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A Proof of Theorem 1 and Corollary 1

To prove the theorem, we begin with two technical lemmas:

Lemma 1 For every € > 0, there exists a neural-network of width 3d with two hidden-layers
(k = 3d,t = 3) such that Nw g(x) = x for x € [0,1]% and Nw g(z) = 0 for x € R? with
d(=,[0,1]%) = minye (o 1y | — y]| > e

Proof Let N > 0 be some constant, and observe the function:

d d
filx) = o(o(x:) NZU —x;) NZO’

Notice that f;(z) = z; for x € [0, 1], and that fl( ) = 0if d(z, [0,1]%) > €, when taking N to be
large enough. Since f(x) = (fi(x),..., fa(x)) is a two hidden layer neural-network of width 3d,
the required follows. n

Lemma 2 For every v > 0, there exists a neural-network of width 2d with two hidden-layers
(k = 2d,t = 3) such that Nw g(z) = 1 for = ¢ [0,1]%, and Nw g(z) =0 for x € [y,1 —~]%

Proof Let N > 0 be some constant, and observe the function:

d d
f(w):l—a(l—NZa( v — ;) NZO’ i—147))
j=1 j=1
Notice that () = 0 for & € [y,1 —~]%, and that f(x) = 0if 2 ¢ [0,1]%, when taking N to be
large enough. Since f a two hidden layer neural-network of width 2d, the required follows. |

The next lemmas will show how a single block of the network operates on the set K ,:

Lemma 3 There exists a neural-network of width max{dr, 3d} with two hidden-layers (k = 3dr,t =
3) such that for any n we have:

1. N\ws(K))C K,

n—1

2. Nwe(Ki\K,) CX\ K,

Proof As an immediate corollary from Lemma 1, there exists f : R? — R4, that can be implemented
by a neural network with two hidden-layers and width 3d, such that f(x) = « for x € K; and
f(x) = 0if d(x, Ko) > §. Define the following function:

=if(<M<i>> o= (M) 1) = Zf

Notice that for every & € A’ there is at most one i € [r] such that f(F;"*(z)) > 0. Indeed, assume
there are i # j € [r] such that f(F, *(x)) > O and f(Fj’l(zc)) > 0. Therefore, d(F; ' (), Ko) < &
and d(Fj_l(x),Ko) < §. Therefore, there exist y,z € K such that HFZ_I(w) - yH < § and
|F; ' (x) — || < §. From this we get:

lz — Fi(y)ll < [|[F " (z) —y| <

|

where we use the fact that I is a contraction. Similarly, we get that ||z — F};(2)|| < §, so this gives
us || Fi(y) — Fj(2)|| < e Since y, z € Ky, this is contradiction to Assumption 1.

We now show the following:
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Lo g(K}) € K,
Let x € K, and denote ¢ € [r] the unique 7 for which € F;(K,,_1) C F;(Kj). From
the properties of f, we get that f(F, *(x)) = F, () and f(ijl(a:)) = 0forj # i, so

K2

g(x) = f(F; Y (z)) = F; }(x) € K,,_;. Since x € K], we have = € B, C K, for some

? 2
ball of radius ~y around . Note that since F; is a contraction, Fi_1 is a linear expansive

mapping, so F; (B, contains a ball of radius  around ;" *(z), so g(x) € K_,.
2. g(KI \ Kn) - X\anl:
Let x € K; \ K, and assume by contradiction that g(x) € K,_;. Leti € [r] be the
unique i such that z € F;(K,) and we have seen that in this case g(x) = F, '(z), so
F.’l(:r:) € K,,_1 and therefore € F;(K,_1) C K, in contradiction to the assumption.

2

Since g can be implemented with a neural network of width 3dr and two hidden-layer, this completes
the proof of the lemma. |

Lemma 4 There exists a neural-network of width 2dr with two hidden-layers (k = 2dr,t = 3) such
that for any n we have:

1. Nw (X \ K1) = {1}
2. Nw,B(K{) = {0}

Proof As a corollary of Lemma 2, there exists f : R4 — R, a two hidden-layer neural-network of
width 2d, such that f(xz) = 1 forx ¢ Ky and f(z) = 0 for x € K. Now, define:

j@ =1-r+Y f(F ()
i=1

We show the following:

L g(x\ Ky) ={1}:
Letx ¢ K; = U;F;(K)), then for every i we have = ¢ F;(Kj) and hence F; '(x) ¢ K,
so f(F; ' (x)) = 1and so §(z) = 1.

2. §(K7) = {0}:
Let x € K7, and let i be the unique index such that z € F;(Kj). So we have f(F, ' (x)) =
0 and for all j # i we have f(Fj_l(:c)) = 1, and therefore g(x) = 0.

And g can be implemented by a width 2dr two hidden-layer network. |

Proof of Theorem 1 Let g, § as defined in the previous lemmas. Denote hy : RY — R9+! the

function:
ho(z) = [g(x), §(z)]
and denote h : R4T1 — R+ the function:
h(x) = [g(x1..a), Tat1 + G(T1..q)]

Denote h™ the composition of h on itself n times, and observe the network defined by H = h" 1 o hy.
Note that H satisfies the following properties:

1. For xz € K} we have H(x)441 = 0: indeed, by iteratively applying the previous lemmas,
we get that ¢ (x) € K] for every j < n — 1, and therefore g(¢’(x)) = 0 for every

j <n—1.Observe that: H(x)g+1 = Z;L:_ll (¢’ (z)) = 0.

2. For x ¢ K, we have H(x)q+1 > 1: there exists K, such that x € K, \ Kj41, so by
applying 3 we get ¢’ (x) ¢ K, so §(¢’(x)) = 1, and therefore H(x)q441 > 1 (since the
summation is over positive values).
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Therefore, composing H () with a linear threshold on H(x)41 gives a network as required. Since
ever block of H is has two hidden-layers of width 5dr, we get that this network has depth 2n + 1 and
width bdr.

This shows that there exists a neural-network of width 5dr and depth 2n+1, s.t sign(Nw g (K)))) = 1
and sign(Mw g (X \ K,,)) = —1. Given the definition of the fractal distribution D,,, this gives the
required. |

Proof of Corollary 1. Notice that for any s that divides n, any IFS of depth n with r transformations
can be written as depth 2 IFS with r* transformations. Indeed, for ¢ = (iy,...,is) € [r]® denote
Fi(x) = F;, o--- o F;_(x), and we have: K, = Useprs Fi(Ko). So we can write a new IFS with
transformations {Fi}ie[r]s, and these will generate K, in % iterations. So, we can rewrite the IFS
with 7* transformations, generating K.|,,/,| in |n/s] iterations. Therefore, using the construction
of Theorem 1, we have a network of depth 2| % | and width 5dr® that maps K|,,/,| to Ko, and
therefore maps K, to K, _|,,/s). Now, a two hidden-layer network of width at most dr® can separate
K} n/s] from &\ K,,_|,,/s|. This constructs a network of depth 2|n/s| + 2 and width 5dr*® that
achieves the required. |

B Proof of Theorem 2

Lemma 5 Let Nw g be a network of depth t and of width k, such that sign(Nw g(K}))) = 1 and
sign(Mw,B(X \ K,,)) = —1. Denote s to be the ratio between the depth of the fractal and the depth
of the network, so s := n/t. Then the width of the network grows exponentially with s, namely:
k> grs/ d,

Proof From Proposition 3 in [8] we get that there are []%,_, Z?:o (’;) < (ek/d)*® linear regions in
./\/'W7 B (where we use Lemma A.5 from [16]). Furthermore, every such linear region is an intersection
of affine half-spaces.

Note that any function such that sign(f (X)) = 1 and sign(f(X \ K,,)) = —1 has at least 7" such
linear regions. Indeed, notice that K,, = U;c[,y» F5(K(o). Assume by contradiction that there are
< r™ linear regions, so there exists ¢ # j € [r]™ such that F;(Kj), F;j(Ky) are in the same linear
region. Fix @ € F;(Ky)",y € F;(K)” and observe the function f along the line from « to y. By
our assumption f(x) > 0, f(y) > 0. This line must cross X \ K, since from Assumption 1 we get
that d(F;(Ky), Fj(Ko)) > 0 for every © # j € [r]". Therefore f must get negative values along the
line between x to y, so it must cross zero at least twice. Every linear region is an intersection of
half-spaces, and hence convex, so f is linear on this path, and we reach a contradiction.

Therefore, we get that (ek/d)*? > 7™, and therefore: k > %rs/d. [ ]

Proof of the Theorem 2. Let Nw, B € Hp,¢. From the above lemma, there exists € K with
sign(NMw, g(x)) = —1 or otherwise there exists * € X \ K,, with sign(Mw, g(x)) = 1. Assume
w.l.o.g that we have € K with sign(NMw, g(x)) = —1. Since Mw, g is continuous, there exists
a ball around «, with ¢ € B C K7, such that sign(Nw, g(B)) = —1. From the properties of the
distribution we get:
Play)~o, [sign(Mw,B(T)) # Y] = Pay)~p, [sign(Nw,(z)) # y and = € B]
= P(w,y)NDn [.’13 S B] >0

C Proof of of Theorem 3

Proof From Theorem 1 and Corollary 1, there exists a network of depth t = 2[j/s] 4+ 2 and
width 5dr® such that sign(Mw, g (K])) = 1 and sign(Mw g (X \ K;)) = —1. Notice that since
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K} C K], we have: P(g).p, [x ¢ K andy = 1] = 0. Therefore for this network we get:
P(e,y)~D, [sign(Nw B(x)) # Y] < P(eyy~p, [v € Kjandy # 1] =1 — P(j). u

D Proof of Theorem 4

Proof Using again [8], we get that the number of linear regions in Nw g is 7*'. This means
that /\/'W}B crosses zero at most r*! times. Now, fix n > j > st, and notice that K is a union

of 77 intervals, so K i = UQLIIZ—, for intervals I;. By our assumption, we get that for every ¢,
P(ey)~Dn [z € I; and y = —1] = p for some p, and from this we get:

]PJ('zay)NDn [x € Il and Y= 7]‘} = rij]P)(x,y)N'Dn [1’ € Kj and Yy = 71]
We get that there are at most 7*¢ intervals of K 4 in which J\/’W, B crosses zero. Denote J C [rj ] the
subset of intervals on which sign(Mw g) is constant, and for every i € J we denote g; such that
sign(Nw, B (1;)) = {9:}. Notice that:
Play)~p, [ € Kj and y = 1] =
Piz.y)~p, [ € Kjand y = —1]

So the optimal choice for every g; is 1. Then we have:
P yy~p, [sign(Nw B(7)) # yl = P y)~p, [sign(Nw B(z)) # —1 and x ¢ K]
+ IEJ>(w,y)~Dn [Sign(NW,B(I)) Zyandz € Kj]

= Z Pz,y)~p, [Sign(Nw,B(z)) # y and x € 1]

i€[ri]
2 ZP(I79)~DR [9: # y and x € I}]
i€J
> Ployyop, [y = —1and x € Ij]
i€J

= |J|r_jIP’(m_’y)NDn [z € K andy = —1]
> (1—r"7) (1= P(j))

E Proof of Theorem 5

Observe that for every n’, we can write C,,/ as union of on’ intervals, so C,,» = U;I;. We can observe
the distribution limited to each of these intervals, and get the following:

Lemma 6 Let D,, be some cantor distribution (as defined in the paper). Then:
1
‘E(z,y)NDn Mx € IjH <92 (P(n’) _ 2)

1
‘E(x,y)NDn {xy‘x € Ij” <2 (P(n') — 2>

Proof Let I; be some interval of C),/, and let c; be the central point of I;. Notice that by definition
of the distribution we have:

—-n'—1

Play)~p, y=1landx € I;] =2

’

Ploy)~p, [y =—landz € I;) =271 (1= p;) =27" (1 - P(n'))

i=1

13



s35  So we get that P(, ,yp, [z € I;] =27 (3 — P(n’)), and therefore:

B, [v]7 € Ii]| = [Paw~r, [y = 1|z € ] = Payyn, [y = =1]o € 1]

= ‘(P(n’)

.
<9 (P(n’) _ ;)

536 Notice that from the structure of the set C,,, the average of all the points in I; N C,, is exactly the
537 central point c; (this is due to the symmetry of the cantor set around its central point). Similarly, we
s3s  get that each level of the negative distribution, E; := C;_1 \ C}, its average is also ¢;. So we get:

539 Therefore, we get that:
Bz y)~p, {W’ﬂﬁ € Ij:| = Py, [y = 1’90 € I]}

Yy = —1‘:3 € I]}

540 So we have:

541 |
542

543 Using this result, we get the following lemma:
544 Lemma7 Let g : R — RF, f: RF — R two functions, and let W € R¥** ¢ € R*, such that for

545 every j, g is affine on I; and f is affine on W g(I;)+c C R*. For every j, denote u;,vj,a;,b; € R*
sa6  such that for every x € I;:

g(z) =zuj +a;, f(Wyg(x)+c)= v;—(Wg(x) +c)+b;

sa7 Assume that ||u;l|__ , ||v;ll o, lajll o, 1Bl < 1. Denote h : R — R s.t h(z) = f(Wg(x) + c).
sa8  Then the following holds:
, 1

e}

0

0
H]E<r7y)~op [—yach(:v)‘x € Cn,]

sa9  Where for matrix A we denote ||A||, .. = max; j|a; ;|
sso  Proof For every x € I; it holds that:
9 9 T T T
Wh(x) = 5w (v (W (ujz + a;) + ¢) + b;| = u;v) z + a;v,
0 0

—h(z) = e [v;—(W(uJ:E +aj)+c)+ b;] =v,

14
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Using Lemma 6, we get:

0
HE(x,yMDF [—yawh(x)‘x € Ij]

max

< ’E(z,y)wF {—?ﬂi’af < Ij” o

= HE(w,y)NDF {—y(ujvaa: + Clj'UjT)’l‘ (S Ijj|

max

T

5 e

+ |Blamyome ]2 € L]| - 250 |

<4 <P(n') - ;)

0
[ [-ogetiofs ]| = [wsos [-mfees]
(oo}

oo

1
= [Ea~rr [-3|z € L]| - Ilosll. <2 (pw) _ 2)

Finally, from this we get:

IN

> Plaelj]

max J

0
H]E(z-,y)"/DF {—yavvh(x)‘x c Cn/}

0
HEm,y)wF [—yach(w)’x € C’n/}

<> Plxel]

<9 (P(n') _ ;)

‘ oo

0
‘]E(ryy%DF {—yaw,h(x)‘x € Ij:|

0
‘E@c,y)wp [—yach(w)’x € Ij:|

max

’ oo

Now, we need to show that with high probability over the initialization of the network, every layer is

affine on I;-s.

Lemma 8 Fix § € (0,1), and let s < k. Let g : R — R® such that for every j, g is affine and
non-expansive on I; (w.rt to ||| ). Let W € R¥** a random matrix such that every entry is
initialized uniformly from [—2—18, 2—18] and let b > 2k> (%)n 571, some fixed bias. Denote h(x) :=
V(Wg(x) 4 b), for some 1) that is affine on every interval that is bounded away from zero. Then
with probability at least 1 — 0, for every j, h(z) is affine and non-expansive on I ;.

Proof Denote w; € R” the i-th row of W. Fix some Jj, and denote c; the central point of I;. We

show that:
)
P-4,

s72s

o [l g(es) + bl <37

< —
= ]{;in

If lg(c;)|l, < bthen |w] g(c;)| < |lwill, [lg(c;)|,, < % and therefore |w, g(c;)+b| > & > 37"
So we can assume |[|g(c;)||,, > b, and let £ € [k] be some index such that g(c;)¢ > b. Now, fix
some values for w; 1, ..., W; ¢—1,W; ¢41,- - ., W; k, and observe the distribution of 'wiTg(cj) +b (with

respect to the randomness of w; ¢). Since w; ¢ is uniformly distributed in [

15
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is a uniform distribution over some interval J with |.J| > g From this we get:
P smti(— 2 |[wi g(c;) + 0] < 37"} =P () [iﬂ €[-37",37"]
=JNn[=37",37"]I/1J]

< |[=37", 37 /1]
2537 5
= < - -
b~ k2n

Since there are 2" intervals I ; and k rows in W, using the union bound we get that with probability
at least 1 — 4, we have for all j € [2] that |Wg(c;) + bl > 37", Since we have |I;| = 37",
and since g is non-expansive, this means that the set Wg(I ) + b does not cross zero at any of its
coordinates. Indeed, assume there exists ¢ € [k] such that w; g(I ) + b crosses zero, and assume
w.lo.g that w,” g(I;) + b > 0. Then there exists « € I; with w, g(z) + b < 0 and therefore:

_ 1
37 < w/ g(x) —w] g(c))| < willy llg(x) — glej)ll < |z —¢j] < 33"
and we reach contradiction.

Since 1 is affine on intervals that are bounded away from zero, we get that h(z) = (W g(z) +b) is
affine on all I;.

To show that h is non- expansive on I;,let x,y € I;, and from the fact that g is non-expansive we
have ||g(z) — g(y)|| . < |z —yl. Slnce we showed that 1 is affine on Wg(I;) + b, we get:

[h(2) = h(y)| = [ (Wg(2) +b) = p(Wyly) + )| = [ (W (g(2) — g(9))| < [W(g(2) = g(y))]

Therefore, for every i we get:

|h(@)i = h(y)i| = [w] (9(x) = g < [lwilly l9(2); — 9wl < |z —y]

which completes the proof. |

Lemma9 Let g : R — R® such that ||g(z)||, < 1 forevery x € [0 1]. Let W € ka a random
matrix such that every entry is initialized uniformly from |— 21 )55 L] andlet0 < b < 2 some bias.

Denote h(z) := o(Wg(xz) +b). Then ||h(x)||,, < 1 foreveryx € [0,1].
Proof As before, we denote w; the i-th row of W, then for every = € [0, 1] we get:
1A < max w; g(x) +b| < max [[wil, [|9(2)[| o +b <1
[ |

Iteratively applying this lemma gives a bound on the norm of any hidden representation in the
network:

Lemma 10 Assume we initialize a neural-network /\/’W} B as described in Theorem 5, and denote
Nwg =g"o-0gM. Denote G¥) = g(t) o...0 g, the output of the layer t'. Then for every

layer t' and for every x € [0, 1] we get that: ‘G(t/) (m)H <1

Proof First, g (z) = o(wMz + b)), where w™ ~ U([—3,41F) and ) = [1,... 1], so for
every x € [0, 1] we have:

@], < Jw]] ol + 5 <1
Now, from Lemma 9, ifHG(t)( )H < 1forz € [0,1], then HG<t’+1)( )H < 1foraz € [0,1].
By induction we get that HG(t (x H for z € [0,1] for every t' < ¢t _010 Finally, we have
w® ~ U([— 5, ]) and b)) = 1 and this gives us for every z € [0, 1]:

NMw.s(2)] < [w®GED (2) + 50| < meul HG(H)@”)H Fu <1

o0
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We also show that the gradients are bounded on all the examples in the distribution:

Lemma 11 Assume we initialize a neural-network Nw. g as described in Theorem 5. Then for every
layer t', and every example x € [0, 1] we have:

<1

max

Nw,s()

HW

NWB() <1

Jae

o0

Proof Recall that we denote for every = € [0, 1] the output of the layer ¢’ to be 2(*) = G(*'). Denote
D) = diag(o’ (W #)2(*"))). We calculate the gradient of the weights at layer ¢’:

a ’ ’ ’ ’
8W(t' Fora/Ww.s (1) = Wg(t) 9 (e(W) =1 4 ()
= (w)TDE-DW =1 ... pE+Hy E'+1) pt) (¢ =1)
Denote |- || the operator norm induced by /.., and we get (using the properties of the weights

1r11t1allzat10n)

H PE-D =1 . pE D)+ D(t»xw—nH < H D(t—nHOP HW“_”HOP
o0 o0

. HD(t’-ﬁ-l)

<1

I

e | ol )
e}

oo

And therefore: H FTACa] e Nw,B()

< 1 Finally, we calculate the gradient of the bias at layer ¢':
max
0
(OIS
)7
= (wTpE-DW -1 .. pE+Hpy '+ pt)

8 ’ ’ /_ !
WNW’B( ) g(t )(O’(W(t )x(t 1) + b(t )))

And since ||w(t) HOO < 1 we get similarly to above that H ab<t’>NW B(z )H <1 |

oo

Proof of Theorem 5. Denote each layer of the network by g*), so we have: My g(z) = g o--- o
g™ (). We show that two things hold on initialization:

1. |Mw, g(z)| < 1forz € [0, 1]: immediately from Lemma 10.
2. With probability at least 1 — 4, for every j, Nw g is affine on I;:

Denote § = ¢, and notice that by the choice of n/, we get that 2k ()" o< l=0
Therefore, since ¢ is affine on all intervals away from zero, we can apply Lemma 8 on
all the hidden layers of the network (choosing s = 1,9 = id for the first layer and

s=k,g=g") o g for the rest), and use union bound to get the required.

Now, to prove the theorem, observe that since D,, is supported on [0, 1] x {£1}, we get that upon
initialization with probability 1 for (z,y) ~ D,, we have: max{1 — yNw g(z),0} = 1 — yNw B(z).
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Since Nw, g () is affine on every I; w.p 1 — 4, using Lemma 7 we get that in such case:

0

N""B)‘ oW

E(s.yyp, [max{1 - yAiws(z )OH’

max H

H ,y)~Dn[ Z/awNw B(z )}

e

max

max

Nw.s(@ )‘x e cn,]

< P(Ivy)NDn [LU € Cn’] : HE(Z,y)NDn [ yaw

max

+ P($79)NDn, [:C ¢ Cn/] ’ HE(:c,y)NDn |: yaWNW B( )’ ¢ Cn/:|

<~ 1)+ (P 1) = (o) - 1)

and similarly we get || ;5 L(Mw,B)|| . <3 (P(n') — 3).

To show that P, ,)p, [sign(Mw,s(2)) # y] > (2 — P(n)) (1 — P(n’)), observe that the sign
function is affine on intervals bounded away from zero. We can use Lemma 8 on the final layer, which
shows that sign(MNw, g) is affine on the intervals I, so for every I; we get either sign(Nw, g (I;)) =
{y;} for some y; € {£1}. Now, using Lemma 7 we get that:

’ max

: 1 1
Pzy)~p, |sign(Nw, B(z)) # y‘x € I]} = E@,y)~D, {2 - §yyj‘x € Ij:|

1 1.
=5~ §ij(r,y)~Dn Mw € Ij]
>1-P(n')

And from this we get:
Pz~ [Sign(NMw,B(2)) # y] = P(oy)~p, [T € Crr] Py yyup, [s1gn(/\fw B(x)) # y‘x e C, }

z(g—mwﬂu—me

F Proof of Corollary 2 and Corollary 3

Proof of Corollary 2. Denote a = 2log™*(2),b = 2log™*(2)log(%) + 1, and from Lemma
A.2 in [16], we get that if ¢ > 4alog(2a) + 2b then ¢ > alog(t) + b. Choosing n = % gives
n > log_l( )log(‘”k ) + 1, so applying Theorem 5 shows that D% satisfies 3. Theorem 1

immediately gives 1. Note that D% can be realized only by functions with at least 2”1 + 1 linear
regions. Shallow networks on R of width & have at most k + 1 linear regions, so this gives 2. |

Proof of Corollary 3. Using Theorem 3 and the strong depth separation property we get that
for every ' we have: 1 — P (t/T*l) > Lp(Hiow) > 5 — ¢"~t". Choosing t' = 2 and taking
n' = T % we get P(n') < % + €*/2. By the choice of n we can apply Theorem 5 and get the
required. |
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sss G Experimental Results

The following tables summarize the results of all the experiments that are detailed in Section 5.
Table 1: Performance of different network architectures on various fractal distributions of depth 5,

with different fractal structures.

DEPTH / WIDTH 10 20 50 100 200 400
SIERPINSKY TRIANGLE

1 0.78 0.82 0.88 0.87 0.89 0.90
2 0.86 091 093 094 095 0.95
3 0.89 092 096 096 097 0.97
4 0.87 094 097 097 097 0.98
5 0.89 094 096 097 097 0.98
2D CANTOR SET
1 0.61 0.69 0.72 0.73 0.72 0.74
2 0.72 0.81 0.82 0.86 0.86 0.87
3 0.78 0.84 0.88 0.92 093 0.93
4 0.82 086 091 095 097 0.97
5 0.81 0.87 095 097 0.99 0.98
PENTAFLAKE
1 0.66 0.65 0.67 0.70 0.76 0.76
2 0.71 0.73 0.79 0.81 0.82 0.83
3 0.73 0.78 0.83 0.84 0.85 0.86
4 0.76 0.79 0.85 0.87 0.88 0.88
5 0.76 0.81 0.86 0.88 0.87 0.90
VICSEK
1 0.59 0.60 0.63 0.66 0.67 0.68
2 0.64 0.70 0.72 0.75 0.76 0.75
3 0.69 0.72 0.77 0.79 0.81 0.82
4 0.71 0.74 0.79 0.82 0.83 0.84
644 5 0.70 0.77 0.82 0.84 0.86 0.86
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Table 2: Performance of depth 5 network on the different fractal structure (of depth 5), with varying
approximation curves.

CURVE #/ WIDTH 10 20 50 100 200 400
SIERPINSKY TRIANGLE

1 0.89 094 096 097 0.97 0.98
2 0.89 094 096 097 097 0.97
3 0.78 094 096 097 0.97 0.97
4 0.79 092 096 096 0.97 0.97
5 0.76 0.89 096 097 0.97 0.97
6 0.76 090 097 097 0.98 0.98
2D CANTOR SET

1 0.81 0.87 095 097 0.99 0.98
2 0.70 0.85 092 0.94 0.94 0.97
3 0.62 0.73 0.75 0.80 0.91 0.89
4 0.53 0.65 0.77 0.77 0.84 0.93
5 0.57 0.61 0.65 0.69 0.76 0.73
6 0.53 0.64 066 0.78 0.71 0.61
PENTAFLAKE

1 0.76 0.81 0.86 0.88 0.87 0.90
2 0.59 0.68 0.77 0.78 0.80 0.84
3 0.54 057 0.64 0.63 0.72 0.64
4 0.53 0.55 0.58 0.61 0.65 0.68
5 0.52 0.52 0.52 0.55 0.60 0.57
6 0.52 0.52 0.52 0.53 0.56 0.54
VICSEK

1 0.70 0.77 0.82 0.84 0.86 0.86
2 0.59 0.61 0.67 0.69 0.71 0.71
3 0.56 0.55 0.58 0.64 0.64 0.65
4 0.51 0.52 0.54 0.56 0.58 0.59
5 0.52 0.52 0.52 0.55 0.53 0.57
6 0.53 0.51 0.51 0.55 0.58 0.59
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