|STk (t), Nk(t)

)
:= π (ηk ≤ x|Dt). From the

condition on the prior, we know that STk (t) 7→ F
(
x|STk (t), Nk(t)

)
is a decreasing mapping for any

given x,Nk(t) and indices i, k and t. Therefore STk (t) 7→ F−1
(
y|STk (t), Nk(t)

)
is an increasing

mapping for any given y,Nk(t) and indices i, k and t. Now, we can check that the Thompson
sampling is equivalent to the following sampling rule.

νt(k) =

{
1 if k = argmaxj∈[K] µ (ηj,t−1)

0 otherwise,

where ηj,t−1 := F−1
(
Uj,t−1|STk (t− 1), Nk(t− 1)

)
and each Uj,t−1 is an independent draw from

U(0, 1). Since η 7→ µ(η) and x 7→ T (x) are both increasing (or decreasing), this sampling rule and
the corresponding Thompson sampling is optimistic.

We can check many commonly used one-dimensional exponential family arms with its conjugate prior
satisfying the condition in Corollary 10 which includes Gaussian distributions with a Gaussian prior,
Bernoulli distributions with a beta prior, Poisson distributions with a gamma prior and exponential
distributions with a gamma prior

A.4 Intuitions for the sign of the bias under each optimistic sampling and stopping

Under an optimistic sampling rule with a fixed stopping time and a fixed target, Xu et al. [2013] and
Nie et al. [2018] provided some intuitions as to why the sample mean is negatively biased. In this
subsection, we presents a similar intuitive explanation for the negative bias of the sample mean due
to adaptive sampling. We also offer some intuition in order to explain the positive bias stemming
from optimistic stopping rules in the one-armed case.

For an optimistic sampling rule with a fixed stopping time, assume for simplicity that we have a
fixed target arm with a symmetric distribution around its true mean. Consider two equally possible
realization of the experiment up to time t. In one realization, the sample mean at time t happens to be
larger than its true mean. On the other hand, in the other scenario, the sample mean at time t happens
to be smaller than its true mean. In the first case, the optimistic sampling rule will draw samples
more often from the target arm, and thus the sample mean will regress more easily to its true mean.
In contrast, in the other case, the optimistic sampling rule will draw samples less often and thus the
sample mean is less likely to regress to its true mean due to the smaller sample size. Since these two
realizations are equally likely, on average, the sample mean is negatively biased. See Figure 4 for an
illustration of this intuition.

For optimistic stopping in the one-armed case, consider the stopping rule that terminates the experi-
ment when the sample mean crosses a predetermined upper boundary. See Figure 5 for an illustrative
stopping boundary. As we did for the sampling case, we again assume that the distribution of the
arm is symmetric around its true mean. As before, consider two equally possible realizations. In one
realization, the sample mean at early times happens to be larger than the true mean. On the other
hand, in the other realization, the sample means at early times is smaller than its true mean. In the
first realization, the sample mean will cross the upper stopping boundary at an earlier time and thus
the sample mean at the crossing time will be large. In contrast, in the other realization, the sample
mean will cross the boundary at a later time and thus the optimistic stopping rule ensures that we will
draw more samples in this realization and thus the sample mean is more likely to regress to its true
mean due to the larger sample size. Since these two realizations are equally likely, on average, the
sample mean is positively biased. See Figure 5 for an illustration of this intuition.
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Figure 4: An illustration of the intuition for why optimistic sampling results in negative bias.

Figure 5: An illustration of the intuition for why optimistic stopping results in positive bias.

B Proofs

B.1 Proof of Theorem 7 (the paper’s central theorem on the sign of the bias)

Suppose that the data collecting strategy is monotonically decreasing for the k-th distribution. Then,
we will first show that, for any time t ∈ N, we have

E
[
1 (κ = k)

Nk(T )
1 (At = k) (Yt − µk) | Ft−1

]
≤ 0. (13)

Similarly, if the data collecting strategy is monotonically increasing, the inequality is reversed. It is
understood that if t > T , then 1 (At = k) = 0 for all k, making the above claim trivially true, and
hence below we implictly focus on t ≤ T .

Proof of inequality (13). Note that the LHS of inequality (13) can be rewritten as

E
[
1 (κ = k)

Nk(T )
1 (At = k) (Yt − µk) | Ft−1

]
= E

[
1 (κ = k)

Nk(T )
1 (At = k)

(
XNk(t),k − µk

)
| Ft−1

]
= E

[
t∑
i=1

1 (κ = k)

Nk(T )
1 (At = k)1 (Nk(t) = i)

(
X∗i,k − µk

)
| Ft−1

]

=

t∑
i=1

E
[
1 (κ = k)

Nk(T )
1 (At = k)1 (Nk(t) = i)

(
X∗i,k − µk

)
| Ft−1

]
.
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Therefore, it is enough to show the following inequality holds:

E
[
1 (κ = k)

Nk(T )
1 (At = k)1 (Nk(t) = i)

(
X∗i,k − µk

)
| Ft−1

]
≤ 0, (14)

for each t, k, i. Recall that D∗∞ = X∗∞ ∪ {W−1,W0, . . . } is a hypothetical dataset containing all
possible independent samples from the distributions, external random sources and random seeds
where the (i, k)-th entry of the table X∗∞ is a draw X∗i,k from Pk independent of every other entry
of X∗∞ and of the external random sources and the random seeds {W−1,W0, . . . }. Let X∗

′

i,k be an
independent copy of X∗i,k and define X∗

′

∞ as a N×K table that equals X∗∞ on all entries except the

(i, k)-th entry, which contains X∗
′

i,k. Let D∗
′

∞ = X∗
′

∞ ∪ {W−1,W0, . . . } denote the corresponding
dataset, which only differs from D∗∞ in one element. Note that, for each t, we have

Ft = σ ({W−1,W0, Y1,W1, . . . , Yt,Wt})

= σ

(
K⋃
k=1

{X∗Nk(s),k
}ts=1 ∪ {Ws}ts=−1

)
,

because there is an one-to-one correspondence between sets of random variables generating σ-
algebras. Therefore X∗

′

i,k is independent to Ft for any choice of i, k and t.

For any i, k and t, since 1 (At = k) and 1 (Nk(t) = i) are not functions of either X∗i,k or X∗
′

i,k, if the
data collecting strategy is monotonically decreasing, we have that

1 (At = k)1 (Nk(t) = i)

(
gk(D∗∞)

fk(D∗∞)
− gk(D∗

′

∞)

fk(D∗
′

∞)

)((
X∗i,k − µk

)
−
(
X∗
′

i,k − µk
))
≤ 0.

Rearranging, we obtain that

1 (At = k)1 (Nk(t) = i)

(
gk(D∗∞)

fk(D∗∞)

(
X∗i,k − µk

)
+
gk(D∗

′

∞)

fk(D∗
′

∞)

(
X∗
′

i,k − µk
))

≤ 1 (At = k)1 (Nk(t) = i)

(
gk(D∗

′

∞)

fk(D∗
′

∞)

(
X∗i,k − µk

)
+
gk(D∗∞)

fk(D∗∞)

(
X∗
′

i,k − µk
))

.

Next, note that gk(D
∗
∞)

fk(D∗∞)

(
X∗i,k − µk

)
and gk(D∗

′
∞)

fk(D∗
′
∞)

(
X∗
′

i,k − µk
)

have the same distribution and so

do gk(D∗
′
∞)

fk(D∗
′
∞)

(
X∗i,k − µk

)
and gk(D∗∞)

fk(D∗∞)

(
X∗
′

i,k − µk
)

. Therefore, by taking conditional expectation

given Ft−1 on both sides, we have

2E
[
1 (At = k)1 (Nk(t) = i)

gk(D∗∞)

fk(D∗∞)

(
X∗i,k − µk

)
| Ft−1

]
(15)

≤ 2E
[
1 (At = k)1 (Nk(t) = i)

gk(D∗∞)

fk(D∗∞)

(
X∗
′

i,k − µk
)
| Ft−1

]
= 2E

[
1 (At = k)1 (Nk(t) = i)

gk(D∗∞)

fk(D∗∞)
| Ft−1

]
E
[
X∗
′

i,k − µk
]

= 0,

where the first equality comes from the fact X∗
′

i,k is independent of both gk(D∗∞)

fk(D∗∞)
and Ft−1 and that

1 (At = k) and 1 (Nk(t) = i) are measurable with respect to Ft−1. By plugging-in the identity
gk(D∗∞)

fk(D∗∞)
= 1(κ=k)

Nk(T ) into the LHS of (15), we obtain the inequality (14), and thus, the inequality (13)
as desired.

Proof of the signs of the covariance and bias terms, equations (4) and (6). Suppose that the data
collection strategy is monotonically increasing. Consider any arm k such that P(κ = k) > 0.
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To prove equation (4), it is enough to show that E [(µ̂κ − µκ)1(κ = k)] ≤ 0. For each t ≥ 0, define
a process that is adapted to the natural filtration {Ft}t≥0 such that L(0) = 0 and

L(t) := E
[
Sk(t)− µkNk(t)

Nk(T )
1(κ = k) | Ft

]
, ∀t ≥ 1. (16)

Note that the theorem requires us to show that E[LT ] ≤ 0. We will first show that

{L(t)}t≥0 is a super-martingale with respect to {Ft}t≥0. (17)

First note that using inequality (13), we have

E [L(1) | F0] = E
[
1 (κ = k)

Nk(T )
1 (A1 = k) (Y1 − µk) | F0

]
≤ 0 = L(0).

Next, for all t ≥ 1, again using inequality (13), we have

E [L(t) | Ft−1] = L(t− 1) + E
[
1 (κ = k)

Nk(T )
1 (At = k) (Yt − µk) | Ft−1

]
≤ L(t− 1).

(Note that since sampling stops at time T , it is understood that for t > T , we have 1(At = κ) = 0,
Sκ(t) = Sκ(T ), Nκ(t) = Nκ(T ), F t = FT and thus L(t) = L(t − 1) = L(T ), so the above
inequality is still valid.) This proves claim (17). By the optional stopping theorem, we have that

EL(T ∧ t) ≤ E[L(0)] = 0, ∀t ≥ 1.

To prove EL(T ) ≤ E[L(0)], we follow the standard proof technique for the optional stopping
theorem. To be specific, it is enough show that |L(T ∧ t)| ≤ U for all t ≥ 0, where U is such that
E[U ] <∞. The result then follows from the dominated convergence theorem. Define U as

U =

T∑
s=1

|L(s)− L(s− 1)| =
∞∑
s=1

|L(s)− L(s− 1)|1 (T ≥ s) . (18)

Clearly, |L(T ∧ t)| ≤ U for all t. In order to show that E[U ] <∞, first note that for any t ≥ 1, we
have

E [|L(t+ 1)− L(t)| | F t] = E
[
1 (κ = k)

Nk(T )
1 (At+1 = k) |Yt+1 − µk| | Ft

]
≤ E [1(At+1 = k) |Yt+1 − µk| | F t]
= 1(At+1 = k)E [|Yt+1 − µk| | F t]

= 1(At+1 = k)

∫
|x− µk|dPk(x)

:= ck1(At+1 = k),

(19)

where the first inequality comes from the assumption Nk(T ) ≥ 1 for all k with P(κ = k) > 0,
and the following equality holds because 1(At+1 = k) ∈ Ft. The third equality stems from the
observation that, on the event (At+1 = k), Yt+1 ∼ Pk and it is independent of the previous history.
Therefore, we obtain that

E[U ] =

∞∑
s=1

E [E [|L(s)− L(s− 1)|1 (T ≥ s) | Fs−1]]

=

∞∑
s=1

E [1 (T ≥ s)E [|L(s)− L(s− 1)| | Fs−1]] (since 1 (T ≥ s) ∈ Fs−1.)

≤ ck
∞∑
s=1

E [1 (As = k)1 (T ≥ s)] (by the inequality (19))

= ckENk(T ) <∞,
where the finiteness of the last term follows from the assumption ENk(T ) < ∞ for all k with
P(κ = k) > 0. By the dominated convergence theorem, we have that

E [µ̂κ(T )− µκ | κ = k]P(κ = k) = E [(µ̂κ(T )− µκ)1(κ = k)]

= E [L(T )] ≤ E[L(0)] = 0,
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which implies that E [µ̂κ | κ = k] ≤ µk. The inequality (5) follows immediately from this result and
the identity

E [µ̂κ(T )− µκ] =
∑

k:P(κ=k)>0

E [µ̂κ(T )− µκ | κ = k]P(κ = k).

Thus, the sample mean at the stopping time T is negatively biased.

If the data collecting strategy is monotonically increasing, the supermartingale is replaced by a
submartingale and the inequalities are reversed. This observation completes the proof.

Now, suppose each arm has a bounded distribution. without loss of generality, assume there exists a
fixed M > 0 such that Pk ([µk −M,µk +M ]) = 1 for all k ∈ [K]. Then for any t ≥ 1, we have

E [|L(t+ 1)− L(t)| | F t] = E
[
1 (κ = k)

Nk(T )
1 (At+1 = k) |Yt+1 − µk| | Ft

]
≤ME

[
1 (At+1 = k)

Nk(T )
| Ft

]
.

(20)

Therefore, we obtain that

E[U ] =

∞∑
s=1

E [E [|L(s)− L(s− 1)|1 (T ≥ s) | Fs−1]]

=

∞∑
s=1

E [1 (T ≥ s)E [|L(s)− L(s− 1)| | Fs−1]] (since 1 (T ≥ s) ∈ Fs−1)

≤M
∞∑
s=1

E
[
1 (As = k)

Nk(T )
1 (T ≥ s)

]
(by the inequality (20))

=M <∞ (by the definition of Nk(T )),
which implies that if each arm has a bounded distribution, we can determine the sign of the bias of the
sample mean at the stopping time T without assuming ENk(T ) <∞ for all k with P(κ = k) > 0.

About Remark 1. In our recent work [Shin et al., 2019], we showed that if arm k has a finite p-th
moment for a fixed p > 2, the following bound on the normalized `2 risk of the sample mean holds:

E
[

Nk(T )
logNk(T )

(µ̂k(T )− µk)2
]
<∞, (21)

provided thatNk(T ) ≥ 3. In this case, we can show that E[U ] <∞without assuming ENk(T ) <∞,
where U is defined in (18). For each k, set ck :=

∫
|x− µk|dPk(x). Let ĉk(T ) be the sample mean

estimator of ck at the stopping time T . Then, we have

E[U ] =

∞∑
s=1

E [E [|L(s)− L(s− 1)|1 (T ≥ s) | Fs−1]]

=

∞∑
s=1

E
[
1 (κ = k)

Nk(T )
1 (As = k) |Ys − µk|1 (T ≥ s)

]

≤ E

[ ∞∑
s=1

1 (As = k)

Nk(T )
|Ys − µk|1 (T ≥ s)

]
:= E [ĉk(T )]
≤ E |ĉk(T )− ck|+ ck

≤ E

[√
Nk(T )

logNk(T )
|ĉk(T )− ck|

]
+ ck

≤

√
E
[

Nk(T )
logNk(T )

(ĉk(T )− ck)2
]
+ ck <∞,
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where in the last bound we have used (21). Thus, if each arm has a finite p-th moment for a fixed
p > 2, we can determine the sign of the bias of the sample mean at the stopping time T without
assuming ENk(T ) <∞ for all k with P(κ = k) > 0.

B.2 Proof of Corollary 8 (The lil’UCB algorithm results in positive bias)

Before presenting a formal proof of Corollary 8, we first provide an intuitive explanation why any
reasonable and efficient algorithm for the best-arm identification problem would result in positive
bias. For any k ∈ [K] and i ∈ N, let D∗∞ and D∗

′

∞ be two MAB tabular representation that agree with
each other except X∗i,k < X∗

′

i,k. Since we have a larger value from arm k in the second scenario D∗
′

∞,
if κ = k under the first scenario D∗∞, any reasonable algorithm would also pick the arm k under the
more favorable scenario D∗

′

∞. In this case, we know that κ = k implies κ′ = k. Also note that any
efficient algorithm should be able to exploit the more favorable scenario D∗

′

∞ to declare arm k as the
best arm by using less samples from arm k. Therefore, we would have Nk(T ) ≥ N ′k(T ′). In sum,
we can expect that, from any reasonable and efficient algorithm, we would have 1(κ=k)

Nk(T ) ≤
1(κ′=k)
N ′k(T ′)

which shows that the algorithm would be monotonically increasing and thus the sample mean of the
chosen arm is positively biased. Below, we formally verify that this intuition works for the lil’UCB
algorithm.

Proof of Corollary 8. For any given i, k, let X∗
′

i,k be an independent copy of X∗i,k and define X∗
′

∞ as
a N×K table which equals X∗∞ on all entries except the (i, k)-th entry, which contains X∗

′

i,k. Let

D∗
′

∞ = X∗
′

∞ ∪ {W−1,W0, . . . } denote the corresponding dataset, which only differs from D∗∞ in one
element. Let (Nk(T ), N ′k(T )) denote the numbers of draws from arm k up to time T . Let (T , T ′) be
the stopping times and (κ, κ′) be choosing functions as determined by the lil’UCB algorithm under
D∗∞ and D∗

′

∞ respectively.

Suppose X∗i,k ≤ X∗
′

i,k. Proving that the lil’UCB algorithm is monotonically increasing (and hence
results in positive bias) corresponds to showing that the following inequality holds:

1(κ = k)

Nk(T )
≤ 1(κ′ = k)

N ′k(T ′)
. (22)

If κ 6= k, the inequality (22) holds trivially. Therefore, for the rest of the proof, we assume κ = k
which also implies T <∞. (If not, the lil’UCB algorithm is not stopped, and thus κ 6= k.)

First, we can check that the lil’UCB sampling is a special case of UCB-type sampling algorithms.
Therefore, it is an optimistic sampling method which implies that for any fixed t > 0, and fixed
arm k, we have Nk(t) ≤ N ′k(t). Since

∑
j 6=kNj(t) = t − Nk(t) for all t, we can rewrite the

lil’UCB stopping rule as stopping the sampling whenever there exists a k such that Nk, which is a
non-decreasing function of t, crosses the strictly increasing linear boundary

{
(n, t) : n = 1+λt

1+λ

}
for

a fixed λ > 0. Since Nk(t) ≤ N ′k(t) for all t, we know that T ′ ≤ T .

Since the linear boundary is increasing, we can check N ′k(T ′) ≤ Nk(T ) if κ′ = k. Therefore, to
complete the proof, it is enough to show that κ = k implies κ′ = k. For the sake of deriving a
contradiction, assume κ = k but κ′ 6= k. Then, there exists j 6= k such that κ′ = j. By the definition
of κ′, it is equivalent to N ′j(T ′) = maxl∈[K]N

′
l (T ′). Hence, we have that

N ′j(T ′) > N ′k(T ′). (23)

Similarly, we can show that
Nj(T ) < Nk(T ). (24)

Since T ′ is the first time t such that, for some l, N ′l (t) has crossed the boundary, we know that j is
also the index of the arm which has crossed the boundary first time. Also, since the lil’UCB sampling
satisfies the IIO condition, Lemma 9 along with the fact that Nk(t) ≤ N ′k(t) for all t implies that
Nj(t) ≥ N ′j(t) for all j 6= k. From the two observations above, we have the following inequalities:

1 + λT ′

1 + λ
≤ N ′j(T ′) ≤ Nj(T ′),
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which implies that t 7→ Nj(t) is crossing the boundary at time T ′. By the definition of T and, by
assumption, κ = k, we obtain that T ≤ T ′.
Similarly, from the fact that Nk(t) ≤ N ′k(t) for all t along with the definition of T , we have that

1 + λT
1 + λ

≤ Nk(T ) ≤ N ′k(T ),

which implies that t 7→ N ′k(t) is crossing the boundary at time T , and thus T ′ ≤ T since κ′ 6= k by
assumption.

From the two observations above, we have T ′ = T . Finally, note that

N ′k(T ′) < N ′j(T ′) ≤ Nj(T ′) = Nj(T ) < Nk(T ) ≤ N ′k(T ) = N ′k(T ′)

where the first inequality comes from the inequality (23). The second inequality come from N ′j ≤ Nj .
The first equality comes from T ′ = T and the third inequality comes from the inequality (24). The
last inequality comes from Nk ≤ N ′k and the final equality comes from T = T ′.
This is a contradiction, and, therefore, κ = k implies that κ′ = k. This proves that the lil’UCB
algorithm is monotonically increasing and the chosen stopped sample mean from the lil’UCB
algorithm is positively biased.

B.3 Proof of Proposition 5 (bias expression) via Lemma 6 (Wald’s identity for MAB)

By direct substitution, we first note that

E |Sk(T )− µkNk(T )| = E

[ ∞∑
t=1

1 (At = k) |Yt − µk|1 (T ≥ t)

]

=

∞∑
t=1

E [1 (At = k) |Yt − µk|1 (T ≥ t)]

=

∞∑
t=1

E [1 (At = k)1 (T ≥ t)E [|Yt − µk| | Ft−1]]

=

∞∑
t=1

E
[
1 (At = k)1 (T ≥ t)

∫
|x− µk|dPk(x)

]

=

∫
|x− µk|dPk(x)E

[ ∞∑
t=1

1 (At = k)1 (T ≥ t)

]

=

∫
|x− µk|dPk(x)E [Nk(T )] <∞,

where the second equality comes from the Tonelli’s theorem and the third equality stems from the
facts that 1(At = k) and 1(T ≥ t) are Ft−1 measurable. The fourth equality comes from the fact
that, on event 1(At = k), Yt ∼ Pk and it is independent of the previous history. Finally, the finiteness
of the last term comes from the assumption of the existence of the first moment of k-th arm and
E[Nk(T )] <∞. Therefore, by the dominated convergence theorem, we have

E [Sk(T )− µkNk(T )] = E

[ ∞∑
t=1

1 (At = k) [Yt − µk]1 (T ≥ t)

]

=

∞∑
t=1

E [1 (At = k) [Yt − µk]1 (T ≥ t)]

=

∞∑
t=1

E [1 (At = k)1 (T ≥ t)E [Yt − µk | Ft−1]]

= 0,

which implies µkE [Nk(T )] = E [Sk(T )], which proves the generalization of Wald’s first identity.
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Since E [Nk(T )] > 0, one can then express µk as

µk =
E [Sk(T )]
E[Nk(T )]

.

By direct substitution, the bias of the sample mean can thus be expressed as

E [µ̂k(T )− µk] = E
[
µ̂k(T )

(
1− Nk(T )

E[Nk(T )]

)]
= Cov

(
µ̂k(T ),

(
1− Nk(T )

E[Nk(T )]

))
= −Cov (µ̂k(T ), Nk(T ))

E[Nk(T )]
.

This completes the proof of the proposition.

C Additional simulation results

C.1 More on negative bias due to optimistic sampling

We conduct a simulation study in which we have three unit-variance Gaussian arms with µ1 =
1, µ2 = 2 and µ3 = 3. After sampling once from each arm, greedy, UCB and Thompson sampling
are used to continue sampling until T = 200. We repeat the whole process from scratch 104 times
for each algorithm to get an accurate estimate for the bias.

For UCB, we use ut−1(s, n) =
√

2 log(1/δ)
n with δ = 0.1. For Thompson sampling, we use

independent standard Normal priors for simplicity. We repeat the whole process from scratch 2000
times for each algorithm to get an accurate estimate for the bias.

Figure 6 shows the distribution of observed differences between sample means and the true mean for
each arm under the greedy algorithm. Vertical lines correspond to biases. The example demonstrates
that the sample mean is negatively biased under optimistic sampling rules. Similar results from UCB
/ Thompson sampling algorithms can be found in Section 4.1.
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Figure 6: Data is collected by the greedy algorithm from three unit-variance Gaussian arms with
µ1 = 1, µ2 = 2 and µ3 = 3. For all three arms, sample means are negatively biased.
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C.2 Positive bias from optimistic choosing and stopping in identifying the largest mean

Suppose we have K arms with mean µ1, . . . , µK . As we were in Section 4.3, we are interested
not in each individual arm but in the arm with the largest mean. That is, our target of inference is
µ∗ := maxk∈[K] µk.

Instead of using the lil’UCB algorithm, we can draw a sample from each arm in a cyclic order for
each time t and use a naive sequential procedure based on the following stopping time.

T δM := inf
{
t ∈ {K, 2K, . . . ,MK} : µ̂(1)(t) > µ̂(2)(t) + δ

}
, (25)

where M, δ > 0 are prespecified constants and µ̂(k)(t) is the k-th largest sample mean at time t.
Once we stop sampling at time T δM , we can estimate the largest mean by the largest stopped sample
mean µ̂(1)

(
T δM
)
.

The performance of this sequential procedure can vary based on underlying distribution of the arm
and the choice of δ and M . However, we can check this optimistic choosing and stopping rules are
jointly monotonic increasing and thus the largest stopped sample mean µ̂(1)

(
T δM
)

is always positively
based for any choice of δ and M .

To verify it with a simulation, we set 3 unit-variance Gaussian arms with means (µ1, µ2, µ3) =
(g, 0,−g) for each gap parameter g = 1, 3, 5. We conduct 104 trials of this sequential procedure
with M = 1000 and δ = 0.7× g. Figure 7 shows the distribution of observed differences between
the chosen sample means and the corresponding true mean for each δ. Vertical lines correspond to
biases. The simulation study demonstrate that, in all configurations, the largest stopped sample mean
µ̂(1)

(
T δM
)

is always positively biased. Note, in contrast to the lil’UCB case in Section 4.3, we have a
larger bias for a smaller gap since the number of sample sizes are similar for each gaps due to the
adaptive (and oracle) choice of the parameter δ but a smaller gap makes more difficult to identify
largest mean correctly.
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Figure 7: Data is collected by the sequential procedure described in Appendix C.2 under unit-variance
Gaussian arms with µ1 = g, µ2 = 0 and µ3 = −g for each gap parameter g = {1, 3, 5}. For each
gap g, we set the parameter δ = 0.7× g and M = 1000. For all cases, chosen sample means are
positively biased.
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