
A Proof of Theorem 1 and Corollary 1400

To prove the theorem, we begin with two technical lemmas:401

Lemma 1 For every ✏ > 0, there exists a neural-network of width 3d with two hidden-layers402

(k = 3d, t = 3) such that NW,B(x) = x for x 2 [0, 1]d, and NW,B(x) = 0 for x 2 Rd
with403

d(x, [0, 1]d) = min

y2[0,1]d kx� yk > ✏.404

Proof Let N > 0 be some constant, and observe the function:405

fi(x) = �(�(xi)�N

dX

j=1

�(�xj)�N

dX

j=1

�(xj � 1))

Notice that fi(x) = xi for x 2 [0, 1]d, and that fi(x) = 0 if d(x, [0, 1]d) > ✏, when taking N to be406

large enough. Since f(x) = (f
1

(x), . . . , fd(x)) is a two hidden layer neural-network of width 3d,407

the required follows.408

409

Lemma 2 For every � > 0, there exists a neural-network of width 2d with two hidden-layers410

(k = 2d, t = 3) such that NW,B(x) = 1 for x /2 [0, 1]d, and NW,B(x) = 0 for x 2 [�, 1� �]d.411

Proof Let N > 0 be some constant, and observe the function:412

˜f(x) = 1� �(1�N

dX

j=1

�(� � xj)�N

dX

j=1

�(xj � 1 + �))

Notice that ˜f(x) = 0 for x 2 [�, 1 � �]d, and that ˜f(x) = 0 if x /2 [0, 1]d, when taking N to be413

large enough. Since ˜f a two hidden layer neural-network of width 2d, the required follows.414

415

The next lemmas will show how a single block of the network operates on the set Kn:416

Lemma 3 There exists a neural-network of width max{dr, 3d} with two hidden-layers (k = 3dr, t =417

3) such that for any n we have:418

1. NW,B(K�
n) ✓ K�

n�1

419

2. NW,B(K
1

\Kn) ✓ X \Kn�1

420

Proof As an immediate corollary from Lemma 1, there exists f : Rd ! Rd, that can be implemented421

by a neural network with two hidden-layers and width 3d, such that f(x) = x for x 2 K
0

and422

f(x) = 0 if d(x,K
0

) > ✏
2

. Define the following function:423

g(x) =

rX

i=1

f
⇣
(M

(i)
)

�1

x� (M

(i)
)

�1

v

(i)
⌘
=

rX

i=1

f
�
F�1

i (x)

�

Notice that for every x 2 X there is at most one i 2 [r] such that f(F�1

i (x)) > 0. Indeed, assume424

there are i 6= j 2 [r] such that f(F�1

i (x)) > 0 and f(F�1

j (x)) > 0. Therefore, d(F�1

i (x),K
0

)  ✏
2

425

and d(F�1

j (x),K
0

)  ✏
2

. Therefore, there exist y, z 2 K
0

such that
��F�1

i (x)� y

��  ✏
2

and426 ��F�1

j (x)� z

��  ✏
2

. From this we get:427

kx� Fi(y)k  ��F�1

i (x)� y

��  ✏

2

where we use the fact that Fi is a contraction. Similarly, we get that kx� Fj(z)k  ✏
2

, so this gives428

us kFi(y)� Fj(z)k  ✏. Since y, z 2 K
0

, this is contradiction to Assumption 1.429

We now show the following:430
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1. g(K�
n) ✓ K�

n�1

:431

Let x 2 K�
n , and denote i 2 [r] the unique i for which x 2 Fi(Kn�1

) ✓ Fi(K0

). From432

the properties of f , we get that f(F�1

i (x)) = F�1

i (x) and f(F�1

j (x)) = 0 for j 6= i, so433

g(x) = f(F�1

i (x)) = F�1

i (x) 2 Kn�1

. Since x 2 K�
n , we have x 2 B� ⇢ Kn for some434

ball of radius � around x. Note that since Fi is a contraction, F�1

i is a linear expansive435

mapping, so F�1

i (B�) contains a ball of radius � around F�1

i (x), so g(x) 2 K�
n�1

.436

2. g(K
1

\Kn) ✓ X \Kn�1

:437

Let x 2 K
1

\ Kn and assume by contradiction that g(x) 2 Kn�1

. Let i 2 [r] be the438

unique i such that x 2 Fi(K0

) and we have seen that in this case g(x) = F�1

i (x), so439

F�1

i (x) 2 Kn�1

and therefore x 2 Fi(Kn�1

) ✓ Kn in contradiction to the assumption.440

Since g can be implemented with a neural network of width 3dr and two hidden-layer, this completes441

the proof of the lemma.442

443

Lemma 4 There exists a neural-network of width 2dr with two hidden-layers (k = 2dr, t = 3) such444

that for any n we have:445

1. NW,B(X \K
1

) = {1}446

2. NW,B(K�
1

) = {0}447

Proof As a corollary of Lemma 2, there exists ˜f : Rd ! R, a two hidden-layer neural-network of448

width 2d, such that ˜f(x) = 1 for x /2 K
0

and ˜f(x) = 0 for x 2 K�
0

. Now, define:449

g̃(x) = 1� r +

rX

i=1

˜f
�
F�1

i (x)

�

We show the following:450

1. g̃(X \K
1

) = {1}:451

Let x /2 K
1

= [iFi(K0

), then for every i we have x /2 Fi(K0

) and hence F�1

i (x) /2 K
0

452

so ˜f(F�1

i (x)) = 1 and so g̃(x) = 1.453

2. g̃(K�
1

) = {0}:454

Let x 2 K�
1

, and let i be the unique index such that x 2 Fi(K0

). So we have ˜f(F�1

i (x)) =455

0 and for all j 6= i we have ˜f(F�1

j (x)) = 1, and therefore g̃(x) = 0.456

And g̃ can be implemented by a width 2dr two hidden-layer network.457

458

Proof of Theorem 1 Let g, g̃ as defined in the previous lemmas. Denote h
0

: Rd ! Rd+1 the459

function:460

h
0

(x) = [g(x), g̃(x)]

and denote h : Rd+1 ! Rd+1 the function:461

h(x) = [g(x
1...d), xd+1

+ g̃(x
1...d)]

Denote hn the composition of h on itself n times, and observe the network defined by H = hn�1 �h
0

.462

Note that H satisfies the following properties:463

1. For x 2 K�
n we have H(x)d+1

= 0: indeed, by iteratively applying the previous lemmas,464

we get that gj(x) 2 K�
1

for every j  n � 1, and therefore g̃(gj(x)) = 0 for every465

j  n� 1. Observe that: H(x)d+1

=

Pn�1

j=1

g̃(gj(x)) = 0.466

2. For x /2 Kn we have H(x)d+1

� 1: there exists Kj such that x 2 Kj \ Kj+1

, so by467

applying 3 we get gj(x) /2 K
1

, so g̃(gj(x)) = 1, and therefore H(x)d+1

� 1 (since the468

summation is over positive values).469
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Therefore, composing H(x) with a linear threshold on H(x)d+1

gives a network as required. Since470

ever block of H is has two hidden-layers of width 5dr, we get that this network has depth 2n+1 and471

width 5dr.472

This shows that there exists a neural-network of width 5dr and depth 2n+1, s.t sign(NW,B(K�
n)) = 1473

and sign(NW,B(X \Kn)) = �1. Given the definition of the fractal distribution Dn, this gives the474

required.475

476

Proof of Corollary 1. Notice that for any s that divides n, any IFS of depth n with r transformations477

can be written as depth n
s IFS with rs transformations. Indeed, for i = (i

1

, . . . , is) 2 [r]s denote478

F
i

(x) = Fi1 � · · · � Fis(x), and we have: Ks = [
i2[r]sFi

(K
0

). So we can write a new IFS with479

transformations {F
i

}
i2[r]s , and these will generate Kn in n

s iterations. So, we can rewrite the IFS480

with rs transformations, generating Ks·bn/sc in bn/sc iterations. Therefore, using the construction481

of Theorem 1, we have a network of depth 2bn
s c and width 5drs that maps Kbn/sc to K

0

, and482

therefore maps Kn to Kn�bn/sc. Now, a two hidden-layer network of width at most drs can separate483

K�
n�bn/sc from X \Kn�bn/sc. This constructs a network of depth 2bn/sc+ 2 and width 5drs that484

achieves the required.485

486

B Proof of Theorem 2487

Lemma 5 Let NW,B be a network of depth t and of width k, such that sign(NW,B(K�
n)) = 1 and488

sign(NW,B(X \Kn)) = �1. Denote s to be the ratio between the depth of the fractal and the depth489

of the network, so s := n/t. Then the width of the network grows exponentially with s, namely:490

k � d
e r

s/d
.491

Proof From Proposition 3 in [8] we get that there are
Qt

t0=1

Pd
j=0

�
k
j

�  (ek/d)td linear regions in492

NW,B (where we use Lemma A.5 from [16]). Furthermore, every such linear region is an intersection493

of affine half-spaces.494

Note that any function such that sign(f(K�
n)) = 1 and sign(f(X \Kn)) = �1 has at least rn such495

linear regions. Indeed, notice that Kn = [
i2[r]nFi

(K
0

). Assume by contradiction that there are496

< rn linear regions, so there exists i 6= j 2 [r]n such that F
i

(K
0

), F
j

(K
0

) are in the same linear497

region. Fix x 2 F
i

(K
0

)

� ,y 2 F
j

(K
0

)

� and observe the function f along the line from x to y. By498

our assumption f(x) � 0, f(y) � 0. This line must cross X \Kn, since from Assumption 1 we get499

that d(F
i

(K
0

), F
j

(K
0

)) > 0 for every i 6= j 2 [r]n. Therefore f must get negative values along the500

line between x to y, so it must cross zero at least twice. Every linear region is an intersection of501

half-spaces, and hence convex, so f is linear on this path, and we reach a contradiction.502

Therefore, we get that (ek/d)td � rn, and therefore: k � d
e r

s/d.503

504

Proof of the Theorem 2. Let NW,B 2 Hk,t. From the above lemma, there exists x 2 K�
n with505

sign(NW,B(x)) = �1 or otherwise there exists x 2 X \Kn with sign(NW,B(x)) = 1. Assume506

w.l.o.g that we have x 2 K�
n with sign(NW,B(x)) = �1. Since NW,B is continuous, there exists507

a ball around x, with x 2 B ✓ K�
n , such that sign(NW,B(B)) = �1. From the properties of the508

distribution we get:509

P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y] � P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y and x 2 B]

= P
(x,y)⇠Dn

[x 2 B] > 0

510

511

C Proof of of Theorem 3512

Proof From Theorem 1 and Corollary 1, there exists a network of depth t = 2bj/sc + 2 and513

width 5drs such that sign(NW,B(K�
j )) = 1 and sign(NW,B(X \ Kj)) = �1. Notice that since514
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K�
n ✓ K�

j , we have: P
(x,y)⇠Dn

⇥
x /2 K�

j and y = 1

⇤
= 0. Therefore for this network we get:515

P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y]  P
(x,y)⇠Dn

[x 2 Kj and y 6= 1] = 1� P (j).516

517

D Proof of Theorem 4518

Proof Using again [8], we get that the number of linear regions in NW,B is rst. This means519

that NW,B crosses zero at most rst times. Now, fix n > j > st, and notice that Kj is a union520

of rj intervals, so Kj = [rj

i=1

Ii, for intervals Ii. By our assumption, we get that for every i,521

P
(x,y)⇠Dn

[x 2 Ii and y = �1] = p for some p, and from this we get:522

P
(x,y)⇠Dn

[x 2 Ii and y = �1] = r�jP
(x,y)⇠Dn

[x 2 Kj and y = �1]

We get that there are at most rst intervals of Kj in which NW,B crosses zero. Denote J ✓ [rj ] the523

subset of intervals on which sign(NW,B) is constant, and for every i 2 J we denote ŷi such that524

sign(NW,B(Ii)) = {ŷi}. Notice that:525

P
(x,y)⇠Dn

[x 2 Kj and y = 1] =

1

2

P
(x,y)⇠Dn

[x 2 Kj and y = �1] = 1� P (j)

So the optimal choice for every ŷi is 1. Then we have:526

P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y] = P
(x,y)⇠Dn

[sign(NW,B(x)) 6= �1 and x /2 Kj ]

+ P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y and x 2 Kj ]

�
X

i2[rj ]

P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y and x 2 Ii]

�
X

i2J

P
(x,y)⇠Dn

[ŷi 6= y and x 2 Ii]

�
X

i2J

P
(x,y)⇠Dn

[y = �1 and x 2 Ii]

= |J |r�jP
(x,y)⇠Dn

[x 2 Kj and y = �1]

� (1� rst�j
)(1� P (j))

527

528

E Proof of Theorem 5529

Observe that for every n0, we can write Cn0 as union of 2n
0

intervals, so Cn0
= [jIj . We can observe530

the distribution limited to each of these intervals, and get the following:531

Lemma 6 Let Dn be some cantor distribution (as defined in the paper). Then:532

���E
(x,y)⇠Dn

h
y
���x 2 Ij

i���  2

✓
P (n0

)� 1

2

◆

���E
(x,y)⇠Dn

h
xy

���x 2 Ij

i���  2

✓
P (n0

)� 1

2

◆

Proof Let Ij be some interval of Cn0 , and let cj be the central point of Ij . Notice that by definition533

of the distribution we have:534

P
(x,y)⇠Dn

[y = 1 and x 2 Ij ] = 2

�n0�1

P
(x,y)⇠Dn

[y = �1 and x 2 Ij ] = 2

�n0�1

(1�
n0X

i=1

pi) = 2

�n0
(1� P (n0

))
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So we get that P
(x,y)⇠Dn

[x 2 Ij ] = 2

�n0
(

3

2

� P (n0
)), and therefore:535

���E
(x,y)⇠Dn

h
y
���x 2 Ij

i��� =
���P

(x,y)⇠Dn

h
y = 1

���x 2 Ij

i
� P

(x,y)⇠Dn

h
y = �1

���x 2 Ij

i���

=

����(P (n0
)� 1

2

)(

3

2

� P (n0
))

�1

����

 2

✓
P (n0

)� 1

2

◆

Notice that from the structure of the set Cn, the average of all the points in Ij \ Cn is exactly the536

central point cj (this is due to the symmetry of the cantor set around its central point). Similarly, we537

get that each level of the negative distribution, Ei := Ci�1

\ Ci, its average is also cj . So we get:538

E
(x,y)⇠Dn

h
x
���x 2 Ij and y = �1

i
= E

(x,y)⇠Dn

h
x
���x 2 Ij and y = 1

i
= cj

Therefore, we get that:539

E
(x,y)⇠Dn

h
xy

���x 2 Ij

i
= cjP

(x,y)⇠Dn

h
y = 1

���x 2 Ij

i

� cjP
(x,y)⇠Dn

h
y = �1

���x 2 Ij

i

= cj(P (n0
)� 1

2

)(

3

2

� P (n0
))

�1

So we have:540

���E
(x,y)⇠Dn

h
xy

���x 2 Ij

i���  2

✓
P (n0

)� 1

2

◆

541

542

Using this result, we get the following lemma:543

Lemma 7 Let g : R ! Rk, f : Rk ! R two functions, and let W 2 Rk⇥k, c 2 Rk
, such that for544

every j, g is affine on Ij and f is affine on W g(Ij)+c ✓ Rk
. For every j, denote uj ,vj ,aj , bj 2 Rk545

such that for every x 2 Ij:546

g(x) = xuj + aj , f(W g(x) + c) = v

>
j (W g(x) + c) + bj

Assume that kujk1 , kvjk1 , kajk1 , kbjk1  1. Denote h : R ! R s.t h(x) = f(W g(x) + c).547

Then the following holds:548

����E(x,y)⇠DF


�y

@

@W
h(x)

���x 2 Cn0

�����
max

 4

✓
P (n0

)� 1

2

◆

����E(x,y)⇠DF


�y

@

@c
h(x)

���x 2 Cn0

�����
1

 2

✓
P (n0

)� 1

2

◆

Where for matrix A we denote kAk
max

= maxi,j |ai,j |.549

Proof For every x 2 Ij it holds that:550

@

@W
h(x) =

@

@W

⇥
v

>
j (W (ujx+ aj) + c) + bj

⇤
= ujv

>
j x+ ajv

>
j

@

@c
h(x) =

@

@c

⇥
v

>
j (W (ujx+ aj) + c) + bj

⇤
= vj
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Using Lemma 6, we get:551

����E(x,y)⇠DF


�y

@

@W
h(x)

���x 2 Ij

�����
max

=

���E
(x,y)⇠DF

h
�y(ujv

>
j x+ ajv

>
j )

���x 2 Ij

i���
max


���E

(x,y)⇠DF

h
�yx

���x 2 Ij

i��� ·
��
ujv

>
j

��
max

+

���E
(x,y)⇠DF

h
�y

���x 2 Ij

i��� ·
��
ajv

>
j

��
max

 4

✓
P (n0

)� 1

2

◆

552

����E(x,y)⇠DF


�y

@

@c
h(x)

���x 2 Ij

�����
1

=

���E
(x,y)⇠DF

h
�yvj

���x 2 Ij

i���
1

=

���E
(x,y)⇠DF

h
�y

���x 2 Ij

i��� · kvjk1  2

✓
P (n0

)� 1

2

◆

Finally, from this we get:553

����E(x,y)⇠DF


�y

@

@W
h(x)

���x 2 Cn0

�����
max


X

j

P [x 2 Ij ]

����E(x,y)⇠DF


�y

@

@W
h(x)

���x 2 Ij

�����
max

 4

✓
P (n0

)� 1

2

◆

554

����E(x,y)⇠DF


�y

@

@c
h(x)

���x 2 Cn0

�����
1


X

j

P [x 2 Ij ]

����E(x,y)⇠DF


�y

@

@c
h(x)

���x 2 Ij

�����
1

 2

✓
P (n0

)� 1

2

◆

555

556

Now, we need to show that with high probability over the initialization of the network, every layer is557

affine on Ij-s.558

Lemma 8 Fix � 2 (0, 1), and let s  k. Let g : R ! Rs
such that for every j, g is affine and559

non-expansive on Ij (w.r.t to k·k1). Let W 2 Rk⇥s
a random matrix such that every entry is560

initialized uniformly from [� 1

2s ,
1

2s ], and let b > 2k2
�
2

3

�n0

��1

, some fixed bias. Denote h(x) :=561

 (W g(x) + b), for some  that is affine on every interval that is bounded away from zero. Then562

with probability at least 1� �, for every j, h(x) is affine and non-expansive on Ij .563

Proof Denote wi 2 Rk the i-th row of W . Fix some j, and denote cj the central point of Ij . We564

show that:565

P
wi⇠U([� 1

2s ,
1
2s ]

s
)

h
|w>

i g(cj) + b|  3

�n0
i
 �

k2n0

If kg(cj)k1  b then |w>
i g(cj)|  kwik

1

kg(cj)k1  b
2

and therefore |w>
i g(cj)+ b| � b

2

> 3

�n0
.566

So we can assume kg(cj)k1 > b, and let ` 2 [k] be some index such that g(cj)` > b. Now, fix567

some values for wi,1, . . . , wi,`�1

, wi,`+1

, . . . , wi,k, and observe the distribution of w>
i g(cj)+b (with568

respect to the randomness of wi,`). Since wi,` is uniformly distributed in [� 1

2s ,
1

2s ], we get that this569
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is a uniform distribution over some interval J with |J | � b
s . From this we get:570

Pwi,`⇠U([� 1
2s ,

1
2s ])

h
|w>

i g(cj) + b|  3

�n0
i
= Px⇠U(J)

h
x 2 [�3

�n0
, 3�n0

]

i

= |J \ [�3

�n0
, 3�n0

]|/|J |
 |[�3

�n0
, 3�n0

]|/|J |

=

2s3�n0

b
 �

k2n0

Since there are 2

n0
intervals Ij and k rows in W , using the union bound we get that with probability571

at least 1� �, we have for all j 2 [2

n0
] that kW g(cj) + bk1 > 3

�n0
. Since we have |Ij | = 3

�n0
,572

and since g is non-expansive, this means that the set W g(Ij) + b does not cross zero at any of its573

coordinates. Indeed, assume there exists i 2 [k] such that w>
i g(Ij) + b crosses zero, and assume574

w.l.o.g that w>
i g(Ij) + b > 0. Then there exists x 2 Ij with w

>
i g(x) + b  0 and therefore:575

3

�n0
< |w>

i g(x)�w

>
i g(cj)|  kwik

1

kg(x)� g(cj)k1  |x� cj |  1

2

3

�n0

and we reach contradiction.576

Since  is affine on intervals that are bounded away from zero, we get that h(x) =  (W g(x) + b) is577

affine on all Ij .578

To show that h is non-expansive on Ij , let x, y 2 Ij , and from the fact that g is non-expansive we579

have kg(x)� g(y)k1  |x� y|. Since we showed that  is affine on W g(Ij) + b, we get:580

|h(x)� h(y)| = | (W g(x) + b)� (W g(y) + b)| = | (W (g(x)� g(y)))|  |W (g(x)� g(y))|
Therefore, for every i we get:581

|h(x)i � h(y)i| = |w>
i (g(x)� g(y))|  kwik

1

kg(x)j � g(y)jk1  |x� y|
which completes the proof.582

583

Lemma 9 Let g : R ! Rs
such that kg(x)k1  1 for every x 2 [0, 1]. Let W 2 Rk⇥s

a random584

matrix such that every entry is initialized uniformly from [� 1

2s ,
1

2s ], and let 0 < b  1

2

some bias.585

Denote h(x) := �(W g(x) + b). Then kh(x)k1  1 for every x 2 [0, 1].586

Proof As before, we denote wi the i-th row of W , then for every x 2 [0, 1] we get:587

kh(x)k1  max

i
|w>

i g(x) + b|  max

i
kwik

1

kg(x)k1 + b  1

588

589

Iteratively applying this lemma gives a bound on the norm of any hidden representation in the590

network:591

Lemma 10 Assume we initialize a neural-network NW,B as described in Theorem 5, and denote592

NW,B = g(t) � · · · � g(1). Denote G(t0)
= g(t

0
) � · · · � g(1), the output of the layer t0. Then for every593

layer t0 and for every x 2 [0, 1] we get that:

���G(t0)
(x)

���
1

 1.594

Proof First, g(1)(x) = �(w(1)x+ b

(1)

), where w

(1) ⇠ U([� 1

2

, 1

2

]

k
) and b

(1)

= [

1

2

, . . . , 1

2

], so for595

every x 2 [0, 1] we have:596 ���g(1)(x)
���
1


���w(1)

���
1

|x|+ 1

2

 1

Now, from Lemma 9, if
���G(t0)

(x)
���
1

 1 for x 2 [0, 1], then
���G(t0+1)

(x)
���
1

 1 for x 2 [0, 1].597

By induction we get that
���G(t0)

(x)
���
1

for x 2 [0, 1] for every t0  t � 1. Finally, we have598

w

(t) ⇠ U([� 1

2k ,
1

2k ]) and b(t) = 1

2

, and this gives us for every x 2 [0, 1]:599

|NW,B(x)|  |w(t)G(t�1)

(x) + b(t)| 
���w(t)

���
1

���G(t�1)

(x)
���
1

+ b(t)  1
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600

601

We also show that the gradients are bounded on all the examples in the distribution:602

Lemma 11 Assume we initialize a neural-network NW,B as described in Theorem 5. Then for every603

layer t0, and every example x 2 [0, 1] we have:604

����
@

@W (t0)
NW,B(x)

����
max

 1

����
@

@b(t0)
NW,B(x)

����
1

 1

Proof Recall that we denote for every x 2 [0, 1] the output of the layer t0 to be x(t0)
= G(t0). Denote605

D

(t0)
= diag(�0

(W

(t0)x(t0)
)). We calculate the gradient of the weights at layer t0:606

@

@W (t0)
NW,B(x) =

@

@W (t0)
g(t) � · · · � g(t0)(�(W (t0)x(t0�1)

+ b

(t0)
))

= (w

(t)
)

>D(t�1)

W

(t�1) · · ·D(t0+1)

W

(t0+1)D(t0)x(t0�1)

Denote k·kOP
1 the operator norm induced by `1, and we get (using the properties of the weights607

initialization):608

���D(t�1)

W

(t�1) · · ·D(t0+1)

W

(t0+1)D(t0)x(t0�1)

���
1


���D(t�1)

���
OP

1

���W (t�1)

���
OP

1
· · ·

·
���D(t0+1)

���
OP

1

���W (t0+1)

���
OP

1

���D(t0)
���
OP

1

���x(t0�1)

���
1

 1

And therefore:
��� @
@W (t0)NW,B(x)

���
max

 1 Finally, we calculate the gradient of the bias at layer t0:609

@

@b(t0)
NW,B(x) =

@

@b(t0)
g(t) � · · · � g(t0)(�(W (t0)x(t0�1)

+ b

(t0)
))

= (w

(t)
)

>D(t�1)

W

(t�1) · · ·D(t0+1)

W

(t0+1)D(t0)

And since
��
w

(t)
��
1  1 we get similarly to above that

��� @
@b(t0)NW,B(x)

���
1

 1.610

611

Proof of Theorem 5. Denote each layer of the network by g(i), so we have: NW,B(x) = g(t) � · · · �612

g(1)(x). We show that two things hold on initialization:613

1. |NW,B(x)|  1 for x 2 [0, 1]: immediately from Lemma 10.614

2. With probability at least 1� �, for every j, NW,B is affine on Ij :615

Denote ˆ� =

�
t , and notice that by the choice of n0, we get that 2k2

�
2

3

�n0
ˆ��1 < 1

2

= b.616

Therefore, since � is affine on all intervals away from zero, we can apply Lemma 8 on617

all the hidden layers of the network (choosing s = 1, g = id for the first layer and618

s = k, g = g(t
0
) � g(1) for the rest), and use union bound to get the required.619

Now, to prove the theorem, observe that since Dn is supported on [0, 1]⇥ {±1}, we get that upon620

initialization with probability 1 for (x, y) ⇠ Dn we have: max{1�yNW,B(x), 0} = 1�yNW,B(x).621
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Since NW,B(x) is affine on every Ij w.p 1� �, using Lemma 7 we get that in such case:622

����
@

@W
L(NW,B)

����
max

=

����
@

@W
E
(x,y)⇠Dn

[max{1� yNW,B(x), 0}]
����
max

=

����E(x,y)⇠Dn


�y

@

@W
NW,B(x)

�����
max

 P
(x,y)⇠Dn

[x 2 Cn0
] ·

����E(x,y)⇠Dn


�y

@

@W
NW,B(x)

���x 2 Cn0

�����
max

+ P
(x,y)⇠Dn

[x /2 Cn0
] ·

����E(x,y)⇠Dn


�y

@

@W
NW,B(x)

���x /2 Cn0

�����
max

 4

✓
P (n0

)� 1

2

◆
+

✓
P (n0

)� 1

2

◆
= 5

✓
P (n0

)� 1

2

◆

and similarly we get
�� @
@BL(NW,B)

��
1  3

�
P (n0

)� 1

2

�
.623

To show that P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y] � �
3

2

� P (n0
)

�
(1 � P (n0

)), observe that the sign624

function is affine on intervals bounded away from zero. We can use Lemma 8 on the final layer, which625

shows that sign(NW,B) is affine on the intervals Ij , so for every Ij we get either sign(NW,B(Ij)) =626

{ŷj} for some ŷj 2 {±1}. Now, using Lemma 7 we get that:627

P
(x,y)⇠Dn

h
sign(NW,B(x)) 6= y

���x 2 Ij

i
= E

(x,y)⇠Dn


1

2

� 1

2

yŷj

���x 2 Ij

�

=

1

2

� 1

2

ŷjE
(x,y)⇠Dn

h
y
���x 2 Ij

i

� 1� P (n0
)

And from this we get:628

P
(x,y)⇠Dn

[sign(NW,B(x)) 6= y] = P
(x,y)⇠Dn

[x 2 Cn0
]P

(x,y)⇠Dn

h
sign(NW,B(x)) 6= y

���x 2 Cn0

i

+ P
(x,y)⇠Dn

[x /2 Cn0
]P

(x,y)⇠Dn

h
sign(NW,B(x)) 6= y

���x /2 Cn0

i

�
✓
3

2

� P (n0
)

◆
(1� P (n0

))

629

630

F Proof of Corollary 2 and Corollary 3631

Proof of Corollary 2. Denote a = 2 log

�1

(

3

2

), b = 2 log

�1

(

3

2

) log(

4k2

� ) + 1, and from Lemma632

A.2 in [16], we get that if t > 4a log(2a) + 2b then t > a log(t) + b. Choosing n =

t
2

gives633

n > log

�1

(

3

2

) log(

4tk2

� ) + 1, so applying Theorem 5 shows that Dn
F satisfies 3. Theorem 1634

immediately gives 1. Note that Dn
F can be realized only by functions with at least 2n�1

+ 1 linear635

regions. Shallow networks on R of width k have at most k + 1 linear regions, so this gives 2.636

637

Proof of Corollary 3. Using Theorem 3 and the strong depth separation property we get that638

for every t0 we have: 1 � P
⇣

t0�1

2

⌘
� LD(H10,t0) � 1

2

� ✏n�t0 . Choosing t0 = n
2

and taking639

n0
=

n
4

� 1

2

we get P (n0
)  1

2

+ ✏n/2. By the choice of n we can apply Theorem 5 and get the640

required.641

642
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G Experimental Results643

The following tables summarize the results of all the experiments that are detailed in Section 5.
Table 1: Performance of different network architectures on various fractal distributions of depth 5,
with different fractal structures.

DEPTH / WIDTH 10 20 50 100 200 400
SIERPINSKY TRIANGLE
1 0.78 0.82 0.88 0.87 0.89 0.90
2 0.86 0.91 0.93 0.94 0.95 0.95
3 0.89 0.92 0.96 0.96 0.97 0.97
4 0.87 0.94 0.97 0.97 0.97 0.98
5 0.89 0.94 0.96 0.97 0.97 0.98
2D CANTOR SET
1 0.61 0.69 0.72 0.73 0.72 0.74
2 0.72 0.81 0.82 0.86 0.86 0.87
3 0.78 0.84 0.88 0.92 0.93 0.93
4 0.82 0.86 0.91 0.95 0.97 0.97
5 0.81 0.87 0.95 0.97 0.99 0.98
PENTAFLAKE
1 0.66 0.65 0.67 0.70 0.76 0.76
2 0.71 0.73 0.79 0.81 0.82 0.83
3 0.73 0.78 0.83 0.84 0.85 0.86
4 0.76 0.79 0.85 0.87 0.88 0.88
5 0.76 0.81 0.86 0.88 0.87 0.90
VICSEK
1 0.59 0.60 0.63 0.66 0.67 0.68
2 0.64 0.70 0.72 0.75 0.76 0.75
3 0.69 0.72 0.77 0.79 0.81 0.82
4 0.71 0.74 0.79 0.82 0.83 0.84
5 0.70 0.77 0.82 0.84 0.86 0.86644
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Table 2: Performance of depth 5 network on the different fractal structure (of depth 5), with varying
approximation curves.

CURVE # / WIDTH 10 20 50 100 200 400
SIERPINSKY TRIANGLE
1 0.89 0.94 0.96 0.97 0.97 0.98
2 0.89 0.94 0.96 0.97 0.97 0.97
3 0.78 0.94 0.96 0.97 0.97 0.97
4 0.79 0.92 0.96 0.96 0.97 0.97
5 0.76 0.89 0.96 0.97 0.97 0.97
6 0.76 0.90 0.97 0.97 0.98 0.98
2D CANTOR SET
1 0.81 0.87 0.95 0.97 0.99 0.98
2 0.70 0.85 0.92 0.94 0.94 0.97
3 0.62 0.73 0.75 0.80 0.91 0.89
4 0.53 0.65 0.77 0.77 0.84 0.93
5 0.57 0.61 0.65 0.69 0.76 0.73
6 0.53 0.64 0.66 0.78 0.71 0.61
PENTAFLAKE
1 0.76 0.81 0.86 0.88 0.87 0.90
2 0.59 0.68 0.77 0.78 0.80 0.84
3 0.54 0.57 0.64 0.63 0.72 0.64
4 0.53 0.55 0.58 0.61 0.65 0.68
5 0.52 0.52 0.52 0.55 0.60 0.57
6 0.52 0.52 0.52 0.53 0.56 0.54
VICSEK
1 0.70 0.77 0.82 0.84 0.86 0.86
2 0.59 0.61 0.67 0.69 0.71 0.71
3 0.56 0.55 0.58 0.64 0.64 0.65
4 0.51 0.52 0.54 0.56 0.58 0.59
5 0.52 0.52 0.52 0.55 0.53 0.57
6 0.53 0.51 0.51 0.55 0.58 0.59
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