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Abstract

We study the Unadjusted Langevin Algorithm (ULA) for sampling from a proba-
bility distribution ν = e−f on Rn. We prove a convergence guarantee in Kullback-
Leibler (KL) divergence assuming ν satisfies log-Sobolev inequality and f has
bounded Hessian. Notably, we do not assume convexity or bounds on higher deriva-
tives. We also prove convergence guarantees in Rényi divergence of order q > 1
assuming the limit of ULA satisfies either log-Sobolev or Poincaré inequality.

1 Introduction

Sampling is a fundamental algorithmic task. Many applications require sampling from probability
distributions in high-dimensional spaces, and in modern applications the probability distributions
are complicated and non-logconcave. While the setting of logconcave functions is well-studied, it
is important to have efficient sampling algorithms with good convergence guarantees beyond the
logconcavity assumption. There is a close interplay between sampling and optimization, either via
optimization as a limit of sampling (annealing) [34, 55], or via sampling as optimization in the space
of distributions [36, 62]. Motivated by the widespread use of non-convex optimization and sampling,
there is resurgent interest in understanding non-logconcave sampling.

In this paper we study a simple algorithm, the Unadjusted Langevin Algorithm (ULA), for sampling
from a target probability distribution ν = e−f on Rn. ULA requires oracle access to the gradient∇f
of the log density f = − log ν. In particular, ULA does not require knowledge of f , which makes it
applicable in practice where we often only know ν up to a normalizing constant.

As the step size ε→ 0, ULA recovers the Langevin dynamics, which is a continuous-time stochastic
process in Rn that converges to ν. We recall the optimization interpretation of the Langevin dynamics
for sampling as the gradient flow of the Kullback-Leibler (KL) divergence with respect to ν in the
space of probability distributions with the Wasserstein metric [36]. When ν is strongly logconcave,
the KL divergence is a strongly convex objective function, so the Langevin dynamics as gradient
flow converges exponentially fast [6, 60]. From the classical theory of Markov chains and diffusion
processes, there are several known conditions milder than logconcavity that are sufficient for rapid
convergence in continuous time. These include isoperimetric inequalities such as Poincaré inequality
or log-Sobolev inequality (LSI). Along the Langevin dynamics in continuous time, Poincaré inequality
implies an exponential convergence rate in χ2-divergence, while LSI—which is stronger—implies an
exponential convergence rate in KL divergence (as well as in Rényi divergence).

However, in discrete time, sampling under Poincaré inequality or LSI is a more challenging problem.
ULA is an inexact discretization of the Langevin dynamics, and it converges to a biased limit
νε 6= ν. When ν is strongly logconcave and smooth, it is known how to control the bias and
prove a convergence guarantee on KL divergence along ULA [17, 21, 22, 24]. When ν is strongly
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logconcave, there are many sampling algorithms with provable rapid convergence; these include
the ball walk and hit-and-run [37, 43, 44, 42] (which give truly polynomial algorithms), various
discretizations of the overdamped or underdamped Langevin dynamics [21, 22, 24, 8, 26] (which
have polynomial dependence on smoothness parameters but low dependence on dimension), and
the Hamiltonian Monte Carlo [47, 48, 25, 39, 16]. It is of great interest to extend these results to
non-logconcave densities ν, where existing results require strong assumptions with bounds that grow
exponentially with the dimension or other parameters [2, 18, 45, 49]. There are recent works that
analyze convergence of sampling using various techniques such as reflection coupling [28], kernel
methods [29], and higher-order integrators [40], albeit still under some strong conditions such as
distant dissipativity, which is similar to strong logconcavity outside a bounded domain.

In this paper we study the convergence along ULA under minimal (and necessary) isoperimetric
assumptions, namely, LSI and Poincaré inequality. These are sufficient for fast convergence in
continuous time; moreover, in the case of logconcave distribution, the log-Sobolev and Poincaré
constants can be bounded and lead to convergence guarantees for efficient sampling in discrete time.
However, do they suffice on their own without the assumption of logconcavity?

We note that LSI and Poincaré inequality apply to a wider class of measures than logconcave
distributions. In particular, LSI and Poincaré inequality are preserved under bounded perturbation and
Lipschitz mapping, whereas logconcavity is destroyed. Given these properties, it is easy to exhibit
examples of non-logconcave distributions satisfying LSI or Poincaré inequality. For example, we
can take a small perturbation of a convex body to make it nonconvex but still satisfies isoperimetry;
then the uniform probability distribution (or a smooth version of it) on the body is not logconcave but
satisfies LSI and Poincaré inequality. Similarly, we can start with a strongly logconcave distribution
and make bounded perturbations; then the resulting (normalized) probability distribution is not
logconcave, but it satisfies LSI and Poincaré inequality. See Figure 1 for an illustration.

Figure 1: Illustrations of non-logconcave distributions satisfying isoperimetry: uniform distribution
on a nonconvex set (left) and a perturbation of a logconcave distribution (right).

We measure the mode of convergence using KL divergence and Rényi divergence of order q ≥ 1,
which is stronger. Our first main result says the only further assumption we need is smoothness. We
say ν = e−f is L-smooth if∇f is L-Lipschitz. Here Hν(ρ) is the KL divergence between ρ and ν.
See Theorem 2 in Section 3.1 for more detail.
Theorem 2. Assume ν = e−f satisfies log-Sobolev inequality with constant α > 0 and is L-smooth.
ULA with step size 0 < ε ≤ α

4L2 satisfies

Hν(ρk) ≤ e−αεkHν(ρ0) + 8εnL2

α .

For 0 < δ < 4n, ULA with ε ≤ αδ
16L2n reaches error Hν(ρk) ≤ δ after k ≥ 1

αε log 2Hν(ρ0)
δ iterations.

For example, if we start with a Gaussian ρ0 = N (x∗, 1
LI) where x∗ is a stationary point of f (which

we can find, e.g., via gradient descent), then Hν(ρ0) = Õ(n) (see Lemma 1), and Theorem 2 gives an
iteration complexity of k = Θ̃

(
L2n
α2δ

)
to achieve Hν(ρk) ≤ δ using ULA with step size ε = Θ( αδ

L2n ).

The result above matches previous known bounds for ULA when ν is strongly logconcave [17, 21,
22, 24]. Our result complements the recent work of Ma et al. [45] who study the underdamped
version of the Langevin dynamics under LSI and show an iteration complexity for the discrete-
time algorithm that has better dependence on the dimension (

√
n
δ in place of n

δ above for ULA),
but under an additional smoothness assumption (f has bounded third derivatives) and with higher
polynomial dependence on other parameters. Our result also complements the work of Mangoubi
and Vishnoi [49] who study the Metropolis-adjusted version of ULA (MALA) for non-logconcave ν
and show a log( 1

δ ) iteration complexity from a warm start, under the additional assumption that f
has bounded third and fourth derivatives in an appropriate∞-norm.
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We note that in general some isoperimetry condition is needed for rapid mixing of Markov chains
(such as Langevin dynamics and ULA), otherwise there are bad regions in the state space from which
the chains take arbitrarily long to escape. Smoothness or bounded Hessian is a common assumption
needed for the analysis of discrete-time algorithms (such as gradient descent or ULA).

In the second part of this paper, we study the convergence of Rényi divergence of order q > 1
along ULA. Rényi divergence is a family of generalizations of KL divergence [56, 59, 11], which
becomes stronger as the order q increases. There are physical and operational interpretations of
Rényi divergence [31, 3]. Rényi divergence has been useful in many applications, including for
the exponential mechanism in differential privacy [27, 1, 12, 52], lattice-based cryptography [4],
information-theoretic encryption [35], variational inference [41], machine learning [32, 50], informa-
tion theory and statistics [20, 53], and black hole physics [23].

Our second result proves a convergence bound for the Rényi divergence of order q > 1. While
Rényi divergence is a stronger measure of convergence than KL divergence, the situation is more
complicated. First, we can hope to converge to the biased limit νε only for finite q for any step
size ε (as we illustrate with an example). Second, it is unclear how to bound the Rényi divergence
between νε and ν. We first show the following convergence guarantees of Rényi divergence along the
continuous-time Langevin dynamics under LSI or Poincaré inequality; see Theorem 3 and Theorem 5.
Here Rq,ν(ρ) is the Rényi divergence of order q between ρ and ν.
Theorem 3. Suppose ν satisfies LSI with constant α > 0. Let q ≥ 1. Along the Langevin dynamics,

Rq,ν(ρt) ≤ e−
2αt
q Rq,ν(ρ0).

Theorem 5. Suppose ν satisfies Poincaré inequality with constant α > 0. Let q ≥ 2. Along the
Langevin dynamics,

Rq,ν(ρt) ≤

{
Rq,ν(ρ0)− 2αt

q if Rq,ν(ρ0) ≥ 1 and as long as Rq,ν(ρt) ≥ 1,

e−
2αt
q Rq,ν(ρ0) if Rq,ν(ρ0) ≤ 1.

Notice that under Poincaré inequality, compared to LSI, the convergence is slower in the beginning
before it becomes exponential. For a reasonable starting distribution (such as a Gaussian centered at
a stationary point), this leads to an extra factor of n compared to the convergence under LSI. We then
turn to discrete time and show the convergence of Rényi divergence along ULA to the biased limit νε
under the assumption that νε itself satisfies either LSI or Poincaré inequality. We combine this with a
decomposition result on Rényi divergence to derive a convergence guarantee for Rényi divergence to
ν along ULA; see Theorem 4 and Theorem 6.

In what follows, we review KL divergence and its properties along the Langevin dynamics in Section 2,
and prove a convergence guarantee for KL divergence along ULA under LSI in Section 3. We provide
a review of Rényi divergence and its properties along the Langevin dynamics in Section 4. We then
prove the convergence guarantee for Rényi divergence along ULA under LSI in Section 5, and under
Poincaré inequality in Section 6. We conclude with a discussion in Section 7.

2 Review of KL divergence along Langevin dynamics

In this section we review the definition of Kullback-Leibler (KL) divergence, log-Sobolev inequality,
and the convergence of KL divergence along the Langevin dynamics in continuous time under
log-Sobolev inequality. See Appendix A.1 for a review on notation.

2.1 KL divergence

Let ρ, ν be probability distributions on Rn, represented via their probability density functions with
respect to the Lebesgue measure on Rn. We assume ρ, ν have full support and smooth densities.

Recall the Kullback-Leibler (KL) divergence of ρ with respect to ν is

Hν(ρ) =

∫
Rn
ρ(x) log

ρ(x)

ν(x)
dx. (1)

KL divergence is the relative form of Shannon entropy H(ρ) = −
∫
Rn ρ(x) log ρ(x) dx. Whereas

Shannon entropy can be positive or negative, KL divergence is nonnegative and minimized at ν:
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Hν(ρ) ≥ 0 for all ρ, and Hν(ρ) = 0 if and only if ρ = ν. Therefore, KL divergence serves as a
measure of (albeit asymmetric) “distance” of a probability distribution ρ from a base distribution ν.
KL divergence is a relatively strong measure of distance; for example, Pinsker’s inequality implies
that KL divergence controls total variation distance. Furthermore, under log-Sobolev (or Talagrand)
inequality, KL divergence also controls the quadratic Wasserstein W2 distance, as we review below.
We say ν = e−f is L-smooth if f has bounded Hessian: −LI � ∇2f(x) � LI for all x ∈ Rn. We
provide the proof of Lemma 1 in Appendix B.1.1.

Lemma 1. Suppose ν = e−f is L-smooth. Let ρ = N (x∗, 1
LI) where x∗ is a stationary point of f .

Then Hν(ρ) ≤ f(x∗) + n
2 log L

2π .

2.2 Log-Sobolev inequality

Recall we say ν satisfies the log-Sobolev inequality (LSI) with a constant α > 0 if for all smooth
function g : Rn → R with Eν [g2] <∞,

Eν [g2 log g2]− Eν [g2] logEν [g2] ≤ 2

α
Eν [‖∇g‖2]. (2)

Recall the relative Fisher information of ρ with respect to ν is

Jν(ρ) =

∫
Rn
ρ(x)

∥∥∥∥∇ log
ρ(x)

ν(x)

∥∥∥∥2

dx. (3)

LSI is equivalent to the following relation between KL divergence and Fisher information for all ρ:

Hν(ρ) ≤ 1

2α
Jν(ρ). (4)

Indeed, to obtain (4) we choose g2 = ρ
ν in (2); conversely, to obtain (2) we choose ρ = g2ν

Eν [g2] in (4).

LSI is an isoperimetry condition and implies, among others, concentration of measure and sub-
Gaussian tail property [38]. LSI was first shown by Gross [30] for the case of Gaussian ν. It was
extended by Bakry and Émery [6] to strongly log-concave ν; namely, when f = − log ν is α-strongly
convex, then ν satisfies LSI with constant α. However, LSI applies more generally. For example,
the classical perturbation result by Holley and Stroock [33] states that LSI is stable under bounded
perturbation. Furthermore, LSI is preserved under a Lipschitz mapping. In one dimension, there is
an exact characterization of when a probability distribution on R satisfies LSI [9]. Moreover, LSI
satisfies a tensorization property [38]: If ν1, ν2 satisfy LSI with constants α1, α2 > 0, respectively,
then ν1 ⊗ ν2 satisfies LSI with constant min{α1, α2} > 0. Thus, there are many examples of
non-logconcave distributions ν on Rn satisfying LSI (with a constant independent of dimension).
There are also Lyapunov function criteria and exponential integrability conditions that can be used to
verify when a probability distribution satisfies LSI; see for example [14, 15, 51, 61, 7].

2.2.1 Talagrand inequality

Recall the Wasserstein distance between ρ and ν is

W2(ρ, ν) = inf
Π

EΠ[‖X − Y ‖2]
1
2 (5)

where the infimum is over joint distributions Π of (X,Y ) with the correct marginals X ∼ ρ, Y ∼ ν.
Recall we say ν satisfies Talagrand inequality with a constant α > 0 if for all ρ:

α

2
W2(ρ, ν)2 ≤ Hν(ρ). (6)

Talagrand’s inequality implies concentration of measure of Gaussian type. It was first studied by
Talagrand [58] for Gaussian ν, and extended by Otto and Villani [54] to all ν satisfying LSI; namely,
if ν satisfies LSI with constant α > 0, then ν also satisfies Talagrand’s inequality with the same
constant [54, Theorem 1]. Therefore, under LSI, KL divergence controls the Wasserstein distance.
Moreover, when ν is log-concave, LSI and Talagrand’s inequality are equivalent [54, Corollary 3.1].
We recall in Appendix A.2 the geometric interpretation of LSI and Talagrand’s inequality from [54].
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2.3 Langevin dynamics

The Langevin dynamics for target distribution ν = e−f is a continuous-time stochastic process
(Xt)t≥0 in Rn that evolves following the stochastic differential equation:

dXt = −∇f(Xt) dt+
√

2 dWt (7)

where (Wt)t≥0 is the standard Brownian motion in Rn with W0 = 0.

If (Xt)t≥0 evolves following the Langevin dynamics (7), then their probability density function
(ρt)t≥0 evolves following the Fokker-Planck equation:

∂ρt
∂t

= ∇ · (ρt∇f) + ∆ρt = ∇ ·
(
ρt∇ log

ρt
ν

)
. (8)

Here ∇· is the divergence and ∆ is the Laplacian operator. We provide a derivation in Appendix A.3.
From (8), if ρt = ν, then ∂ρt

∂t = 0, so ν is the stationary distribution for the Langevin dynamics (7).
Moreover, the Langevin dynamics brings any distribution Xt ∼ ρt closer to the target distribution ν,
as the following lemma shows.

Lemma 2. Along the Langevin dynamics (7) (or equivalently, the Fokker-Planck equation (8)),

d

dt
Hν(ρt) = −Jν(ρt). (9)

We provide the proof of Lemma 2 in Appendix B.1.2. Since Jν(ρ) ≥ 0, the identity (9) shows KL
divergence is decreasing along the Langevin dynamics, so indeed the distribution ρt converges to ν.

2.3.1 Exponential convergence of KL divergence along Langevin dynamics under LSI

When ν satisfies LSI, KL divergence converges exponentially fast along the Langevin dynamics.

Theorem 1. Suppose ν satisfies LSI with constant α > 0. Along the Langevin dynamics (7),

Hν(ρt) ≤ e−2αtHν(ρ0). (10)

Furthermore, W2(ρt, ν) ≤
√

2
αHν(ρ0) e−αt.

We provide the proof of Theorem 1 in Appendix B.1.3. We also recall the optimization interpretation
of Langevin dynamics as the gradient flow of KL divergence in the space of distributions with
the Wasserstein metric [36, 60, 54]. Then the exponential convergence rate in Theorem 1 is a
manifestation of the general fact that gradient flow converges exponentially fast under gradient
domination condition. This provides a justification for using the Langevin dynamics for sampling
from ν, as a natural steepest descent flow that minimizes the KL divergence Hν .

3 Unadjusted Langevin Algorithm

Suppose we wish to sample from a smooth target probability distribution ν = e−f in Rn. The
Unadjusted Langevin Algorithm (ULA) with step size ε > 0 is the discrete-time algorithm

xk+1 = xk − ε∇f(xk) +
√

2ε zk (11)

where zk ∼ N (0, I) is an independent standard Gaussian random variable in Rn. Let ρk denote the
probability distribution of xk that evolves following ULA.

As ε→ 0, ULA recovers the Langevin dynamics (7) in continuous-time. However, for fixed ε > 0,
ULA converges to a biased limiting distribution νε 6= ν. Therefore, KL divergence Hν(ρk) does not
tend to 0 along ULA, as it has an asymptotic bias Hν(νε) > 0.

Example 1. Let ν = N (0, 1
αI). The ULA iteration is xk+1 = (1− εα)xk +

√
2εzk. For 0 < ε < 2

α ,
the limit is νε = N

(
0, 1

α(1− εα2 )

)
and the bias is Hν(νε) = n

2

(
εα

2(1− εα2 ) + log(1− εα
2 )
)
. In particular,

Hν(νε) ≤ nε2α2

16(1− εα2 )2 = O(ε2).
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3.1 Convergence of KL divergence along ULA under LSI

When ν satisfies LSI and a smoothness condition, we can prove a convergence guarantee in KL
divergence along ULA. Recall we say ν = e−f is L-smooth if −LI � ∇2f(x) � LI for all x ∈ Rn.
A key part in our analysis is the following lemma which bounds the decrease in KL divergence along
one iteration of ULA. Here xk+1 ∼ ρk+1 is the output of one step of ULA (11) from xk ∼ ρk.
Lemma 3. Suppose ν satisfies LSI with constant α > 0 and is L-smooth. If 0 < ε ≤ α

4L2 , then along
each step of ULA (11),

Hν(ρk+1) ≤ e−αεHν(ρk) + 6ε2nL2. (12)

We provide the proof of Lemma 3 in Appendix B.2.1. The proof of Lemma 3 compares the evolution
of KL divergence along one step of ULA with the evolution along Langevin dynamics in continuous
time (which converges exponentially fast under LSI), and bounds the discretization error; see Figure 2
for an illustration. This comparison technique has been used in many papers. Our proof structure is
similar to that of Cheng and Bartlett [17], whose analysis needs ν to be strongly logconcave.

With Lemma 3, we can prove our main result on the convergence rate of ULA under LSI. We provide
the proof of Theorem 2 in Appendix B.2.2.
Theorem 2. Assume ν = e−f satisfies log-Sobolev inequality with constant α > 0 and is L-smooth.
ULA with step size 0 < ε ≤ α

4L2 satisfies

Hν(ρk) ≤ e−αεkHν(ρ0) + 8εnL2

α .

For 0 < δ < 4n, ULA with ε ≤ αδ
16L2n reaches error Hν(ρk) ≤ δ after k ≥ 1

αε log 2Hν(ρ0)
δ iterations.

In particular, suppose δ < 4n and we choose the largest permissible step size ε = Θ
(
αδ
L2n

)
. Suppose

we start with a Gaussian ρ0 = N (x∗, 1
LI), where x∗ is a stationary point of f (which we can find,

e.g., via gradient descent), so Hν(ρ0) ≤ f(x∗) + n
2 log L

2π = Õ(n) by Lemma 1. Theorem 2

states that to achieve Hν(ρk) ≤ δ, ULA has iteration complexity k = Θ̃
(
L2n
α2δ

)
. Since LSI implies

Talagrand’s inequality, Theorem 2 also yields a convergence guarantee in Wasserstein distance. As
k →∞, Theorem 2 implies the following bound on the bias of ULA under LSI. However, we note
the bound O(ε) may be loose, since from Example 1 we see Hν(νε) = Θ(ε2) in Gaussian case.
Corollary 1. Suppose ν satisfies LSI with constant α > 0 and is L-smooth. For 0 < ε ≤ α

4L2 , the
biased limit νε of ULA with step size ε satisfies Hν(νε) ≤ 8nL2ε

α and W2(ν, νε)
2 ≤ 16nL2ε

α2 .

4 Review of Rényi divergence along Langevin dynamics

4.1 Rényi divergence

Rényi divergence [56] is a family of generalizations of KL divergence. See [59, 11] for properties of
Rényi divergence.

For q > 0, q 6= 1, the Rényi divergence of order q of a probability distribution ρ with respect to ν is

Rq,ν(ρ) =
1

q − 1
logFq,ν(ρ) (13)

where

Fq,ν(ρ) = Eν
[(ρ
ν

)q]
=

∫
Rn
ν(x)

ρ(x)q

ν(x)q
dx =

∫
Rn

ρ(x)q

ν(x)q−1
dx. (14)

Rényi divergence is the relative form of Rényi entropy [56]: Hq(ρ) = 1
q−1 log

∫
ρ(x)q dx. The case

q = 1 is defined via limit, and recovers the KL divergence (1): R1,ν(ρ) = limq→1Rq,ν(ρ) = Hν(ρ).
Rényi divergence has the property that Rq,ν(ρ) ≥ 0 for all ρ, and Rq,ν(ρ) = 0 if and only if ρ = ν.
Furthermore, the map q 7→ Rq,ν(ρ) is increasing (see Section B.3.1). Therefore, Rényi divergence
provides an alternative measure of “distance” of ρ from ν, which becomes stronger as q increases. In
particular, R∞,ν(ρ) = log

∥∥ ρ
ν

∥∥
∞ = log supx

ρ(x)
ν(x) is finite if and only if ρ is warm relative to ν. It is

possible that Rq,ν(ρ) =∞ for large enough q, as the following example shows.
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Example 2. Let ρ = N (0, σ2I) and ν = N (0, λ2I). If σ2 > λ2 and q ≥ σ2

σ2−λ2 , thenRq,ν(ρ) =∞.

Otherwise, Rq,ν(ρ) = n
2 log λ2

σ2 − n
2(q−1) log

(
q − (q − 1)σ

2

λ2

)
.

The following is analogous to Lemma 1. We provide the proof of Lemma 4 in Appendix B.3.2.
Lemma 4. Suppose ν = e−f is L-smooth. Let ρ = N (x∗, 1

LI) where x∗ is a stationary point of f .
Then for all q ≥ 1, Rq,ν(ρ) ≤ f(x∗) + n

2 log L
2π .

4.1.1 Log-Sobolev inequality

For q > 0, we define the Rényi information of order q of ρ with respect to ν as

Gq,ν(ρ) = Eν
[(ρ
ν

)q∥∥∥∇ log
ρ

ν

∥∥∥2]
= Eν

[(ρ
ν

)q−2∥∥∥∇ρ
ν

∥∥∥2]
=

4

q2
Eν
[∥∥∥∇(ρ

ν

) q
2
∥∥∥2]

. (15)

The case q = 1 recovers relative Fisher information (3): G1,ν(ρ) = Eν
[
ρ
ν

∥∥∇ log ρ
ν

∥∥2
]

= Jν(ρ).

We have the following relation under log-Sobolev inequality. Note the case q = 1 recovers LSI (4).
We provide the proof of Lemma 5 in Appendix B.3.3.
Lemma 5. Suppose ν satisfies LSI with constant α > 0. Let q ≥ 1. For all ρ,

Gq,ν(ρ)

Fq,ν(ρ)
≥ 2α

q2
Rq,ν(ρ). (16)

4.2 Langevin dynamics

Along the Langevin dynamics (7) for ν, we can compute the rate of change of the Rényi divergence.
Lemma 6. For all q > 0, along the Langevin dynamics (7),

d

dt
Rq,ν(ρt) = −qGq,ν(ρt)

Fq,ν(ρt)
. (17)

We provide the proof of Lemma 6 in Appendix B.3.4. In particular, d
dtRq,ν(ρt) ≤ 0, so Rényi

divergence is always decreasing along the Langevin dynamics. Furthermore, analogous to how the
Langevin dynamics is the gradient flow of KL divergence under the Wasserstein metric, one can
also show that the Langevin dynamics is the the gradient flow of Rényi divergence with respect to a
suitably defined metric (which depends on ν) on the space of distributions; see [13].

4.2.1 Convergence of Rényi divergence along Langevin dynamics under LSI

When ν satisfies LSI, Rényi divergence converges exponentially fast along the Langevin dynamics.
Note the case q = 1 recovers the exponential convergence rate of KL divergence from Theorem 1.
Theorem 3. Suppose ν satisfies LSI with constant α > 0. Let q ≥ 1. Along the Langevin dynamics,

Rq,ν(ρt) ≤ e−
2αt
q Rq,ν(ρ0).

We provide the proof of Theorem 3 in Appendix B.3.5. Theorem 3 shows that if the initial Rényi diver-
gence is finite, then it converges exponentially fast. However, even if initially the Rényi divergence is
∞, it will be finite along the Langevin dynamics, after which time Theorem 3 applies. This is because
when ν satisfies LSI, the Langevin dynamics satisfies a hypercontractivity property [30, 10, 60]; see
Section B.3.6. Furthermore, as shown in [13], we can combine the exponential convergence rate
above with the hypercontractivity property to improve the exponential rate to be 2α, independent of
q, at the cost of some initial waiting time; here we leave the rate as above for simplicity.

5 Rényi divergence along ULA

In this section we prove a convergence guarantee for Rényi divergence along ULA under the
assumption that the biased limit satisfies LSI. As before, let ν = e−f , and let νε denote the biased
limit of ULA (11) with step size ε > 0. We note that the bias Rq,ν(νε) may be∞ for large enough q.
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Example 3. As in Examples 1 and 2, let ν = N (0, 1
αI), so νε = N

(
0, 1

α(1− εα2 )I
)
. The bias is

Rq,ν(νε) =

{
n

2(q−1)

(
q log

(
1− εα

2

)
− log

(
1− qεα

2

))
if 1 < q < 2

εα ,

∞ if q ≥ 2
εα .

Thus, for each fixed q > 1, there is an asymptotic bias Rq,ν(νε) which is finite for small enough ε.
In Example 3 we have Rq,ν(νε) = O(ε2). In general, we assume for each q > 1 there is a growth
function gq(ε) that controls the bias: Rq,ν(νε) ≤ gq(ε) for small ε > 0, and limε→0 gq(ε) = 0.

5.1 Decomposition of Rényi divergence

For order q > 1, we have the following decomposition of Rényi divergence.
Lemma 7. Let q > 1. For all probability distribution ρ,

Rq,ν(ρ) ≤
(
q − 1

2

q − 1

)
R2q,νε(ρ) +R2q−1,ν(νε). (18)

We provide the proof of Lemma 7 in Appendix B.4.1. The first term in the bound above is the
Rényi divergence with respect to the biased limit, which converges exponentially fast under LSI (see
Lemma 8). The second term in (18) is the bias, which is controlled by the growth function g2q−1(ε).

5.2 Rapid convergence of Rényi divergence with respect to νε along ULA

We show Rényi divergence with respect to the biased limit νε converges exponentially fast along
ULA, assuming νε itself satisfies LSI.
Assumption 1. The probability distribution νε satisfies LSI with a constant β ≡ βε > 0.

We can verify Assumption 1 in the Gaussian case. However, it is unclear how to verify Assumption 1
in general. One might hope to prove that if ν satisfies LSI, then Assumption 1 holds.
Example 4. Let ν = N (0, 1

αI), so νε = N
(
0, 1

α(1− εα2 )I
)

satisfies LSI with β = α(1− εα
2 ).

Under Assumption 1, we can prove an exponential convergence rate to the biased limit νε.

Lemma 8. Assume Assumption 1. Suppose ν = e−f is L-smooth, and let 0 < ε ≤ min
{

1
3L ,

1
9β

}
.

For q ≥ 1, along ULA (11),

Rq,νε(ρk) ≤ e−
βεk
q Rq,νε(ρ0). (19)

We provide the proof of Lemma 8 in Appendix B.4.2. In the proof of Lemma 8, we decompose each
step of ULA as a sequence of two operations; see Figure 3 for an illustration. In the first part we
take a gradient step, which is a deterministic bijective map, so it preserves Rényi divergence. In the
second part we add an independent Gaussian, which is evolution along the heat flow, and we derive a
formula on the decrease in Rényi divergence (which is similar to (17) along the Langevin dynamics).

5.3 Convergence of Rényi divergence along ULA under LSI

We combine Lemma 7 and Lemma 8 to obtain the following characterization of the convergence of
Rényi divergence along ULA under LSI. We provide the proof of Theorem 4 in Appendix B.4.3.

Theorem 4. Assume Assumption 1. Suppose ν = e−f is L-smooth, and let 0 < ε ≤ min
{

1
3L ,

1
9β

}
.

Let q > 1, and suppose R2q,νε(ρ0) <∞. Then along ULA (11),

Rq,ν(ρk) ≤
(
q − 1

2

q − 1

)
R2q,νε(ρ0)e−

βεk
2q + g2q−1(ε). (20)

For δ > 0, let g−1
q (δ) = sup{ε > 0: gq(ε) ≤ δ}. Theorem 4 states that to achieve Rq,ν(ρk) ≤ δ,

it suffices to run ULA with step size ε = Θ
(
min

{
1
L , g

−1
2q−1

(
δ
2

)})
for k = O

(
1
βε log

R2q,νε (ρ0)
δ

)
iterations. Suppose δ is small so g−1

2q−1

(
δ
2

)
< 1

L . Note νε is 1
2ε -smooth, so if we choose ρ0

8



to be a Gaussian with covariance 2εI , we have R2q,νε(ρ0) = Õ(n) by Lemma 4. Therefore,
Theorem 4 yields an iteration complexity of k = Õ

(
1

βg−1
2q−1(δ/2)

)
. For example, if gq(ε) = O(ε),

then g−1
q (δ) = Ω(δ), so the iteration complexity is k = Õ

(
1
βδ

)
with ε = Θ(δ). If gq(ε) = O(ε2), as

in Example 3, then g−1
q (δ) = Ω(

√
δ), so the iteration complexity is k = Õ

(
1

β
√
δ

)
with ε = Θ(

√
δ).

6 Poincaré inequality

We recall ν satisfies Poincaré inequality (PI) with a constant α > 0 if for all smooth g : Rn → R,
Varν(g) ≤ 1

αEν [‖∇g‖2] (21)
where Varν(g) = Eν [g2]−Eν [g]2 is the variance of g under ν. Poincaré inequality is an isoperimetry
condition which is weaker than LSI. LSI implies PI with the same constant; in fact, PI is a linearization
of LSI (4), i.e., when ρ = (1+ηg)ν as η → 0 [57, 60]. Furthermore, it is known Talagrand’s inequality
implies PI with the same constant, and PI is also a linearization of Talagrand’s inequality [54].
Poincaré inequality is better behaved than LSI [15], and there are various Lyapunov criteria and
integrability conditions to verify when a distribution satisfies Poincaré inequality [5, 51, 19].

6.1 Convergence of Rényi divergence along Langevin dynamics under Poincaré inequality

When ν satisfies Poincaré inequality, Rényi divergence converges along the Langevin dynamics. The
convergence is initially linear, then becomes exponential once Rényi divergence falls below 1.
Theorem 5. Suppose ν satisfies Poincaré inequality with constant α > 0. Let q ≥ 2. Along the
Langevin dynamics,

Rq,ν(ρt) ≤

{
Rq,ν(ρ0)− 2αt

q if Rq,ν(ρ0) ≥ 1 and as long as Rq,ν(ρt) ≥ 1,

e−
2αt
q Rq,ν(ρ0) if Rq,ν(ρ0) ≤ 1.

We provide the proof of Theorem 5 in Appendix B.5.2. Theorem 5 states that starting fromRq,ν(ρ0) ≥
1, the Langevin dynamics reaches Rq,ν(ρt) ≤ δ in t ≤ O

(
q
α

(
Rq,ν(ρ0) + log 1

δ

))
time.

6.2 Rapid convergence of Rényi divergence with respect to νε along ULA

We assume the biased limit νε satisfies Poincaré inequality.
Assumption 2. The distribution νε satisfies Poincaré inequality with a constant β ≡ βε > 0.

Under Assumption 2 we can show Rényi divergence with respect to νε converges at a rate similar to
the Langevin dynamics; see Lemma 18 in Appendix B.5.3.

6.3 Convergence of Rényi divergence along ULA under Poincaré inequality

We combine Lemma 7 and Lemma 18 to obtain the following convergence of Rényi divergence along
ULA under Poincaré inequality. We provide the proof of Theorem 6 in Appendix B.5.4.
Theorem 6. Assume Assumption 2. Suppose ν = e−f is L-smooth, and let 0 < ε ≤ min

{
1

3L ,
1

9β

}
.

Let q > 1 and assume 1 ≤ R2q,νε(ρ0) <∞. Along ULA (11), for k ≥ k0 := 2q
βε (R2q,νε(ρ0)− 1),

Rq,ν(ρk) ≤
(
q − 1

2

q − 1

)
e−

βε(k−k0)
2q + g2q−1(ε). (22)

This yields an iteration complexity for ULA under Poincaré which is a factor of n larger than the
complexity under LSI; see Appendix B.5.5.

7 Discussion

In this paper we proved convergence guarantees on KL and Rényi divergence along ULA under
isoperimetry and bounded Hessian, without assuming convexity or bounds on higher derivatives.
It would be interesting to verify when Assumptions 1 and 2 hold or whether they follow from
isoperimetry and bounded Hessian of the target density. Another intriguing question is whether there
is an affine-invariant version of the Langevin dynamics. This might lead to a sampling algorithm with
logarithmic dependence on smoothness parameters, rather than the current polynomial dependence.
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A Review

A.1 Review on notation and basic properties

Throughout, we represent a probability distribution ρ on Rn via its probability density function with
respect to the Lebesgue measure, so ρ : Rn → R with

∫
Rn ρ(x)dx = 1. We typically assume ρ has

full support and smooth density, so ρ(x) > 0 and x 7→ ρ(x) is differentiable. Given a function
f : Rn → R, we denote the expected value of f under ρ by

Eρ[f ] =

∫
Rn
f(x)ρ(x) dx.

We use the Euclidean inner product 〈x, y〉 =
∑n
i=1 xiyi for x = (xi)1≤i≤n, y = (yi)1≤i≤n ∈ Rn.

For symmetric matrices A,B ∈ Rn×n, let A � B denote that B − A is positive semidefinite. For
µ ∈ Rn, Σ � 0, let N (µ,Σ) denote the Gaussian distribution on Rn with mean µ and covariance
matrix Σ.

Given a smooth function f : Rn → R, its gradient∇f : Rn → Rn is the vector of partial derivatives:

∇f(x) =

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)
.

The Hessian∇2f : Rn → Rn×n is the matrix of second partial derivatives:

∇2f(x) =

(
∂2f(x)

∂xixj

)
1≤i,j≤n

.

The Laplacian ∆f : Rn → R is the trace of its Hessian:

∆f(x) = Tr(∇2f(x)) =

n∑
i=1

∂2f(x)

∂x2
i

.

Given a smooth vector field v = (v1, . . . , vn) : Rn → Rn, its divergence∇ · v : Rn → R is

(∇ · v)(x) =

n∑
i=1

∂vi(x)

∂xi
.

In particular, the divergence of gradient is the Laplacian:

(∇ · ∇f)(x) =

n∑
i=1

∂2f(x)

∂x2
i

= ∆f(x).

For any function f : Rn → R and vector field v : Rn → Rn with sufficiently fast decay at infinity,
we have the following integration by parts formula:∫

Rn
〈v(x),∇f(x)〉dx = −

∫
Rn
f(x)(∇ · v)(x)dx.

Furthermore, for any two functions f, g : Rn → R,∫
Rn
f(x)∆g(x)dx = −

∫
Rn
〈∇f(x),∇g(x)〉dx =

∫
Rn
g(x)∆f(x)dx.

When the argument is clear, we omit the argument (x) in the formulae for brevity. For example, the
last integral above becomes∫

f ∆g dx = −
∫
〈∇f,∇g〉 dx =

∫
g∆f dx. (23)

A.2 Geometric interpretation of LSI and Talagrand’s inequality

In the space of probability distributions with the Riemannian metric defined by the Wasserstein
W2 distance, the Fisher information (3) is the squared norm of the gradient of KL divergence (1).
Therefore, LSI (4) is the gradient dominated condition (also known as the Polyak-Łojaciewicz (PL)
inequality) for KL divergence. On the other hand, Talagrand’s inequality (6) is the quadratic growth
condition for KL divergence. In general, the gradient dominated condition implies the quadratic
growth condition [54, Proposition 1’]. Therefore, LSI implies Talagrand’s inequality.
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A.3 Derivation of the Fokker-Planck equation

Consider a stochastic differential equation

dX = v(X) dt+
√

2 dW (24)
where v : Rn → Rn is a smoth vector field and (Wt)t≥0 is the Brownian motion on Rn with W0 = 0.

We will show that if Xt evolves following (24), then its probability density function ρt(x) evolves
following the Fokker-Planck equation:

∂ρ

∂t
= −∇ · (ρv) + ∆ρ. (25)

We can derive this heuristically as follows; we refer to standard textbooks for rigorous derivation [46].

For any smooth test function φ : Rn → R, let us compute the time derivative of the expectation
A(t) = Eρt [φ] = E[φ(Xt)].

On the one hand, we can compute this as

Ȧ(t) =
d

dt
A(t) =

d

dt

∫
Rn
ρt(x)φ(x) dx =

∫
Rn

∂ρt(x)

∂t
φ(x) dx. (26)

On the other hand, by (24), for small ε > 0 we have

Xt+ε = Xt +

∫ t+ε

t

v(Xs)ds+
√

2(Wt+ε −Wt)

= Xt + εv(Xt) +
√

2(Wt+ε −Wt) +O(ε2)

d
= Xt + εv(Xt) +

√
2εZ +O(ε2)

where Z ∼ N (0, I) is independent of Xt, since Wt+ε −Wt ∼ N (0, εI). Then by Taylor expansion,

φ(Xt+ε)
d
= φ

(
Xt + εv(Xt) +

√
2εZ +O(ε2)

)
= φ(Xt) + ε〈∇φ(Xt), v(Xt)〉+

√
2ε〈∇φ(Xt), Z〉+

1

2
2ε〈Z,∇2φ(Xt)Z〉+O(ε

3
2 ).

Now we take expectation on both sides. Since Z ∼ N (0, I) is independent of Xt,
A(t+ ε) = E[φ(Xt+ε)]

= E
[
φ(Xt) + ε〈∇φ(Xt), v(Xt)〉+

√
2ε〈∇φ(Xt), Z〉+ ε〈Z,∇2φ(Xt)Z〉

]
+O(ε

3
2 )

= A(t) + ε (E[〈∇φ(Xt), v(Xt)〉] + E[∆φ(Xt)]) +O(ε
3
2 ).

Therefore, by integration by parts, this second approach gives

Ȧ(t) = lim
ε→0

A(t+ ε)−A(t)

ε
= E[〈∇φ(Xt), v(Xt)〉] + E[∆φ(Xt)]

=

∫
Rn
〈∇φ(x), ρt(x)v(x)〉dx+

∫
Rn
ρt(x)∆φ(x) dx

= −
∫
Rn
φ(x)∇ · (ρtv)(x) dx+

∫
Rn
φ(x)∆ρt(x) dx

=

∫
Rn
φ(x) (−∇ · (ρtv)(x) + ∆ρt(x)) dx. (27)

Comparing (26) and (27), and since φ is arbitrary, we conclude that
∂ρt(x)

∂t
= −∇ · (ρtv)(x) + ∆ρt(x)

as claimed in (25).

When v = −∇f , the stochastic differential equation (24) becomes the Langevin dynamics (7) from
Section 2.3, and the Fokker-Planck equation (25) becomes (8).

In the proof of Lemma 3, we also apply the Fokker-Planck equation (25) when v = −∇f(x0) is a
constant vector field to derive the evolution equation (30) for one step of ULA.
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B Proofs and details

B.1 Proofs for §2: KL divergence along Langevin dynamics

B.1.1 Proof of Lemma 1

Proof of Lemma 1. Since f is L-smooth and∇f(x∗) = 0, we have the bound

f(x) ≤ f(x∗) + 〈∇f(x∗), x− x∗〉+
L

2
‖x− x∗‖2 = f(x∗) +

L

2
‖x− x∗‖2.

Let X ∼ ρ = N (x∗, 1
LI). Then

Eρ[f(X)] ≤ f(x∗) +
L

2
Varρ(X) = f(x∗) +

n

2
.

Recall the entropy of ρ is H(ρ) = −Eρ[log ρ(X)] = n
2 log 2πe

L . Therefore, the KL divergence is

Hν(ρ) =

∫
ρ (log ρ+ f) dx = −H(ρ) + Eρ[f ] ≤ f(x∗) +

n

2
log

L

4πe
.

B.1.2 Proof of Lemma 2

Proof of Lemma 2. Recall the time derivative of KL divergence along any flow is given by
d

dt
Hν(ρt) =

d

dt

∫
Rn
ρt log

ρt
ν
dx =

∫
Rn

∂ρt
∂t

log
ρt
ν
dx

since the second part of the chain rule is zero:
∫
ρt

∂
∂t log ρt

ν dx =
∫
∂ρt
∂t dx = d

dt

∫
ρt dx = 0.

Therefore, along the Fokker-Planck equation (8) for the Langevin dynamics (7),
d

dt
Hν(ρt) =

∫
∇ ·
(
ρt∇ log

ρt
ν

)
log

ρt
ν
dx

= −
∫
ρt

∥∥∥∇ log
ρt
ν

∥∥∥2

dx

= −Jν(ρt)

where in the second equality we have applied integration by parts.

B.1.3 Proof of Theorem 1

Proof of Theorem 1. From Lemma 2 and the LSI assumption (4),
d

dt
Hν(ρt) = −Jν(ρt) ≤ −2αHν(ρt).

Integrating implies the desired bound Hν(ρt) ≤ e−2αtHν(ρ0).

Furthermore, since ν satisfies LSI with constant α, it also satisfies Talagrand’s inequality (6) with
constant α [54, Theorem 1]. Therefore, W2(ρt, ν)2 ≤ 2

αHν(ρt) ≤ 2
αe
−2αtHν(ρ0), as desired.

B.2 Proofs for §3: Unadjusted Langevin Algorithm

B.2.1 Proof of Lemma 3

We will use the following auxiliary results.
Lemma 9. Assume ν = e−f is L-smooth. Then

Eν [‖∇f‖2] ≤ nL.

Proof. Since ν = e−f , by integration by parts we can write

Eν [‖∇f‖2] = Eν [∆f ].

Since ν is L-smooth, ∇2f(x) � LI , so ∆f(x) ≤ nL for all x ∈ Rn. Therefore, Eν [‖∇f‖2] =
Eν [∆f ] ≤ nL, as desired.
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Lemma 10. Suppose ν satisfies Talagrand’s inequality with constant α > 0 and is L-smooth. For
any ρ,

Eρ[‖∇f‖2] ≤ 4L2

α
Hν(ρ) + 2nL.

Proof. Let x ∼ ρ and x∗ ∼ ν with an optimal coupling (x, x∗) so that E[‖x− x∗‖2] = W2(ρ, ν)2.
Since ν = e−f is L-smooth,∇f is L-Lipschitz. By triangle inequality,

‖∇f(x)‖ ≤ ‖∇f(x)−∇f(x∗)‖+ ‖∇f(x∗)‖
≤ L‖x− x∗‖+ ‖∇f(x∗)‖.

Squaring, using (a+ b)2 ≤ 2a2 + 2b2, and taking expectation, we get

Eρ[‖∇f(x)‖2] ≤ 2L2 E[‖x− x∗‖2] + 2Eν [‖∇f(x∗)‖2]

= 2L2W2(ρ, ν)2 + 2Eν [‖∇f(x∗)‖2].

By Talagrand’s inequality (6), W2(ρ, ν)2 ≤ 2
αHν(ρ). By Lemma 9 we have Eν [‖∇f(x∗)‖2] ≤ nL.

Plugging these to the bound above gives the desired result.

We are now ready to prove Lemma 3. See Figure 2 for an illustration.

ρk

ρ̃k+ 1
ρk+ 1

ν

(a)

(b)

H
e−αϵH

e−αϵH + O(ϵ2nL2)

Figure 2: An illustration for the proof of Lemma 3. In each iteration, we compare the evolution of
(a) the continuous-time Langevin dynamics for time ε, and (b) one step of ULA. If the current KL
divergence is H ≡ Hν(ρk), then after the Langevin dynamics (a) the KL divergence is Hν(ρ̃k+1) ≤
e−αεH , and we show that after ULA (b) the KL divergence is Hν(ρk+1) ≤ e−αεH +O(ε2nL2).

Proof of Lemma 3. For simplicity suppose k = 0, so we start at x0 ∼ ρ0. We write one step of ULA

x0 7→ x0 − ε∇f(x0) +
√

2εz0

as the output at time ε of the stochastic differential equation

dxt = −∇f(x0) dt+
√

2 dWt (28)

where Wt is the standard Brownian motion in Rn starting at W0 = 0. Indeed, the solution to (28) at
time t = ε is

xε = x0 − ε∇f(x0) +
√

2Wε

d
= x0 − ε∇f(x0) +

√
2ε z0. (29)

where z0 ∼ N (0, I), which is identical to the ULA update.

We derive the continuity equation corresponding to (28) as follows. For each t > 0, let ρ0t(x0, xt)
denote the joint distribution of (x0, xt), which we write in terms of the conditionals and marginals as

ρ0t(x0, xt) = ρ0(x0)ρt|0(xt |x0) = ρt(xt)ρ0|t(x0 |xt).
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Conditioning on x0, the drift vector field −∇f(x0) is a constant, so the Fokker-Planck formula for
the conditional density ρt|0(xt |x0) is

∂ρt|0(xt |x0)

∂t
= ∇ ·

(
ρt|0(xt |x0)∇f(x0)

)
+ ∆ρt|0(xt |x0). (30)

To derive the evolution of ρt, we take expectation over x0 ∼ ρ0. Multiplying both sides of (30) by
ρ0(x0) and integrating over x0, we obtain

∂ρt(x)

∂t
=

∫
Rn

∂ρt|0(x |x0)

∂t
ρ0(x0) dx0

=

∫
Rn

(
∇ ·
(
ρt|0(x |x0)∇f(x0)

)
+ ∆ρt|0(x |x0)

)
ρ0(x0) dx0

=

∫
Rn

(∇ · (ρt,0(x, x0)∇f(x0)) + ∆ρt,0(x, x0)) dx0

= ∇ ·
(
ρt(x)

∫
Rn
ρ0|t(x0 |x)∇f(x0) dx0

)
+ ∆ρt(x)

= ∇ ·
(
ρt(x)Eρ0|t [∇f(x0) |xt = x]

)
+ ∆ρt(x). (31)

Observe that the difference between the Fokker-Planck equations (31) for ULA and (8) for Langevin
dynamics is in the first term, that the drift is now the conditional expectation Eρ0|t [∇f(x0) |xt = x],
rather than the true gradient∇f(x).

Recall the time derivative of relative entropy along any flow is given by

d

dt
Hν(ρt) =

d

dt

∫
Rn
ρt log

ρt
ν
dx =

∫
Rn

∂ρt
∂t

log
ρt
ν
dx

since the second part of the chain rule is zero:
∫
ρt

∂
∂t log ρt

ν dx =
∫
∂ρt
∂t dx = d

dt

∫
ρt dx = 0.

Therefore, the time derivative of relative entropy for ULA, using the Fokker-Planck equation (31)
and integrating by parts, is given by:

d

dt
Hν(ρt) =

∫
Rn

(
∇ ·
(
ρt(x)Eρ0|t [∇f(x0) |xt = x]

)
+ ∆ρt(x)

)
log

ρt(x)

ν(x)
dx

=

∫
Rn

(
∇ ·
(
ρt(x)

(
∇ log

ρt(x)

ν(x)
+ Eρ0|t [∇f(x0) |xt = x]−∇f(x)

)))
log

ρt(x)

ν(x)
dx

= −
∫
Rn
ρt(x)

〈
∇ log

ρt(x)

ν(x)
+ Eρ0|t [∇f(x0) |xt = x]−∇f(x), ∇ log

ρt(x)

ν(x)

〉
dx

= −
∫
Rn
ρt(x)

∥∥∥∇ log
ρt
ν

∥∥∥2

dx+

∫
Rn
ρt(x)

〈
∇f(x)− Eρ0|t [∇f(x0) |xt = x], ∇ log

ρt(x)

ν(x)

〉
dx

= −Jν(ρt) +

∫
Rn×Rn

ρ0t(x0, x)

〈
∇f(x)−∇f(x0),∇ log

ρt(x)

ν(x)

〉
dx0 dx

= −Jν(ρt) + Eρ0t
[〈
∇f(xt)−∇f(x0), ∇ log

ρt(xt)

ν(xt)

〉]
(32)

where in the last step we have renamed x as xt. The first term in (32) is the same as in the Langevin
dynamics. The second term in (32) is the discretization error, which we can bound as follows. Using
〈a, b〉 ≤ ‖a‖2 + 1

4‖b‖
2 and since∇f is L-Lipschitz,

Eρ0t
[〈
∇f(xt)−∇f(x0),∇ log

ρt(xt)

ν(xt)

〉]
≤ Eρ0t [‖∇f(xt)−∇f(x0)‖2] +

1

4
Eρ0t

[∥∥∥∥∇ log
ρt(xt)

ν(xt)

∥∥∥∥2
]

= Eρ0t [‖∇f(xt)−∇f(x0)‖2] +
1

4
Jν(ρt)

≤ L2Eρ0t [‖xt − x0‖2] +
1

4
Jν(ρt) (33)
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Recall from (29) the solution of ULA is xt
d
= x0 − t∇f(x0) +

√
2t z0, where z0 ∼ N (0, I) is

independent of x0. Then

Eρ0t [‖xt − x0‖2] = Eρ0t [‖ − t∇f(x0) +
√

2tz0‖2]

= t2Eρ0 [‖∇f(x0)‖2] + 2tn

≤ 4t2L2

α
Hν(ρ0) + 2t2nL+ 2tn

where in the last inequality we have used Lemma 10. This bounds the discretization error by

Eρ0t
[〈
∇f(xt)−∇f(x0),∇ log

ρt(xt)

ν(xt)

〉]
≤ 4t2L4

α
Hν(ρ0) + 2t2nL3 + 2tnL2 +

1

4
Jν(ρt).

Therefore, from (32), the time derivative of KL divergence along ULA is bounded by
d

dt
Hν(ρt) ≤ −

3

4
Jν(ρt) +

4t2L4

α
Hν(ρ0) + 2t2nL3 + 2tnL2.

Then by the LSI (4) assumption,
d

dt
Hν(ρt) ≤ −

3α

2
Hν(ρt) +

4t2L4

α
Hν(ρ0) + 2t2nL3 + 2tnL2.

We wish to integrate the inequality above for 0 ≤ t ≤ ε. Using t ≤ ε and since ε ≤ 1
2L , we simplify

the above to
d

dt
Hν(ρt) ≤ −

3α

2
Hν(ρt) +

4ε2L4

α
Hν(ρ0) + 2ε2nL3 + 2εnL2

≤ −3α

2
Hν(ρt) +

4ε2L4

α
Hν(ρ0) + 3εnL2.

Multiplying both sides by e
3α
2 t, we can write the above as

d

dt

(
e

3α
2 tHν(ρt)

)
≤ e 3α

2 t

(
4ε2L4

α
Hν(ρ0) + 3εnL2

)
.

Integrating from t = 0 to t = ε gives

e
3
2αεHν(ρε)−Hν(ρ0) ≤ 2(e

3
2αε − 1)

3α

(
4ε2L4

α
Hν(ρ0) + 3εnL2

)
≤ 2ε

(
4ε2L4

α
Hν(ρ0) + 3εnL2

)
where in the last step we have used the inequality ec ≤ 1 + 2c for 0 < c = 3

2αε ≤ 1, which holds
because 0 < ε ≤ 2

3α . Rearranging, the inequality above gives

Hν(ρε) ≤ e−
3
2αε

(
1 +

8ε3L4

α

)
Hν(ρ0) + e−

3
2αε6ε2nL2.

Since 1 + 8ε3L4

α ≤ 1 + αε
2 ≤ e

1
2αε for ε ≤ α

4L2 , and using e−
3
2αε ≤ 1, we conclude that

Hν(ρε) ≤ e−αεHν(ρ0) + 6ε2nL2.

This is the desired inequality, after renaming ρ0 ≡ ρk and ρε ≡ ρk+1. Note that the conditions
ε ≤ 1

2L and ε ≤ 2
3α above are also implied by the assumption ε ≤ α

4L2 since α ≤ L.

B.2.2 Proof of Theorem 2

Proof of Theorem 2. Applying the recursion (12) from Lemma 3, we obtain

Hν(ρk) ≤ e−αεkHν(ρ0) +
6ε2nL2

1− e−αε
≤ e−αεkHν(ρ0) +

8εnL2

α

where in the last step we have used the inequality 1− e−c ≥ 3
4c for 0 < c = αε ≤ 1

4 , which holds
since ε ≤ α

4L2 ≤ 1
4α .

Given δ > 0, if we further assume ε ≤ δα
16nL2 , then the above implies Hν(ρk) ≤ e−αεkHν(ρ0) + δ

2 .

This means for k ≥ 1
αε log 2Hν(ρ0)

δ , we have Hν(ρk) ≤ δ
2 + δ

2 = δ, as desired.
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B.3 Details for §4: Rényi divergence along Langevin dynamics

B.3.1 Properties of Rényi divergence

We show that Rényi divergence is increasing in the order.
Lemma 11. For any probability distributions ρ, ν, the map q 7→ Rq,ν(ρ) is increasing for q > 0.

Proof. Let 0 < q ≤ r. We will show that Rq,ν(ρ) ≤ Rr,ν(ρ).

First suppose q > 1. We write Fq,ν(ρ) as an expectation over ρ and use power mean inequality:

Fq,ν(ρ) = Eν
[(ρ
ν

)q]
= Eρ

[(ρ
ν

)q−1
]
≤ Eρ

[(ρ
ν

)r−1
] q−1
r−1

= Eν
[(ρ
ν

)r] q−1
r−1

= Fr,ν(ρ)
q−1
r−1 .

Taking logarithm and dividing by q − 1 > 0 gives

Rq,ν(ρ) =
1

q − 1
logFq,ν(ρ) ≤ 1

r − 1
logFr,ν(ρ) = Rr,ν(ρ).

The case q = 1 follows by taking limit q → 1.

Now suppose q ≤ r < 1, so 1− q ≥ 1− r > 0. We again write Fq,ν(ρ) as an expectation over ρ and
use power mean inequality:

Fq,ν(ρ) = Eν
[(ρ
ν

)q]
= Eρ

[(
ν

ρ

)1−q
]
≥ Eρ

[(
ν

ρ

)1−r
] 1−q

1−r

= Eν
[(ρ
ν

)r] 1−q
1−r

= Fr,ν(ρ)
1−q
1−r .

Taking logarithm and dividing by q − 1 < 0 (which flips the inequality) gives

Rq,ν(ρ) =
1

q − 1
logFq,ν(ρ) ≤ 1

r − 1
logFr,ν(ρ) = Rr,ν(ρ).

The case q < 1 ≤ r follows since Rq,ν(ρ) ≤ R1,ν(ρ) ≤ Rr,ν(ρ).

B.3.2 Proof of Lemma 4

Proof of Lemma 4. Since f is L-smooth and x∗ is a stationary point of f , for all x ∈ Rn we have

f(x) ≤ f(x∗) + 〈∇f(x∗), x− x∗〉+
L

2
‖x− x∗‖2 = f(x∗) +

L

2
‖x− x∗‖2.

Let q > 1. Then for ρ = N (x∗, σ2I) with q
σ2 > (q − 1)L,

Fq,ν(ρ) =

∫
Rn

ρ(x)q

ν(x)q−1
dx

=
1

(2πσ2)
nq
2

∫
Rn
e−

q

2σ2
‖x−x∗‖2+(q−1)f(x)dx

≤ 1

(2πσ2)
nq
2

∫
Rn
e−

q

2σ2
‖x−x∗‖2+(q−1)f(x∗)+

(q−1)L
2 ‖x−x∗‖2dx

=
e(q−1)f(x∗)

(2πσ2)
nq
2

∫
Rn
e−

1
2 ( q

σ2
−(q−1)L)‖x−x∗‖2dx

=
e(q−1)f(x∗)

(2πσ2)
nq
2

(
2π

q
σ2 − (q − 1)L

)n
2

=
e(q−1)f(x∗)

(2π)
n
2 (q−1)(σ2)

nq
2

1(
q
σ2 − (q − 1)L

)n
2
.

Therefore,

Rq,ν(ρ) =
1

q − 1
logFq,ν(ρ) ≤ f(x∗)− n

2
log 2π − n

2(q − 1)
log σ2q

( q
σ2
− (q − 1)L

)
.

In particular, if σ2 = 1
L , then q

σ2 − (q − 1)L = L > 0, and the bound above becomes

Rq,ν(ρ) ≤ f(x∗) +
n

2
log

L

2π
.

The case q = 1 follows from Lemma 1, since 1
4πe <

1
2π .
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B.3.3 Proof of Lemma 5

Proof of Lemma 5. We plug in h2 =
(
ρ
ν

)q
to the LSI definition (2) to obtain

q2

2α
Gq,ν(ρ) ≥ qEν

[(ρ
ν

)q
log

ρ

ν

]
− Fq,ν(ρ) logFq,ν(ρ) (34)

= q
∂

∂q
Fq,ν(ρ)− Fq,ν(ρ) logFq,ν(ρ).

Therefore,
q2

2α

Gq,ν(ρ)

Fq,ν(ρ)
≥ q ∂

∂q
logFq,ν(ρ)− logFq,ν(ρ)

= q
∂

∂q
((q − 1)Rq,ν(ρ))− (q − 1)Rq,ν(ρ)

= qRq,ν(ρ) + q(q − 1)
∂

∂q
Rq,ν(ρ)− (q − 1)Rq,ν(ρ)

= Rq,ν(ρ) + q(q − 1)
∂

∂q
Rq,ν(ρ)

≥ Rq,ν(ρ)

where in the last inequality we have used q ≥ 1 and ∂
∂qRq,ν(ρ) ≥ 0 since q 7→ Rq,ν(ρ) is increasing

by Lemma 11.

B.3.4 Proof of Lemma 6

Proof of Lemma 6. Let q > 0, q 6= 1. By the Fokker-Planck formula (8) and integration by parts,

d

dt
Fq,ν(ρt) =

∫
Rn
ν
∂
∂t (ρ

q
t )

νq
dx

= q

∫
Rn

ρq−1
t

νq−1

∂ρt
∂t

dx

= q

∫
Rn

(ρt
ν

)q−1

∇ ·
(
ρt∇ log

ρt
ν

)
dx

= −q
∫
Rn
ρt

〈
∇
(ρt
ν

)q−1

,∇ log
ρt
ν

〉
dx

= −q(q − 1)

∫
Rn
ρt

〈(ρt
ν

)q−2

∇ρt
ν
,
(ρt
ν

)−1

∇ρt
ν

〉
dx

= −q(q − 1)Eν
[(ρt

ν

)q−2 ∥∥∥∇ρt
ν

∥∥∥2
]

= −q(q − 1)Gq,ν(ρt). (35)
Therefore,

d

dt
Rq,ν(ρt) =

1

q − 1

d
dtFq,ν(ρt)

Fq,ν(ρt)
= −qGq,ν(ρt)

Fq,ν(ρt)
.

For q = 1, we have R1,ν(ρt) = Hν(ρt), G1,ν(ρt) = Jν(ρt), and F1,ν(ρt) = 1, and the claim (17)
follows from Lemma 2.

B.3.5 Proof of Theorem 3

Proof of Theorem 3. By Lemma 5 and Lemma 6,
d

dt
Rq,ν(ρt) = −qGq,ν(ρt)

Fq,ν(ρt)
≤ −2α

q
Rq,ν(ρt).

Integrating gives

Rq,ν(ρt) ≤ e−
2α
q tRq,ν(ρ0)

as desired.
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B.3.6 Hypercontractivity

Lemma 12. Suppose ν satisfies LSI with constant α > 0. Let q0 > 1, and suppose Rq0,ν(ρ0) <∞.
Define qt = 1 + e2αt(q0 − 1). Along the Langevin dynamics (7), for all t ≥ 0,(

1− 1

qt

)
Rqt,ν(ρt) ≤

(
1− 1

q0

)
Rq0,ν(ρ0). (36)

In particular, for any q ≥ q0, we have Rq,ν(ρt) ≤ Rq0,ν(ρ0) <∞ for all t ≥ 1
2α log q−1

q0−1 .

Proof. We will show d
dt

{(
1− 1

qt

)
Rqt,ν(ρt)

}
≤ 0, which implies the desired relation (36). Since

qt = 1 + e2αt(q0 − 1), we have q̇t = d
dtqt = 2α(qt − 1). Note that

d

dt
Rqt,ν(ρt) =

d

dt

(
logFqt,ν(ρt)

qt − 1

)
(35)
= − q̇t logFqt,ν(ρt)

(qt − 1)2
+
q̇tEν

[(
ρt
ν

)qt
log ρt

ν

]
− qt(qt − 1)Gqt,ν(ρt)

(qt − 1)Fqt,ν(ρt)

= −2αRqt,ν(ρt) + 2α
Eν
[(
ρt
ν

)qt
log ρt

ν

]
Fqt,ν(ρt)

− qt
Gqt,ν(ρt)

Fqt,ν(ρt)
.

In the second equality above we have used our earlier calculation (35) which holds for fixed q. Then
by LSI in the form (34), we have

d

dt
Rqt,ν(ρt) ≤ −2αRqt,ν(ρt) + 2α

(
qt
2α

Gqt,ν(ρt)

Fqt,ν(ρt)
+

1

qt
logFqt,ν(ρt)

)
− qt

Gqt,ν(ρt)

Fqt,ν(ρt)

= −2αRqt,ν(ρt) + 2α

(
1− 1

qt

)
Rqt,ν(ρt)

= −2α

qt
Rqt,ν(ρt).

Therefore,

d

dt

{(
1− 1

qt

)
Rqt,ν(ρt)

}
=
q̇t
q2
t

Rqt,ν(ρt) +

(
1− 1

qt

)
d

dt
Rqt,ν(ρt)

≤ 2α(qt − 1)

q2
t

Rqt,ν(ρt)−
(

1− 1

qt

)
2α

qt
Rqt,ν(ρt)

= 0,

as desired.

Now given q ≥ q0, let t0 = 1
2α log q−1

q0−1 so qt0 = q. Then Rq,ν(ρt0) ≤ q
(q−1)

(q0−1)
q0

Rq0,ν(ρ0) ≤
Rq0,ν(ρ0) < ∞. For t > t0, by applying Theorem 3 starting from ρt0 , we obtain Rq,ν(ρt) ≤
e−

2α
q (t−t0)Rq,ν(ρt0) ≤ Rq,ν(ρt0) ≤ Rq0,ν(ρ0) <∞.

By combining Theorem 3 and Lemma 12, we obtain the following characterization of the behavior of
Renyi divergence along the Langevin dynamics under LSI.

Corollary 2. Suppose ν satisfies LSI with constant α > 0. Suppose ρ0 satisfies Rq0,ν(ρ0) <∞ for
some q0 > 1. Along the Langevin dynamics (7), for all q ≥ q0 and t ≥ t0 := 1

2α log q−1
q0−1 ,

Rq,ν(ρt) ≤ e−
2α
q (t−t0)Rq0,ν(ρ0). (37)

Proof. By Lemma 12, at t = t0 we have Rq,ν(ρt0) ≤ Rq0,ν(ρ0). For t > t0, by applying Theorem 3
starting from ρt0 , we have Rq,ν(ρt) ≤ e−

2α
q (t−t0)Rq,ν(ρt0) ≤ e−

2α
q (t−t0)Rq0,ν(ρ0).
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B.4 Proofs for §5: Rényi divergence along ULA

B.4.1 Proof of Lemma 7

Proof of Lemma 7. By Cauchy-Schwarz inequality,

Fq,ν(ρ) =

∫
ρq

νq−1
dx

=

∫
νε

(
ρ

νε

)q (νε
ν

)q−1

dx

≤

(∫
νε

(
ρ

νε

)2q

dx

) 1
2 (∫

νε

(νε
ν

)2(q−1)

dx

) 1
2

= F2q,νε(ρ)
1
2F2q−1,ν(νε)

1
2 .

Taking logarithm gives

(q − 1)Rq,ν(ρ) ≤ (2q − 1)

2
R2q,νε(ρ) +

(2q − 2)

2
R2q−1,ν(νε).

Dividing both sides by q − 1 > 0 gives the desired inequality (18).

B.4.2 Proof of Lemma 8

We will use the following auxiliary results. Recall that given a map T : Rn → Rn and a probability
distribution ρ, the pushforward T#ρ is the distribution of T (x) when x ∼ ρ.

Lemma 13. Let T : Rn → Rn be a differentiable bijective map. For any probability distributions
ρ, ν, and for all q > 0,

Rq,T#ν(T#ρ) = Rq,ν(ρ).

Proof. Let ρ̃ = T#ρ and ν̃ = T#ν. By the change of variable formula,

ρ(x) = det(∇T (x)) ρ̃(T (x)),

ν(x) = det(∇T (x)) ν̃(T (x)).

Since T is differentiable and bijective, det(∇T (x)) 6= 0. Therefore,

ρ̃(T (x))

ν̃(T (x))
=
ρ(x)

ν(x)
.

Now let X ∼ ν, so T (X) ∼ ν̃. Then for all q > 0.

Fq,ν̃(ρ̃) = Eν̃
[(

ρ̃

ν̃

)q]
= EX∼ν

[(
ρ̃(T (X))

ν̃(T (X))

)q]
= EX∼ν

[(
ρ(X)

ν(X)

)q]
= Fq,ν(ρ).

Suppose q 6= 1. Taking logarithm on both sides and dividing by q− 1 6= 0 yields Rq,ν̃(ρ̃) = Rq,ν(ρ),
as desired. The case q = 1 follows from taking limit q → 1, or by an analogous direct argument:

Hν̃(ρ̃) = Eν̃
[
ρ̃

ν̃
log

ρ̃

ν̃

]
= EX∼ν

[
ρ̃(T (X))

ν̃(T (X))
log

ρ̃(T (X))

ν̃(T (X))

]
= EX∼ν

[
ρ(X)

ν(X)
log

ρ(X)

ν(X)

]
= Hν(ρ).

We have the following result on how the LSI constant changes under a Lipschitz mapping. We recall
that T : Rn → Rn is L-Lipschitz if ‖T (x)− T (y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

Lemma 14. Suppose a probability distribution ν satisfies LSI with constant α > 0. Let T : Rn → Rn
be a differentiable L-Lipschitz map. Then ν̃ = T#ν satisfies LSI with constant α/L2.
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Proof. Let g : Rn → R be a smooth function, and let g̃ : Rn → R be the function g̃(x) = g(T (x)).
Let X ∼ ν, so T (X) ∼ ν̃. Note that

Eν̃ [g2] = EX∼ν [g(T (X))2] = Eν [g̃2],

Eν̃ [g2 log g2] = EX∼ν [g(T (X))2 log g(T (X))2] = Eν [g̃2 log g̃2].

Furthermore, we have∇g̃(x) = ∇T (x)∇g(T (x)). Since T is L-Lipschitz, ‖∇T (x)‖ ≤ L. Then

‖∇g̃(x)‖ ≤ ‖∇T (x)‖ ‖∇g(T (x))‖ ≤ L‖∇g(T (x))‖.

This implies

Eν̃ [‖∇g‖2] = EX∼ν [‖∇g(T (X))‖2] ≥ Eν [‖∇g̃‖2]

L2
.

Therefore,

Eν̃ [‖∇g‖2]

Eν̃ [g2 log g2]− Eν̃ [g2] logEν̃ [g2]
≥ 1

L2

Eν [‖∇g̃‖2](
Eν [g̃2 log g̃2]− Eν [g̃2] logEν [g̃2]

) ≥ α

2L2

where the last inequality follows from the assumption that ν satisfies LSI with constant α. This shows
that ν̃ satisfies LSI with constant α/L2, as desired.

We also recall the following result on how the LSI constant changes along Gaussian convolution.

Lemma 15. Suppose a probability distribution ν satisfies LSI with constant α > 0. For t > 0, the
probability distribution ν̃t = ν ∗ N (0, 2tI) satisfies LSI with constant

(
1
α + 2t

)−1
.

Proof. We recall the following convolution property of LSI [14]: If ν, ν̃ satisfy LSI with constants
α, α̃ > 0, respectively, then ν ∗ ν̃ satisfies LSI with constant

(
1
α + 1

α̃

)−1
. Since N (0, 2tI) satisfies

LSI with constant 1
2t , the claim above follows.

We now derive a formula for the decrease of Rényi divergence along simultaneous heat flow. We note
the resulting formula (39) is similar to the formula (17) for the decrease of Rényi divergence along
the Langevin dynamics.

Lemma 16. For any probability distributions ρ0, ν0, and for any t ≥ 0, let ρt = ρ0 ∗ N (0, 2tI) and
νt = ν0 ∗ N (0, 2tI). Then for all q > 0,

d

dt
Rq,νt(ρt) = −qGq,νt(ρt)

Fq,νt(ρt)
. (39)

Proof. By definition, ρt and νt evolve following the simultaneous heat flow:

∂ρt
∂t

= ∆ρt,
∂νt
∂t

= ∆νt. (40)

We will use the following identity for any smooth function h : Rn → R,

∆(hq) = ∇ ·
(
qhq−1∇h

)
= q(q − 1)hq−2‖∇h‖2 + qhq−1∆h.

24



We will also use the integration by parts formula (23). Then along the simultaneous heat flow (40),

d

dt
Fq,νt(ρt) =

d

dt

∫
ρqt

νq−1
t

dx

=

∫
q

(
ρt
νt

)q−1
∂ρt
∂t

dx−
∫

(q − 1)

(
ρt
νt

)q
∂νt
∂t

dx

= q

∫ (
ρt
νt

)q−1

∆ρt dx− (q − 1)

∫ (
ρt
νt

)q
∆νt dx

= q

∫
∆

((
ρt
νt

)q−1
)
ρt dx− (q − 1)

∫
∆

((
ρt
νt

)q)
νt dx

= q

∫ (
(q − 1)(q − 2)

(
ρt
νt

)q−3 ∥∥∥∥∇ρtνt
∥∥∥∥2

+ (q − 1)

(
ρt
νt

)q−2

∆
ρt
νt

)
ρt dx

− (q − 1)

∫ (
q(q − 1)

(
ρt
νt

)q−2 ∥∥∥∥∇ρtνt
∥∥∥∥2

+ q

(
ρt
νt

)q−1

∆
ρt
νt

)
νt dx

= −q(q − 1)

∫
νt

(
ρt
νt

)q−2 ∥∥∥∥∇ρtνt
∥∥∥∥2

dx

= −q(q − 1)Gq,νt(ρt). (41)

Note that the identity (41) above is analogous to the identity (35) along the Langevin dynamics.
Therefore, for q 6= 1,

d

dt
Rq,νtρt =

1

q − 1

d
dtFq,νt(ρt)

Fq,νt(ρt)
= −qGq,νt(ρt)

Fq,νt(ρt)
,

as desired.

The case q = 1 follows from taking limit q → 1, or by an analogous direct calculation. We will use
the following identity for h : Rn → R>0,

∆ log h = ∇ ·
(
∇h
h

)
=

∆h

h
− ‖∇ log h‖2.

Then along the simultaneous heat flow (40),

d

dt
Hνt(ρt) =

d

dt

∫
ρt log

ρt
νt
dx

=

∫
∂ρt
∂t

log
ρt
νt
dx+

∫
ρt
νt
ρt

∂

∂t

(
ρt
νt

)
dx

=

∫
∆ρt log

ρt
νt
dx+

∫
νt

(
1

νt

∂ρt
∂t

dx− ρt
ν2
t

∂νt
∂t

)
dx

=

∫
ρt ∆ log

ρt
νt
dx−

∫
ρt
νt

∆νt dx

=

∫
ρt

(
νt
ρt

∆

(
ρt
νt

)
−
∥∥∥∥∇ log

ρt
νt

∥∥∥∥2
)
dx−

∫
ρt
νt

∆νt dx

= −Jνt(ρt),
as desired. Note that this is also analogous to the identity (9) along the Langevin dynamics.

We are now ready to prove Lemma 8. See Figure 3 for an illustration.

Proof of Lemma 8. We will prove that along each step of ULA (11) from xk ∼ ρk to xk+1 ∼ ρk+1,
the Rényi divergence with respect to νε decreases by a constant factor:

Rq,νε(ρk+1) ≤ e−
βε
q Rq,νε(ρk). (42)
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ρk ρ̃k

νϵ ν̃ϵ

ρk+1

(a)

(a)

(b)

(b)

R R
e− βϵ

q R

Figure 3: An illustration for the proof of Lemma 8. We decompose each step of ULA into two
operations: (a) a deterministic gradient step, and (b) an evolution along the heat flow. If the current
Rényi divergence is R ≡ Rq,νε(ρk), then the gradient step (a) does not change the Rényi divergence:
Rq,ν̃ε(ρ̃k) = R, while the heat flow (b) decreases the Rényi divergence: Rq,νε(ρk+1) ≤ e−αεR.

Iterating the bound above yields the desired claim (19).

We decompose each step of ULA (11) into a sequence of two steps:

ρ̃k = (I − ε∇f)#ρk, (43a)
ρk+1 = ρ̃k ∗ N (0, 2εI). (43b)

In the first step (43a), we apply a smooth deterministic map T (x) = x − ε∇f(x). Since ∇f is
L-Lipschitz and ε < 1

L , T is a bijection. Then by Lemma 13,

Rq,νε(ρk) = Rq,ν̃ε(ρ̃k) (44)

where ν̃ε = (I − ε∇f)#νε. Recall by Assumption 1 that νε satisfies LSI with constant β. Since the
map T (x) = x− ε∇f(x) is (1 + εL)-Lipschitz, by Lemma 14 we know that ν̃ε satisfies LSI with
constant β

(1+εL)2 .

In the second step (43b), we convolve with a Gaussian distribution, which is the result of evolving
along the heat flow at time ε. For 0 ≤ t ≤ ε, let ρ̃k,t = ρ̃k ∗ N (0, 2tI) and ν̃ε,t = ν̃ε ∗ N (0, 2tI), so
ρ̃k,ε = ρ̃k+1 and ν̃ε,ε = νε. By Lemma 16,

d

dt
Rq,ν̃ε,t(ρ̃k,t) = −q

Gq,ν̃ε,t(ρ̃k,t)

Fq,ν̃ε,t(ρ̃k,t)
.

Since ν̃ε satisfies LSI with constant β
(1+εL)2 , by Lemma 15 we know that ν̃ε,t satisfies LSI with

constant
( (1+εL)2

β +2t
)−1 ≥

( (1+εL)2

β +2ε
)−1

for 0 ≤ t ≤ ε. In particular, since ε ≤ min{ 1
3L ,

1
9β },

the LSI constant is
( (1+εL)2

β + 2ε
)−1 ≥

(
16
9β + 2

9β

)−1
= β

2 . Then by Lemma 5,

d

dt
Rq,ν̃ε,t(ρ̃k,t) = −q

Gq,ν̃ε,t(ρ̃k,t)

Fq,ν̃ε,t(ρ̃k,t)
≤ −β

q
Rq,ν̃ε,t(ρ̃ε,t).

Integrating over 0 ≤ t ≤ ε gives

Rq,νε(ρk+1) = Rq,ν̃ε,ε(ρ̃k,ε) ≤ e
− βεq Rq,ν̃ε(ρ̃k). (45)

Combining (44) and (45) gives the desired inequality (42).

B.4.3 Proof of Theorem 4

Proof of Theorem 4. This follows directly from Lemma 7 and Lemma 8, and using the definition of
the growth function R2q−1,ν(νε) ≤ g2q−1(ε).
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B.5 Details for §6: Poincaré inequality

B.5.1 A bound on Rényi information

Lemma 17. Suppose ν satisfies Poincaré inequality with constant α > 0. Let q ≥ 2. For all ρ,

Gq,ν(ρ)

Fq,ν(ρ)
≥ 4α

q2

(
1− e−Rq,ν(ρ)

)
.

Proof. We plug in g2 =
(
ρ
ν

)q
to Poincaré inequality (21) and use the monotonicity condition from

Lemma 11 to obtain

q2

4α
Gq,ν(ρ) ≥ Fq,ν(ρ)− F q

2 ,ν
(ρ)2

= e(q−1)Rq,ν(ρ) − e(q−2)R q
2
,ν(ρ)

≥ e(q−1)Rq,ν(ρ) − e(q−2)Rq,ν(ρ)

= Fq,ν(ρ)
(

1− e−Rq,ν(ρ)
)
.

Dividing both sides by Fq,ν(ρ) and rearranging yields the desired inequality.

B.5.2 Proof of Theorem 5

Proof of Theorem 5. By Lemma 6 and Lemma 17,

d

dt
Rq,ν(ρt) = −qGq,ν(ρt)

Fq,ν(ρt)
≤ −4α

q

(
1− e−Rq,ν(ρt)

)
.

We now consider two possibilities:

1. If Rq,ν(ρ0) ≥ 1, then as long as Rq,ν(ρt) ≥ 1, we have 1− e−Rq,ν(ρt) ≥ 1− e−1 > 1
2 , so

d
dtRq,ν(ρt) ≤ − 2α

q , which implies Rq,ν(ρt) ≤ Rq,ν(ρ0)− 2αt
q .

2. If Rq,ν(ρ0) ≤ 1, then Rq,ν(ρt) ≤ 1, and thus 1−e−Rq,ν (ρt)

Rq,ν(ρt)
≥ 1

1+Rq,ν(ρt)
≥ 1

2 . Thus, in

this case d
dtRq,ν(ρt) ≤ − 2α

q Rq,ν(ρt), and integrating gives Rq,ν(ρt) ≤ e−
2αt
q Rq,ν(ρ0), as

desired.

B.5.3 Convergence of Rényi divergence to the biased limit along ULA under Poincaré

We show Rényi divergence to the biased limit converges along ULA under Poincaré inequality. Thus,
starting from Rq,νε(ρ0) ≥ 1, ULA reaches Rq,νε(ρk) ≤ δ in k = Õ

(
q
εβRq,νε(ρ0)

)
iterations.

Lemma 18. Assume Assumption 2. Suppose ν = e−f is L-smooth, and let 0 < ε ≤ min
{

1
3L ,

1
9β

}
.

For q ≥ 2, along ULA (11),

Rq,νε(ρk) ≤

{
Rq,νε(ρ0)− βεk

q if Rq,νε(ρ0) ≥ 1 and as long as Rq,νε(ρk) ≥ 1,

e−
βεk
q Rq,νε(ρ0) if Rq,νε(ρ0) ≤ 1.

(46)

Proof. Following the proof of Lemma 8, we decompose each step of ULA (11) into two steps:

ρ̃k = (I − ε∇f)#ρk, (47a)
ρk+1 = ρ̃k ∗ N (0, 2εI). (47b)

The first step (47a) is a deterministic bijective map, so it preserves Rényi divergence by Lemma 13:
Rq,νε(ρk) = Rq,ν̃ε(ρ̃k), where ν̃ε = (I−ε∇f)#νε. Recall by Assumption 2 that νε satisfies Poincaré
inequality with constant β. Since the map T (x) = x− ε∇f(x) is (1 + εL)-Lipschitz, by Lemma 19
we know that ν̃ε satisfies Poincaré inequality with constant β

(1+εL)2 .
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The second step (47b) is convolution with a Gaussian distribution, which is the result of evolving
along the heat flow at time ε. For 0 ≤ t ≤ ε, let ρ̃k,t = ρ̃k ∗ N (0, 2tI) and ν̃ε,t = ν̃ε ∗ N (0, 2tI), so
ρ̃k,ε = ρ̃k+1 and ν̃ε,ε = νε. Since ν̃ε satisfies Poincaré inequality with constant β

(1+εL)2 , by Lemma 20

we know that ν̃ε,t satisfies Poincaré inequality with constant
( (1+εL)2

β + 2t
)−1 ≥

( (1+εL)2

β + 2ε
)−1

for 0 ≤ t ≤ ε. In particular, since ε ≤ min{ 1
3L ,

1
9β }, the Poincaré constant is

( (1+εL)2

β + 2ε
)−1 ≥(

16
9β + 2

9β

)−1
= β

2 . Then by Lemma 16 and Lemma 17,

d

dt
Rq,ν̃ε,t(ρ̃k,t) = −q

Gq,ν̃ε,t(ρ̃k,t)

Fq,ν̃ε,t(ρ̃k,t)
≤ −2β

q

(
1− e−Rq,ν̃ε,t (ρ̃k,t)

)
.

We now consider two possibilities, as in Theorem 5:

1. If Rq,νε(ρk) = Rq,ν̃ε,0(ρ̃k,0) ≥ 1, then as long as Rq,νε(ρk+1) = Rq,ν̃ε,ε(ρ̃k,ε) ≥ 1,
we have 1 − e−Rq,ν̃ε,t (ρ̃k,t) ≥ 1 − e−1 > 1

2 , so d
dtRq,ν̃ε,t(ρ̃k,t) ≤ −

β
q , which implies

Rq,νε(ρk+1) ≤ Rq,νε(ρk)− βε
q . Iterating this step, we have that Rq,νε(ρk) ≤ Rq,νε(ρ0)−

βεk
q if Rq,νε(ρ0) ≥ 1 and as long as Rq,νε(ρk) ≥ 1.

2. If Rq,νε(ρk) = Rq,ν̃ε,0(ρ̃k,0) ≤ 1, then Rq,ν̃ε,t(ρ̃k,t) ≤ 1, and thus 1−e−Rq,ν̃ε,t (ρ̃k,t)

Rq,ν̃ε,t (ρ̃k,t)
≥

1
1+Rq,ν̃ε,t (ρ̃k,t)

≥ 1
2 . Thus, in this case d

dtRq,ν̃ε,t(ρ̃k,t) ≤ −
β
qRq,ν̃ε,t(ρ̃k,t). Integrating

over 0 ≤ t ≤ ε gives Rq,νε(ρk+1) = Rq,ν̃ε,ε(ρ̃k,ε) ≤ e
− βεq Rq,ν̃ε,0(ρ̃k,0) = e−

βε
q Rq,νε(ρk).

Iterating this step gives Rq,νε(ρk) ≤ e−
βεk
q Rq,νε(ρ0) if Rq,νε(ρ0) ≤ 1, as desired.

In the proof above we use the following results, which are analogous to Lemma 14 and Lemma 15.
Lemma 19. Suppose a probability distribution ν satisfies Poincaré inequality with constant α > 0.
Let T : Rn → Rn be a differentiable L-Lipschitz map. Then ν̃ = T#ν satisfies Poincaré inequality
with constant α/L2.

Proof. Let g : Rn → R be a smooth function, and let g̃ : Rn → R be the function g̃(x) = g(T (x)).
Let X ∼ ν, so T (X) ∼ ν̃. Note that

Varν̃(g) = VarX∼ν(g(T (X))) = Varν(g̃).

Furthermore, we have∇g̃(x) = ∇T (x)∇g(T (x)). Since T is L-Lipschitz, ‖∇T (x)‖ ≤ L. Then

‖∇g̃(x)‖ ≤ ‖∇T (x)‖ ‖∇g(T (x))‖ ≤ L‖∇g(T (x))‖.
This implies

Eν̃ [‖∇g‖2] = EX∼ν [‖∇g(T (X))‖2] ≥ Eν [‖∇g̃‖2]

L2
.

Therefore,
Eν̃ [‖∇g‖2]

Varν̃(g)
≥ 1

L2

Eν [‖∇g̃‖2]

Varν(g̃)
≥ α

L2

where the last inequality follows from the assumption that ν satisfies Poincaré inequality with constant
α. This shows that ν̃ satisfies Poincaré inequality with constant α/L2, as desired.

Lemma 20. Suppose a probability distribution ν satisfies Poincaré inequality with constant α > 0.
For t > 0, the probability distribution ν̃t = ν ∗ N (0, 2tI) satisfies Poincaré inequality with constant(

1
α + 2t

)−1
.

Proof. We recall the following convolution property of Poincaré inequality [19]: If ν, ν̃ satisfy
Poincaré inequality with constants α, α̃ > 0, respectively, then ν ∗ ν̃ satisfies Poincaré inequality
with constant

(
1
α + 1

α̃

)−1
. Since N (0, 2tI) satisfies Poincaré inequality with constant 1

2t , the claim
above follows.
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B.5.4 Proof of Theorem 6

Proof of Theorem 6. By Lemma 18 (which applies since 2q > 2), after k0 iterations we have
R2q,νε(ρk0) ≤ 1. Applying the second case of Lemma 18 starting from k0 gives R2q,νε(ρk) ≤
e−

βε(k−k0)
2q R2q,νε(ρk0) ≤ e−

βε(k−k0)
2q . Then by Lemma 7 and recalling the definition of the growth

function,

Rq,ν(ρk) ≤
(
q − 1

2

q − 1

)
R2q,νε(ρk) +R2q−1,ν(νε) ≤

(
q − 1

2

q − 1

)
e−

βε(k−k0)
2q + g2q−1(ε)

as desired.

B.5.5 Iteration complexity of ULA under Poincaré

By Theorem 6, to achieve Rq,ν(ρk) ≤ δ, it suffices to run ULA with ε = Θ
(
min

{
1
L , g

−1
2q−1

(
δ
2

)})
for k = O

(
1
βε (R2q,νε(ρ0) + log 1

δ )
)

iterations, where g−1
q (δ) = sup{ε > 0: gq(ε) ≤ δ}. Suppose

δ is small so g−1
2q−1( δ2 ) < 1

L . Since νε is 1
2ε -smooth, we can choose ρ0 to be a Gaussian with

covariance 2εI , so R2q,νε(ρ0) = Õ(n) by Lemma 4. Then Theorem 6 yields an iteration complexity

of k = Õ
(

n
βg−1

2q−1(δ/2)

)
. Note the additional dependence on dimension n compared to the LSI case

in Section 5.3.

For example, if gq(ε) = O(ε), then g−1
q (δ) = Ω(δ), so the iteration complexity is k = Õ

(
n
βδ

)
with

ε = Θ(δ). If gq(ε) = O(ε2), then g−1
q (δ) = Ω(

√
δ), so the iteration complexity is k = Õ

(
n
β
√
δ

)
with ε = Θ(

√
δ).
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