
A Regret Analysis of MDP-RFTL: Proof of Theorem 1

To bound the regret incurred by MDP-RFTL, we bound each term in Eq (3). We start with the first
term. We use the following lemma, which was first stated in [17] and was also used by [33].
Lemma 2. For any T ≥ 1 and any policy π it holds that

E[

T∑
t=1

rt(s
π
t , a

π
t )]−

T∑
t=1

ρπt ≤ 2τ + 2.

Proof of Lemma 2 . Recall that |rt(s, a)| ≤ 1, so we have |
∑
a∈A π(s, a)rt(s, a)| ≤ 1 by Cauchy-

Schwarz inequality, since π(s, ·) defines a probability distribution over actions. Also, recall that νπt is
the stationary distribution over states by following policy π and νπt+1 = νπt P

π for all t ∈ [T ]. We
have

E[

T∑
t=1

rt(s
π
t , a

π
t )]−

T∑
t=1

ρπt =

T∑
t=1

∑
s∈S

(νπt (s)− νπst(s))
∑
a∈A

π(s, a)rt(s, a)

≤
T∑
t=1

∑
s∈S

νπt (s)− νπst(s)

≤
T∑
t=1

‖νπt (s)− νπst(s)‖1.

Now, notice that
‖νπt (s)− νπst(s)‖1 = ‖νπt−1P

π − νstPπ‖1
≤ e− 1

τ ‖νπt−1 − νst‖1 by Assumption 1

≤ e− t
τ ‖νπ1 − νπst‖1 by repeating the argument t− 1 more times

≤ 2e−
t
τ .

Finally, we have that
T∑
t=1

‖νπt (s)− νπst(s)‖1 ≤ 2

T∑
t=1

e−
t
τ

≤ 2(1 +

∫ ∞
0

e−
t
τ )dt

= 2τ + 2,

which concludes the proof.

We now bound the third term in (3). We use the following lemma, which bounds the difference of
two stationary distributions by the difference of the corresponding occupancy measures.
Lemma 3. Let ν1

st and ν2
st be two arbitrary stationary distributions over S. Let µ1 and µ2 be the

corresponding occupancy mesures. It holds that
‖ν1
st − ν2

st‖1 ≤ ‖µ1 − µ2‖1.

Proof of Lemma 3.

‖ν1
st − ν2

st‖1 =
∑
s∈S
|ν1
st(s)− ν2

st(s)|

=
∑
s∈S
|
∑
a∈A

µ1(s, a)− µ2(s, a)|

≤
∑
s∈S

∑
a∈A
|µ1(s, a)− µ2(s, a)|

= ‖µ1 − µ2‖1.
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We are ready to bound the third term in (3).
Lemma 4. Let {st, at}Tt=1 be the random sequence of state-action pairs generated by the policies
induced by occupancy measures {µπt}Tt=1. It holds that

T∑
t=1

ρt − E

[
T∑
t=1

rt(st, at)

]
≤

T∑
t=1

2e−
t−1
τ +

T∑
t=1

t−1∑
θ=0

e−
θ
τ ‖µπt−θ − µπt−(θ+1)‖1.

Proof of Lemma 4. By the definition of ρt, we have
T∑
t=1

ρt − E

[
T∑
t=1

rt(st, at)

]
=

T∑
t=1

∑
s∈S

(νπtst (s)− νt(s))
∑
a∈A

πt(s, a)rt(s, a)

≤
T∑
t=1

‖νπtst − νt‖1.

Now, recall that νt = ν1P
π1Pπ2 ...Pπt−1 . We now bound ‖νπtst − νt‖1 for all t ∈ [T ] as follows:

‖νt − νπtst ‖1 ≤ ‖νt − ν
πt−1

st ‖1 + ‖νπt−1

st − νπtst ‖1
≤ ‖νt − νπt−1

st ‖1 + ‖µπt−1 − µπt‖1 by Lemma 3

= ‖νt−1Pπt−1 − νπt−1

st Pπt−1‖1 + ‖µπt−1 − µπt‖1
≤ e− 1

τ ‖νt−1 − νπt−1

st ‖1 + ‖µπt−1 − µπt‖1 by Assumption 1

≤ e− 1
τ (e−

1
τ ‖νt−2 − νπt−2

st ‖1 + ‖µπt−2 − µπt−1‖1) + ‖µπt−1 − µπt‖1

≤ e−
t−1
τ ‖ν1 − νπ1

st ‖1 +

t−1∑
θ=0

e−
θ
τ ‖µπt−θ − µπt−(θ+1)‖1,

which yields the desired claim.

Combining Lemma 2, Lemma 4 and Eq (3), we have arrived at the following bound on the regret:

R(T, π) ≤ (2τ+2)+

[
T∑
t=1

〈µπ, rt〉−
T∑
t=1

〈µπt , rt〉

]
+

[
T∑
t=1

2e−
t−1
τ +

T∑
t=1

t−1∑
θ=0

e−
θ
τ ‖µπt−θ−µπt−(θ+1)‖1

]
.

To complete the proof, we want to bound the second and the third terms. For the second term
maxµ∈∆M

∑T
t=1〈µπ, rt〉−

∑T
t=1〈µπt , rt〉, since the reward functions are linear in µ and the set ∆M

is convex, any algorithm for Online Linear Optimization, e.g., Online Gradient Ascent [45], ensures a
regret bound that is sublinear T . However, this would yield an MDP-regret rate that depends linearly
on |S| × |A|.

Instead, by noticing that the feasible set of the LP, ∆M , is a subset of the probability simplex ∆|S||A|,
we use RFTL and regularize using the negative entropy function. This will give us a rate that scales
as ln(|S||A|), which is much more desirable than O(|S||A|). Notice that the algorithm does not
work with the set ∆M directly but with ∆M,δ instead, this is because the negative entropy is not
Lipschitz over ∆M . Working over ∆M,δ is the key to being able to bound the third term in the regret
decomposition. Formally, we have the following result.
Lemma 5. Let {µt}Tt=1 be the iterates of MDP-RFTL, then it holds that

max
µ∈∆M,δ

T∑
t=1

〈rt, µ〉 ≤
T∑
t=1

〈rt, µπt+1〉+
T

η
max

µ1,µ2∈∆M,δ

[R(µ1)−R(µ2)] .

Proof of Lemma 5. Define ft , 〈µ, rt〉 and fRt , ft(µ)− 1
ηR(µ) for all t = 1, .., T . We first prove

by induction that

max
µ∈∆M,δ

T∑
t=1

fRt (µ) ≤
T∑
t=1

fRt (µπt+1).

13



The base case T = 1 is trivial by the definition of µπ2 . Suppose the claim holds for T − 1. For all
µ ∈ ∆M,δ , we have that

T∑
t=1

fRt (µ) ≤
T∑
t=1

fRt (µπT+1)

≤ max
µ∈∆M,δ

T−1∑
t=1

fRt (µ) + fRT (µπT+1)

≤
T−1∑
t=1

fRt (µπt+1) + fRT (µπT+1) by induction hyposthesis

=

T∑
t=1

fRt (µπt+1).

The lemma follows by plugging back in the definition of fRt and rearranging terms.

Lemma 6. Let {µt}Tt=1 be the iterates of MDP-RFTL, it holds that

‖µπt − µπt+1‖1 ≤
2η

t

(
1 +

1

η
GR

)
.

Proof of Lemma 6. Let J(µ) =
∑t
θ=1

[
〈µ, rt〉 − 1

ηR(µ)
]
. Since R is the negative entropy we know

it is 1- strongly convex with respect to norm ‖ · ‖1, thus J is t
η -strongly concave. By strong concavity

we have
t

2η
‖µπt+1 − µπt‖21 ≤ J(µπt+1)− J(µπt) + 〈∇µJ(µπt+1), µπt − µπt+1〉.

Since µπt+1 is the optimizer of J the optimality condition states that 〈∇µJ(µπt+1), µπt−µπt+1〉 ≤ 0.
Plugging back in the definition of J we have that

t

2η
‖µπt+1 − µπt‖21

≤
t∑

θ=1

[
〈rθ, µπt+1〉 − 1

η
R(µπt+1)

]
−

t∑
θ=1

[
〈rθ, µπt〉 −

1

η
R(µπt)

]

=

t−1∑
θ=1

[
〈rθ, µπt+1〉 − 1

η
R(µπt+1)

]
−

t−1∑
θ=1

[
〈rθ, µπt〉 −

1

η
R(µπt)

]
+ 〈rt, µπt+1〉 − 1

η
R(µπt+1)− 〈rθ, µπt〉+

1

η
R(µπt)

≤ 〈rt, µπt+1〉 − 1

η
R(µπt+1)− 〈rθ, µπt〉+

1

η
R(µπt) by definition of µπt

≤ ‖rt‖∞‖µπt − µπt+1‖1 +
1

η
R(µπt)− 1

η
R(µπt+1) by Cauchy-Schwarz inequality

≤ ‖µπt − µπt+1‖1 +
GR
η
‖µπt − µπt+1‖1 Since R is GR- Lipschitz.

By rearranging terms, we get

‖µπt − µπt+1‖1 ≤
2η

t

(
1 +

1

η
GR

)
.

Notice that by Lemma 6 we will need the regularizer R to be Lipschitz continuous with respect to
norm ‖ · ‖1. Unfortunately, the negative entropy function is not Lipschitz continuous over ∆M , so
we will force the algorithm to play in a shrunk set ∆M,δ .
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Lemma 7. Let ∆δ , {x ∈ Rd : ‖x‖1 = 1, xi ≥ δ ∀i = 1, ..., d}. The function
R(x) ,

∑d
i=1 xi ln(xi) is GR-Lipschitz continuous with respect to ‖ · ‖1 over ∆δ with GR =

max{| ln(δ)|, 1}.

Proof of Lemma 7. We want to find GR > 0 such that ‖∇R(x)‖∞ ≤ GR for all x ∈ ∆δ. Notice
that [∇R(x)]i = 1+ln(xi) for i = 1, ...d. Moreover, since for every i = 1, ..., d we have δ ≤ xi ≤ 1
the following sequence of inequalities hold: ln(δ) ≤ 1 + ln(δ) ≤ 1 + ln(xi) ≤ 1. It follows that
GR = max{| ln(δ)|, 1}.

The next lemma quantifies the loss in the regret due to playing in the shrunk set.
Lemma 8. It holds that

max
µ∈∆M

T∑
t=1

〈rt, µ〉 ≤ max
µ∈∆M,δ

T∑
t=1

〈rt, µ〉+ 2δT (|S||A| − 1) .

Proof of Lemma 8. Given z∗ ∈ ∆ ⊂ Rd, define z∗p , arg minz∈∆δ
‖z − z∗‖1, with δ ≤ 1

d . It holds
that ‖z∗p − z∗‖1 ≤ 2δ(d − 1). To see why the previous is true, choose z∗ = [1; 0; 0; ...; 0; 0]. It is
easily verified that z∗p = [1 − δ(d − 1); δ; δ; ...; δ, δ] and ‖z∗ − z∗p‖1 = 2δ(d − 1). Because of the
previous argument, if µ∗ ∈ arg maxµ∈∆M

∑T
t=1〈rt, µ〉 and µ∗p is its ‖ · ‖1 projection onto the set

∆M,δ then ‖µ∗ − µ∗p‖1 ≤ 2δ(|S||A| − 1). The claim then follows since each function 〈rt, µ〉 is
1-Lipschitz continuous with respect to ‖ · ‖1.

Given that we know the iterates of MDP-RFTL are close by Lemma 6, we can bound the last term in
our regret bound
Lemma 9. It holds that

T∑
t=1

2e−
t−1
τ +

T∑
t=1

t−1∑
θ=0

e−
θ
τ ‖µπt−θ−µπt−(θ+1)‖1 ≤ 2(1+τ)+2η

(
1+

1

η
GR

)
(1+ln(T ))(1+τ).

Proof of Lemma 9. We first bound the first term

T∑
t=1

2e−
t−1
τ ≤ 2(1 +

∫ ∞
1

e−
x−1
τ dx) ≤ 2(1 + τ).

We now bound the second term, let α = 2η
(

1 + 1
ηGR

)
. We have that

T∑
t=1

t−1∑
θ=0

e−
θ
τ ‖µπt−θ − µπt−(θ+1)‖1 = α

T∑
t=1

t−1∑
θ=0

e−
θ
τ

1

t− θ

= α

[
e−

0
τ

T∑
t=1

1/t+ e−
1
τ

T−1∑
t=1

1/t+ e−
2
τ

T−2∑
t=1

1/t+ ...

]

≤ α

[
e−

0
τ

T∑
t=1

1/t+ e−
1
τ

T∑
t=1

1/t+ e−
2
τ

T∑
t=1

1/t+ ...

]

≤ α

[
T∑
θ=0

e−
θ
τ (1 + ln(T ))

]
since

T∑
t=1

1

T
≤ 1 + ln(T )

≤ α(1 + ln(T ))(1 +

∫ ∞
0

e−
θ
τ dθ)

= α(1 + ln(T ))(1 + τ).
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We are now ready to prove Theorem 1.

Proof of Theorem 1. Combining Eq (3), Lemma 2, Lemma 4 and Lemma 9, we have

sup
π∈Π

R(T, π)

≤ (2τ+2)+

[
max
π∈∆M

T∑
t=1

〈µπ, rt〉−
T∑
t=1

〈µπt , rt〉

]
+

[
T∑
t=1

2e−
t−1
τ +

T∑
t=1

t−1∑
θ=0

e−
θ
τ ‖µπt−θ−µπt−(θ+1)‖1

]

≤ 4(τ+1)+

[
max
π∈∆M

T∑
t=1

〈µπ, rt〉−
T∑
t=1

〈µπt , rt〉

]
+2η

(
1+

1

η
GR

)
(1+ln(T ))(1+τ). (10)

The second term in Eq (10) is bounded by

max
π∈∆M

T∑
t=1

〈µπ, rt〉−
T∑
t=1

〈µπt , rt〉

≤ max
π∈∆M,δ

T∑
t=1

〈µπ, rt〉−
T∑
t=1

〈µπt , rt〉+2δT (|S||A|−1) Lemma 8

≤
T∑
t=1

〈µπt+1 , rt〉−
T∑
t=1

〈µπt , rt〉+
T

η
max

µ1,µ2∈∆M,δ

[R(µ1)−R(µ2)]+2δT (|S||A|−1) Lemma 5

≤
T∑
t=1

〈µπt+1 , rt〉−
T∑
t=1

〈µπt , rt〉+
T

η
ln(|S||A|)+2δT (|S||A|−1) by choice of function R

≤
T∑
t=1

‖rt‖∞‖µπt+1−µπt‖1+
T

η
ln(|S||A|)+2δT (|S||A|−1) by Cauchy-Schwarz inequality

≤
T∑
t=1

2η

t

(
1+

1

η
GR

)
+
T

η
ln(|S||A|)+2δT (|S||A|−1) by Lemma 6

≤ 2η

(
1+

1

η
GR

)
(1+ln(T ))+

T

η
ln(|S||A|)+2δT (|S||A|−1) .

Plugging this result into Eq (10), we get

sup
π∈Π

R(T, π) ≤ 4(τ + 1) + 2η(1 +
1

η
GR)(1 + ln(T )) +

T

η
ln(|S||A|)

+ 2δT (|S||A| − 1) + 2η(1 +
1

η
GR)(1 + ln(T ))(1 + τ)

≤ 4(τ + 1) + 4η(1 +
1

η
GR)(1 + ln(T ))(1 + τ) +

T

η
ln(|S||A|) + 2δT (|S||A| − 1)

= O

(
τ + 4

√
τT ln(|S||A|) ln(T ) +

√
τT ln(|S||A|) + e

−
√
T√
τ T |S||A|

)
.

The proof is completed by choosing η =
√

T ln(|S||A|)
τ and δ = e

−
√
T√
τ , and using the fact that

GR ≤ max{| ln(δ)|, 1}.
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B Proof of Theorem 2

Using Lemma 2 and Lemma 4 in Appendix A, we can obtain a bound on Φ-MDP-Regret as follows.

max
π∈ΠΦ

R(π, T ) ≤ E

[
(2τ+2)+ max

π∈ΠΦ

[
T∑
t=1

ρπt −
T∑
t=1

ρt

]
+

[
T∑
t=1

ρt−E[

T∑
t=1

rt(st, at)]

]]

=E

[
(2τ+2)+

[
max

µ∈∆Φ
M,δ

T∑
t=1

〈µ, rt〉−
T∑
t=1

〈µΦθ̃t , rt〉

]
+

[
T∑
t=1

ρt−E[

T∑
t=1

rt(st, at)]

]]

≤E

[
2(2τ+2)+

[
max

µ∈∆Φ
M,δ

T∑
t=1

〈µ, rt〉−
T∑
t=1

〈µΦθ̃t , rt〉

]
+

[
T∑
t=1

t−i∑
i=0

e−
i
τ ‖µΦθ̃t−i−µΦθ̃t−(i+1)‖1

]]
.

Let θ∗t be a solution to the following optimization problem:

max
θ∈Θ

t−1∑
i=1

[
〈µ, ri〉+

1

η
Rδ(µ)

]
s.t µ = Φθ∑

s∈S

∑
a∈A

µ(s, a)P (s′|s, a) =
∑
a∈A

µ(s′, a) ∀s′ ∈ S∑
s∈S

∑
a∈A

µ(s, a) = 1

µ(s, a) ≥ 0 ∀s ∈ S,∀a ∈ A.

Since {Φθ∗t }Tt=1 represents the iterates of RFTL, we can use the regret guarantee of RFTL to bound
maxµ∈∆Φ

M,δ

∑T
t=1〈µ, rt〉 −

∑T
t=1〈µΦθ∗t , rt〉. Notice also that µΦθ∗t = Φθ∗t as θ∗t satisfies all the

constraints that ensure Φθ∗t is an occupancy measure.

In the remainder of the proof, we want to show that the occupancy measures µΦθ̃t induced by our
algorithm’s iterates Φθ̃t are close to µΦθ∗t . The rest of the analysis is to prove that ‖µΦθ∗t − µΦθ̃t‖1 is
small. Notice that using the triangle inequality, we can upper bound this distance by

‖µΦθ∗t − µΦθ̃t‖1 ≤ ‖µΦθ∗t − P∆Φ
M,δ

(Φθ̃t)‖1 + ‖P∆Φ
M,δ

(Φθ̃t)− Φθ̃t‖1 + ‖Φθ̃t − µΦθ̃t‖1

= ‖Φθ∗t − P∆Φ
M,δ

(Φθ̃t)‖1 + ‖P∆Φ
M,δ

(Φθ̃t)− Φθ̃t‖1 + ‖Φθ̃t − µΦθ̃t‖1.

To bound the last term, the following lemma from [3] will be useful. It relates a vector Φθ̃ which is
almost feasible with its occupancy measure.
Lemma 10. [Lemma 2 in [3]] Let u ∈ R|S||A| be a vector. Let N be the set of entries (s, a) where
u(s, a) ≤ 0. Assume∑

(s,a)

u(s, a) = 1,
∑

(s,a)∈N

|u(s, a)| ≤ ε′, ‖u>(P −B)‖1 ≤ ε′′.

Vector [u]+/‖[u]+‖1 defines a policy, which in turn defines a stationary distribution µu. It holds that

‖µu − u‖1 ≤ τ ln(
1

ε′
)(2ε′ + ε′′) + 3ε′.

Suppose we are given a vector Φθ̃t such that ‖[Φθ̃t](δ,−)‖1 ≤ ε′ and ‖(Φθ̃t)>(P − B)‖1 ≤ ε′′.
In view of Lemma 10 and the fact that ‖[Φθ̃t]−‖1 ≤ ‖[Φθ̃t](δ,−)‖1 ≤ ε′, we have a bound on
‖Φθ̃t − µΦθ̃t‖1. The next lemma shows that we can also obtain a bound on ‖P∆Φ

M,δ
(Φθ̃t)− Φθ̃t‖1.

Lemma 11. Let Φθ̃t be a vector such that ‖[Φθ̃](δ,−)‖1 ≤ ε′ and ‖(Φθ̃)>(P −B)‖1 ≤ ε′′ for some
ε′, ε′′ ≥ 0. It holds that

‖P∆Φ
M,δ

(Φθ̃t)− Φθ̃t‖1 ≤ c(ε′ + ε′′),

where c is a bound on the l∞ norm of the Lagrange multipliers of certain linear programming
problem.
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Proof. The idea comes from sensitivity analysis in Linear Programming (LP) (see for example [36]).
Consider the l1 projection problem of Φθ̃t onto the set of occupancy measures parametrized by Φ

min
θ
‖µ− Φθ̃‖1

s.t µ = Φθ

µ>1 = 1

µ ≥ δ
µ>(P −B) = 0

θ ∈ Θ.

It can be reforumulated as the following LP

Primal 1: min
θ,u

∑
(s,a)

u(s, a)

s.t u(s, a)− [Φθ](s, a) ≥ −[Φθ̃](s, a)

u(s, a) + [Φθ](s, a) ≥ [Φθ̃](s, a)

µ = Φθ

µ>1 = 1

µ ≥ δ
µ>(P −B) = 0

− θ(i) ≥ −W ∀i = 1, ..., d

θ(i) ≥ 0 ∀i = 1, ..., d

Let us now consider the perturbed problem ‘Primal 2’ which arises by perturbing the right hand side
vector of ‘Primal 1’:

Primal 2: min
θ,u

∑
(s,a)

u(s, a)

s.t u(s, a)− [Φθ](s, a) ≥ −[Φθ̃](s, a)

u(s, a) + [Φθ](s, a) ≥ [Φθ̃](s, a)

µ = Φθ

µ>1 = 1

µ ≥ δ + ã

µ>(P −B) = b̃

− θ(i) ≥ −W ∀i = 1, ..., d

θ(i) ≥ 0 ∀i = 1, ..., d

We choose perturbation vectors ã, b̃ such that the optimal value of ‘ Primal 2’ is zero is 0. Let b
be the right hand side vector of ‘Primal 1’ and b′ , b − ξ be that of ‘Primal 2’ for some vector ξ.
Since by assumption we have that ‖[Φθ̃](δ,−)‖1 ≤ ε′ and ‖(Φθ̃)>(P −B)‖1 ≤ ε′′ then it holds that
‖b − b′‖1 = ‖ξ‖1 ≤ ε′ + ε′′. Let ‘Opt. Primal 1’ and ‘Opt. Primal 2’ be the optimal value of the
respective problems (‘Opt. Primal 2’ = 0 by construction) and let λ∗ be the vector of optimal dual
variables of ‘Dual 1’, the problem dual to ‘Primal 1’. Since by assumption, the feasible set of ‘Primal
1’ is feasible, then the absolute value of the entries of λ∗ is bounded by some constant c.

Now, since λ∗ is feasible for ‘Dual 2’, the following sequence of inequalities hold:

‘Opt. Primal 2’ ≥ (λ∗)>(b− ξ)
⇐⇒ ‘Opt. Primal 2’ ≥ ‘Opt. Primal 1’− (λ∗)>ξ.
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Therefore,

‘Opt. Primal 1’ ≤ ‘Opt. Primal 2’ + ‖λ∗‖∞‖ξ‖∞
= 0 + ‖λ∗‖∞‖ξ‖1
≤ c(ε′ + ε′′),

which yields the result.

Now, we proceed to bound ‖Φθ∗t − P∆Φ
M,δ

(Φθ̃t)‖1. Consider the function

Ft(Φθ) ,
t∑
i=1

[〈ri,Φθ〉 −
1

η
Rδ(Φθ)]. (11)

Since Rδ is strongly convex over ∆Φ
M,δ with respect to ‖ · ‖1 (but not everywhere over the reals as

the extension uses a linear function), we have that Ft is t
η -strongly concave with respect to ‖ · ‖1 over

∆Φ
M,δ . With this in mind, we can prove the following result.

Lemma 12. Let Φθ̃t+1 be a vector such that ‖[Φθ̃t+1](δ,−)‖1 ≤ ε′ and ‖(Φθ̃t+1)>(P −B)‖1 ≤ ε′′

for some ε′, ε′′ ≥ 0. Let ε′′′ be such that Ft(Φθ∗t+1)−Ft(Φθ̃t+1) ≤ ε′′′. And let GFt be the Lipschitz
constant of Ft with respect to norm ‖ · ‖1 over the set ∆Φ

M,δ . It holds that

‖Φθ∗t+1 − P∆φ
M,δ

(Φθ̃t+1)‖1 ≤
√

2η

t
(ε′′′ +GFtc(ε

′ + ε′′)).

Proof. Since Ft is t
η -strongly concave over ∆Φ

M,δ and Φθ∗t+1 is the optimizer of Ft over ∆Φ
M,δ. It

holds that
t

2η
‖Φθ∗t+1 − Φθ̃t+1‖21 ≤ Ft(Φθ∗t+1)− Ft(P∆Φ

M,δ
(Φθ̃t+1))

≤ Ft(Φθ∗t+1)− Ft(Φθ̃t+1) +GFt‖P∆Φ
M,δ

(Φθ̃t+1)− Φθ̃t+1‖1

≤ ε′′′ +GFt‖P∆Φ
M,δ

(Φθ̃t+1)− Φθ̃t+1‖1 by assumption

≤ ε′′′ +GFtc(ε
′ + ε′′) by Lemma 11

which yields the result.

The next lemma bounds the Lipschitz constant GFt .

Lemma 13. Let η =
√

T
τ , δ = e−

√
T . The function Ft(µ) : R|S||A| → R is GFt-Lipschitz

continuous on variables µ with respect to norm ‖ · ‖1 over ∆Φ
M,δ with GFt ≤ t(1 + 2

√
τ ln(dW )).

Proof. It suffices to find a an upper bound for ‖∇µFt(µ)‖∞. Since ∇µFt(µ) =
∑t
i=1 ri −

t
η∇µR

δ(µ), we have that

‖∇µFt(µ)‖∞ ≤ ‖
t∑
i=1

ri‖∞ +
t

η
‖∇µRδ(µ)‖∞ by triangle inequality

≤ t+
t

η
‖∇µRδ(µ)‖∞ since |ri(s, a)| ≤ 1

≤ t+
t

η
max{|1 + ln(δ)|, |1 + ln(dW )|} as in the proof of Lemma 7 .

The second to last inequality holds since | ddxx ln(x)| = |1 + ln(x)| and the maximum will occur at
x = δ or x = [Φθ](s, a), [Φθ](s, a) can be bounded by Wd. Plugging in the values for η and δ we
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get

‖∇µFt(µ)‖∞ ≤ t+
tτ√
T

(1 + max{
√
T , ln(dW )})

≤ t+
tτ√
T

(2
√
T ln(dW ))

= t(1 + 2
√
τ ln(dW )).

Combining the previous three lemmas, we obtain the following result.

Lemma 14. Let Φθ̃t+1 be a vector such that ‖[Φθ̃t+1](δ,−)‖1 ≤ ε′ and ‖(Φθ̃t+1)>(P −B)‖1 ≤ ε′′

for some ε′, ε′′ ≥ 0. Let ε′′′ be such that Ft(Φθ∗t+1)−Ft(Φθ̃t+1) ≤ ε′′′. And let GFt be the Lipschitz
constant of Ft with respect to norm ‖ · ‖1 over the set ∆Φ

M,δ . It holds that

‖µΦθ∗t − µΦθ̃t‖1 ≤ τ ln(
1

ε′
)(2ε′ + ε′′) + 3ε′ + c(ε′ + ε′′) +

√
2η

t
(ε′′′ +GFtc(ε

′ + ε′′)).

Proof. By triangle inequality, we have

‖µΦθ∗t − µΦθ̃t‖1 ≤ ‖Φθ∗t − P∆Φ
M,δ

(Φθ̃t)‖1 + ‖P∆Φ
M,δ

(Φθ̃t)− Φθ̃t‖1 + ‖Φθ̃t − µΦθ̃t‖1.

Using Lemmas 10, 11, and 12 to bound the first, second, and third terms respectively yields the result.

Now we can upper bound the bound on the Φ-MDP-Regret, Eq (11), using triangle inequality and
Lemma 14. For the bound to be useful we want to be able to produce vectors {Φθ̃t}Tt=1 that satisfy
the conditions of Lemma 14 with ε′, ε′′, ε′′′ that are small enough. It is also important that we produce
{Φθ̃t}Tt=1 in a computationally efficient manner. At time t, our approach to generate Φθ̃t, will be to
run Projected Stochastic Gradient Descent on function 7. The following theorem from [3] will be
useful.
Theorem 3 (Theorem 3 in [3]). Let Z ⊂ R be a convex set such that ‖z‖2 ≤ Z for all z ∈ Z
for some Z > 0. Let f be a concave function defined over Z . Let {zk}Kk=1 ∈ ZT be the iterates
of Projected Stochastic Gradient Ascent, i.e. zk+1 ← PZ(xk + ηf ′t) where PZ is the euclidean
projection onto Z , η is the step-size and {f ′k}Kk=1 are such that E[f ′k|zk] = ∇f(zk) with ‖f ′k‖2 ≤ F
for some F > 0. Then, for η = Z

(F
√
K)

for all κ ∈ (0, 1), with probability at least 1− κ it holds that

max
z∈Z

f(z)− f(
1

K

K∑
k=1

zk) ≤ ZF√
K

+

√
(1 + 4Z2K)

(
2 ln( 1

κ ) + d ln(1 + Z2K
d )
)

K2
.

In view of Theorem 3 we need to design a stochastic subgradient for ct,η and a bound for its l-2 norm.
We follow the approach in [3], we notice however that the objective function considered in [3] does
not contain the regularizer Rδ so must take care of that in our analysis.

Lemma 1 creates a stochastic subgradient for ct,η and provides an upper bound for its l-2 norm. We
now present its proof.

Proof of Lemma 1. Let us first compute∇θcη,t(θ). Define r:t ,
∑t
i=1 ri By definition we have

cη,t(θ) = (Φθ)>r:t −
t

η

∑
(s,a)

Rδ(s,a)(Φθ)−Ht‖[Φθ](δ,−)‖1 −Ht‖(P −B)>Φθ‖1

= θ>(Φ>r:t)−
t

η

∑
(s,a)

Rδ(s,a)(Φθ)−Ht

∑
(s,a)

[Φ(s,a),:θ](δ,−) −Ht

∑
s

|[(P −B)>Φ]s,:θ|.
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So, we get

∇θct,η(θ) = Φ>r:t −
t

η

∑
(s,a)

∇θRδ(s,a)(Φθ)

−Ht

∑
(s,a)

−Φ(s,a),:I{Φ(s,a),:θ ≤ δ} −Ht

∑
s

[(P −B)>Φ]s,:sign([(P −B)>Φ]s,:θ).

We design a stochastic subgradient g of ∇θcη,t(θ) by sampling a state-action pair (s′, a′) from the
given distribution q1 and a state s′′ from distribution q2. Then, we have

gs′,a′,s′′(θ) = Φ>r:t +
Ht

q1(s′, a′)
Φ(s′,a′),:I{Φ(s′,a′),: ≤ δ}

− Ht

q2(s′′)
[(P −B)>Φ]s′′,:sign([(P −B)>Φ]s′′,:θ)−

t

ηq1(s′, a′)
∇θRδ(s′,a′)(Φθ).

We will also give a closed form expression of ∇θRδ(s′,a′)(Φθ) in the proof below. By con-
struction, it holds that E(s′,a′)∼q1,s′′∼q2 [gs′,a′,s′′(θ)|θ] = ∇θct,η(θ). To simplify notation, let
g(θ) = gs′,a′,s′′(θ).

We now bound ‖g(θ)‖2 with probability 1. First, we have

‖Φ>r:t‖2 =

√√√√ d∑
i=1

(r>:tΦ:,i)2

≤

√√√√ d∑
i=1

(‖r:t‖∞‖Φ:,i‖1)2 by Cauchy-Schwarz

≤
√
dt21 = t

√
d,

where the last inequality holds since ‖ri‖∞ ≤ 1 for t = 1, ..., T and each column of Φ is a probability
distribution. Next, we have∥∥∥∥ Ht

q1(s′, a′)
Φ(s′,a′),:I{Φ(s′,a′),:θ ≤ δ}

∥∥∥∥
2

≤ HtC1, and∥∥∥∥− Ht

q2(s′′)
[(P −B)>Φ]s′′,:sign([(P −B)>Φ]s′′,:θ)

∥∥∥∥
2

≤ HtC2,

where C1 and C2 are defined in (9). Finally, we bound ‖∇θRδ(s,a)(Φθ)‖2. By definition of Rδ(s,a) in
Eq 8, we need to compute the gradients of the negative entropy function∇θR(Φθ). Let us compute
d
dθi
R(Φθ) as follows.

d

dθi
R(Φθ) =

∑
(s,a)

d

dθi
R(s,a)(Φθ)

=
∑
(s,a)

d

dθi

[
(

d∑
k=1

Φ(s,a),kθk) ln(

d∑
k=1

Φ(s,a),kθk)

]

=
∑
(s,a)

(

d∑
k=1

Φ(s,a),kθk)(
d

dθi
ln(

d∑
k=1

Φ(s,a),kθk)) + ln(

d∑
k=1

Φ(s,a),kθk)Φ(s,a),i

=
∑
(s,a)

(

d∑
k=1

Φ(s,a)θk)
1∑d

k=1 Φ(s,a)θk

d

dθi
(

d∑
k=1

Φ(s,a),kθk) + ln(

d∑
k=1

Φ(s,a),kθk)Φ(s,a),i

=
∑
(s,a)

Φ(s,a),i + ln(

d∑
k=1

Φ(s,a),kθk)Φ(s,a),i.
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We are also interested in the gradient of the linear extension ofR(s,a)(x): R(s,a)(δ)+ d
dxR(s,a)(δ)(x−

δ) which is equal to δ ln(δ) + (1 + ln(δ))(x − δ). So we upper bound | ddθi δ ln(δ) + (1 +

ln(δ))(Φ(s,a),:θ − δ)| by

| d
dθi

δ ln(δ) + (1 + ln(δ))(Φ(s,a),:θ − δ)|

=| d
dθi

(1 + ln(δ))(Φ(s,a),:θ − δ)|

=|(1 + ln(δ))Φ(s,a),i|.

It follows that

‖∇θRδ(s,a)(Φθ)‖2

≤

 d∑
i=1

[
max{Φ(s,a),i + ln(W

d∑
k=1

Φ(s,a),k)Φ(s,a),i, |(1 + ln(δ))Φ(s,a),i|}

]2
1/2

≤

 d∑
i=1

[
(1 + max{ln(W

d∑
k=1

Φ(s,a),k), | ln(δ)|}Φ(s,a),i

]2
1/2

≤

(
d∑
i=1

[
(1 + max{ln(Wd), | ln(δ)|}Φ(s,a),i

]2)1/2

≤(1 + ln(Wd) + | ln(δ)|)‖Φ(s,a),:‖2.

Thus, we have ‖ t
ηq1(s′,a′)∇θR

δ
(s′,a′)(Φθ)‖2 ≤

t
η (1+ln(Wd)+| ln(δ)|)C1. Using triangle inequality,

we have that with probability 1

‖g(θ)‖2 ≤ t
√
d+H(C1 + C2) +

t

η
(1 + ln(Wd) + | ln(δ)|)C1.

By using Lemma 1, as well as the fact that θ ∈ Θ and ‖θ‖2 ≤ d‖θ‖∞ implies ‖θ‖2 ≤ W , we can
prove the following.
Lemma 15. For all t = 1, ..., T , η > 0, κ ∈ (0, 1), after running K(t) iterations of Projected
Stochastic Gradient Ascent on function cη,t(θ) over the set ΘΦ and using step-size

√
dW√

K(t)G′
with

G′ = t
√
d+Ht(C1 +C2) + t

η (1 + ln(Wd) + | ln(δ)|)C1 with probability at least 1−κ it holds that

t∑
i=1

[
〈ri,Φθ∗t+1〉 −

1

η
Rδ(Φθ∗t+1)

]

−

[
t∑
i=1

[
〈ri,Φθ̃t+1〉 −

1

η
Rδ(Φθ̃t+1)

]
−Ht‖(Φθ̃t+1)>(P −B)‖1 −Ht‖[Φθ̃t+1](δ,−)‖1

]

≤
√
dWG′√
K(t)

+

√
(1 + 4dW 2K(t))(2 ln( 1

κ ) + d ln(1 + dW 2K(t)
d ))

K(t)2
.

Proof. The proof follows from applying Theorem 3 on function cη,t(θ). Using the bound of the
stochastic gradients from Lemma 1, as well as the fact that maxθ∈ΘΦ cη,t(θ) ≥ cη,t(θ∗t+1) and since
Φθ∗t+1 is feasible, we have ‖(Φθ∗t+1)>(P −B)‖1 = 0 and ‖[Φθ∗t+1](δ,−)‖1 = 0.

We remark that we did not relax the constraint (Φθ)>1 = 1 and in fact when we use Projected
Gradient Ascent we are projecting onto a subset of that hyperplane, although Φ has |S||A| rows we
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can precompute the vector Φ>1 ∈ Rd so that all projections to the subset of the hyper plane given by
(Φθ)>1 = 1 can be done in O(poly(d)) time.

The next lemma bounds the largest difference the function Ft(Φθ) can take over θ ∈ ΘΦ. It will be
clear later why this bound is needed.
Lemma 16. For all t = 1, ..., T . It holds that

max
θ1,θ2∈ΘΦ

Ft(Φθ1)− Ft(Φθ2) ≤ t
[
2 +

1

η
ln(|S||A|)

]
.

Proof. By definition of Ft it suffices to bound
t∑
i=1

〈ri,Φθ1 − Φθ2〉+
t

η

[
Rδ(Φθ2)−Rδ(Φθ1)

]
.

Now, we have
t∑
i=1

〈ri,Φθ1 − Φθ2〉 ≤
t∑
i=1

‖ri‖∞‖Φθ1 − Φθ2‖1 By Cauchy-Schwarz

≤
t∑
i=1

1‖Φθ1 − Φθ2‖1

≤
t∑
i=1

‖Φθ1‖1 + ‖Φθ2‖1 by triangle inequality

≤ 2t,

where the last inequality holds since all entries of Φ and θ are nonnegative, and (Φθ)>1 = 1 for all
θ ∈ ΘΦ.

It is well known that the minimizer of R(µ) for µ ∈ ∆|S||A| is − ln(|S||A|). Moreover, its optimal
solution µ∗ is equal to the vector with value 1/(|S||A|) on each of its entries, which is of course
in the interior of the simplex. Notice that since Rδ is an extension of R, if δ is sufficiently small
(which we ensure by the choice of δ later in the analysis), the minimizer of Rδ(Φθ) for θ ∈ ΘΦ will
be bounded below by − ln(|S||A|). That is

− ln(|S||A|) ≤ min
θ∈ΘΦ

Rδ(Φθ).

We upper bound maxθ∈ΘΦ Rδ(Φθ). By construction Rδ(Φθ) ≤ R(Φθ) for all 0 ≤ θ ∈ ΘΦ. Since
θ ≥ 0, 1>Φθ = 1 defines the set ΦΘ and Φ has probability distributions as its columns it holds that
R(Φθ) ≤ 0, thus Rδ(Φθ) ≤ 0. We have shown that

t∑
i=1

〈ri,Φθ1 − Φθ2〉+
t

η

[
Rδ(Φθ2)−Rδ(Φθ1)

]
≤ 2t+

t

η
[ln(|S||A|)]

which finishes the proof.

Lemma 14 assumes we have at our disposal a vector Φθ̃t+1 such that ‖[Φθ̃t+1](δ,−)‖1 ≤ ε′ and
‖(Φθ̃t+1)>(P − B)‖1 ≤ ε′′, and Ft(Φθ∗t+1) − Ft(Φθ̃t+1) ≤ ε′′′ for some ε′, ε′′, ε′′′ ≥ 0. We now
show how to obtain such error bounds by running at each time step t, K(t) iterations of PSGA and
using Lemma 15.
Lemma 17. For t = 1, ..., T , let bK(t) the right hand side of the equation in the bound of Lemma 15
and assume the same conditions hold. After K(t) iterations of PSGA, with probability at least 1− κ,
it holds that

‖[Φθ̃t+1](δ,−)‖1 ≤
1

Ht

[
bK(t) + t[2 +

1

η
ln(|S||A|)]

]
,

‖(Φθ̃t+1)>(P −B)‖1 ≤
1

Ht

[
bK(t) + t[2 +

1

η
ln(|S||A|)]

]
,

Ft(Φθ
∗
t+1)− Ft(Φθ̃t+1) ≤ bK(t).
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Proof. To show the first two inequalities, notice that Lemma 15 implies

Ht‖[Φθ̃t+1](δ,−) +Ht‖(Φθ̃t+1)>(P −B)‖1 ≤ bK(t) + Ft(Φθ̃t+1)− Ft(Φθ∗t+1)

≤ bK(t) + t

[
2 +

1

η
ln(|S||A|)

]
,

where the last inequality holds by Lemma 16. Since ‖ · ‖1 ≥ 0 we get the desired results. To show
that Ft(Φθ∗t+1)− Ft(Φθ̃t+1) ≤ bK(t) again use Lemma 15 and the fact that ‖ · ‖1 ≥ 0.

We are ready to prove the main theorem from this section.

Proof of Theorem 2. Recall the Φ-MDP-Regret regret bound from Equation 11.

max
π∈ΠΦ

R(π, T )

≤ EPSGA[(4τ + 4)

+ [ max
µ∈∆Φ

M,δ

T∑
t=1

〈µ, rt〉 −
T∑
t=1

〈µΦθ̃t , rt〉] + [

T∑
t=1

t−i∑
i=0

e−
i
τ ‖µΦθ̃t−i − µΦθ̃t−(i+1)‖1]].

Since it is cumbersome to work with the EPSGA[·] in our bounds let us make the following argument.
For t = 1, ..., T , define Et be the event that the inequality in Lemma 15 holds, let E , ∩Tt=1Et. For
any random variable X we know that EPSGA[X] = EPSGA[X|E ]P (E) +EPSGA[X|Ec]P (Ec). Let
us work conditioned on the event E , we will later bound EPSGA[X|Ec]P (Ec).

By triangle inequality, Cauchy-Schwarz inequality, and the fact ‖rt‖∞ ≤ 1 for t = 1, ..., T , it holds
that

max
µ∈∆Φ

M,δ

T∑
t=1

〈µ, rt〉 −
T∑
t=1

〈µΦθ̃t , rt〉 ≤ max
µ∈∆Φ

M,δ

T∑
t=1

〈µ, rt〉 −
T∑
t=1

〈µΦθ∗t , rt〉+

T∑
t=1

‖µΦθ∗t − µΦθ̃t‖1.

Notice that

‖µΦθ̃t−i − µΦθ̃t−(i+1)‖1
≤‖µΦθ∗t−i − µΦθ∗t−(i+1)‖1 + ‖µΦθ̃t−i − µΦθ∗t−i‖1 + ‖µΦθ̃t−(i+1) − µΦθ∗t−(i+1)‖1.

Therefore, we have

max
π∈ΠΦ

R(π, T )

≤ 2(2τ + 2) +

[
max

µ∈∆Φ
M,δ

T∑
t=1

〈µ, rt〉 −
T∑
t=1

〈µΦθ∗t , rt〉

]
+

[
T∑
t=1

t−i∑
i=0

e−
i
τ ‖µΦθ∗t−i − µΦθ∗t−(i+1)‖1

]

+

T∑
t=1

‖µΦθ∗t − µΦθ̃t‖1 +

T∑
t=1

t−i∑
i=0

e−
i
τ

(
‖µΦθ̃t−i − µΦθ∗t−i‖1 + ‖µΦθ̃t−(i+1) − µΦθ∗t−(i+1)‖1

)
≤ O

(
τ + 4

√
τT ln(T ) +

√
τT ln(|S||A|) + e−

√
TT |S||A|

)
+

T∑
t=1

‖µΦθ∗t − µΦθ̃t‖1 +

T∑
t=1

t−i∑
i=0

e−
i
τ

(
‖µΦθ̃t−i − µΦθ∗t−i‖1 + ‖µΦθ̃t−(i+1) − µΦθ∗t−(i+1)‖1

)
,

where the second inequality follows from the proof of Theorem 1 since we chose the same parameters

η =
√

T
τ , δ = e−

√
T .
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If we choose K(t) such that ‖µΦθ∗t − µΦθ̃t‖1 are less than or equal to a constant ε(ε′t, ε
′′
t , ε
′′′
t ,K(t))

for all t = 1, ..., T we have
T∑
t=1

‖µΦθ∗t − µΦθ̃t‖1 +

T∑
t=1

t−i∑
i=0

e−
i
τ

(
‖µΦθ̃t−i − µΦθ∗t−i‖1 + ‖µΦθ̃t−(i+1) − µΦθ∗t−(i+1)‖1

)
≤ Tε+ 2Tε(1 +

∫ ∞
0

e−
x
τ dx)

≤ Tε+ 2Tε(1 + τ)

= T (1 + 2(1 + τ))ε.

We have that

max
π∈ΠΦ

R(π, T ) ≤ O
(
τ + 4

√
τT ln(T ) +

√
τT ln(|S||A|) + e−

√
TT |S||A|+ Tτε

)
.

Let ε′t = ε′′t = 1
Ht

[
bK(t) + t[2 + 1

η ln(|S||A|)]
]
, ε′′′t = bK(t). By Lemma 14, we have that

ε ≤ τ ln(
1

ε′
)(2ε′ + ε′′) + 3ε′ + c(ε′ + ε′′) +

√
2η

t
(ε′′′ +GFtc(ε

′ + ε′′)).

By Lemma 13 we know that GFt ≤ t(1 + 2
√
τ ln(dW )) so that

ε ≤ τ ln(
1

ε′
)(2ε′ + ε′′) + 3ε′ + c(ε′ + ε′′) +

√
2
√
T√
τ

(ε′′′ + c[1 + 2
√
τ ln(dW )](ε′ + ε′′)),

where we plugged in the value for η. It is easy to see that the right hand side of the last in-
equality bounded above by O(τ ln( 1

ε′ )T
1/4c
√
dW (ε′ + ε′′ + ε′′′)). So that forcing all ε′, ε′′, ε′′′

to be O( 1√
dWτ3/2T 3/4

) will ensure Tτε to be O(c
√
τT ) ensuring that maxπ∈ΠΦ R(π, T ) ≤

O(c
√
τT ln(T ) ln(|S||A|)).

Since ε′ = ε′′ = 1
Ht
bK(t) + 1

Ht
t2 + 1

Ht
t
√
τ√
T

ln(|S||A|) we choose Ht =
√
dWtτ2T 3/4, this ensures

that 1
Ht
t2+ 1

Ht
t
√
τ√
T

ln(|S||A|) are bounded above byO( 1√
dWτ3/2T 3/4

). We now must chooseK(t) so
that 1

Ht
bK(t) and ε′′′t are both O( 1√

dWτ3/2T 3/4
). Since by the choice of Ht we have 1

Ht
bK(t) ≤ bK(t)

it suffices to bound bK(t).

Set κ = 1
T 2 in Lemma 15 and recall we are working conditioned on E , we have that for all t = 1, ..., T

bK(t) =

√
dWt
√
d+Ht(C1 + C2) + t

η (1 + ln(Wd) + | ln(δ)|)C1√
K(t)

+

√
(1 + 4dW 2K(t))(2 ln( 1

κ ) + d ln(1 + dW 2K(t)
d ))

K(t)2

≤ O(
WtdHt(C1 + C2)

√
T
√
τ ln(WTd)√

T
√
K(t)

)

= O(
Wt2d(C1 + C2)τ5/2T 3/4 ln(WTd)√

K(t)
).

Setting

Wt2d(C1 + C2)τ5/2T 3/4 ln(WTd)√
K(t)

=
1√

dWτ3/2T 3/4

and solving for K(t), we get that K(t) =
[
W 3/2t2d3/2τ4(C1 + C2)T 3/2 ln(WTd)

]2
, which en-

sures bK(t) = O( 1√
dWτ3/2T 3/4

).
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By the choice of κ in Lemma 15, we have that for each t = 1, ..., T with probability at least 1− 1
T 2 ,

‖µΦθ∗t − µΦθ̃t‖1 ≤ O(
√
dW 1

τ3/2T 3/4 ). This implies that

Φ-MDP-Regret

≤ O(c
√
τT ln(T ) ln(|S||A|))P (E)

+

[
O

(
τ + 4

√
τT ln(T ) +

√
τT ln(|S||A|) + e−

√
TT |S||A|+

T∑
t=1

‖µΦθ∗t − µΦθ̃t‖1

)]
P (Ec)

Notice that since µΦθ∗t , and µΦθ̃t are probability distributions then ‖µΦθ∗t − µΦθ̃t‖1 ≤ 2. So that

Φ-MDP-Regret ≤ O(c
√
τT ln(T ) ln(|S||A|)) +O(T )P (Ec)

where we upper bounded P (E) with 1. Notice that by the choice of κ, P (Ec) = P (∪Tt=1Eci ) ≤∑T
t=1 P (Ect ) ≤ 1

T so that O(T )P (Ec) = O(1). This completes the proof.

C Bounding the problem dependent constant in Theorem 2

Consider the LP formulation of the l1 projection problem of Φθ̃ onto ∆Φ
M,δ .

min
θ,u

∑
(s,a)

u(s, a)

s.t u(s, a)− [Φθ](s, a) ≥ −[Φθ̃](s, a), u(s, a) + [Φθ](s, a) ≥ [Φθ̃](s, a),

µ = Φθ, µ>1 = 1, µ ≥ δ, µ>(P −B) ≥ 0, −µ>(P −B) ≥ 0

− θ(i) ≥ −W , θ(i) ≥ 0 ∀i = 1, ..., d.

Fix any state action pair (s′, a′) ∈ S × A and change the constraint µ(s′, a′) ≥ δ for µ(s′, a′) ≥
δ + γs′,a′ . Let obj(γs′,a′) be the optimal value of the above LP with the constraint is replaced by
µ(s′, a′) ≥ δ + γs′,a′ . Let µ∗(γs′,a′) be the optimal solution to this problem. Let γ̄s′,a′ be the
maximum value of γs′,a′ such that the LP above is feasible.

Some remarks are in order. First, for any γs′,a′ ∈ [0, γ̄s′,a′ ], it holds that obj(γs′,a′) ≥ 0. Second,
obj(γs′,a′) is a convex and increasing function in γs′,a′ . Third, a subgradient of obj(γs′,a′) is given
by the optimal dual variable associated with the constraint µ(s′, a′) ≥ δ + γs′,a′ . Let us call this
optimal dual variable λ∗(γs′,a′). Since the above LP’s objective is equivalent to ‖µ− Φθ̃‖1, using
triangle inequality we have that obj(γ̄s′,a′) ≤ ‖µ∗(γ̄s′,a′)‖1 + ‖Φθ̃‖ ≤ 1 + ‖Φθ̃‖ ≤ 2, where the
last inequality holds since (Φθ̃)>1 = 1.

We are ready to upper bound λ∗(0) which is the subgradient of obj(γs′,a′) for γs′,a′ = 0. Since
obj(γ) is an increasing function, we can upper bound λ∗(0) with the slope of the line that passes
through the points (0, obj(0)) and (γ̄s′,a′ , obj(γ̄s′,a′)). The slope of this line is obj(γ̄s′,a′ )−obj(0)

γ̄s′,a′
. We

have that

λ∗(0) ≤ obj(γ̄s′,a′)− obj(0)

γ̄s′,a′
≤ 2− obj(0)

γ̄s′,a′
≤ 2

γ̄s′,a′
,

where the last inequality holds since ‖ · ‖1 ≥ 0.

Let us now discuss in more detail the quantity γ̄s′,a′ . It turns out to be problem-dependent. For
example, consider an MDP such that regardless of the action chosen by the player, it transitions to
any state with equal probability and there is only one action at each state, then γ̄s′,a′ = 1

|S| . Thus,
the bound for cS,A becomes cS,A ≤ 2|S|, which depends linearly on |S|. Consider another example:
suppose the MDP is such that for any state, there exists an action that allows us to remain in that state
with probability 1 (a concrete case is the Markovian multi-armed bandit problem with the “retirement”
option, see Whittle [41], Weber [40]). This implies that we can make the occupancy measure equal to
a vector consisting of zeros of dimension |S||A| with a 1 on any desired entry. Then, the analysis
above shows that γ̄s′,a′ = 1.
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