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In this document, we provide additional analysis to supplement our main submission. In Sec. 1, we
show the qualitative results of BMVSc on AwA2 and CUB. In Sec. 2, the experiment details of main
paper are given. In Sec. 3, we provide more analysis which is not put in the main paper due to the
limited space. In Sec. 4, we explain the reason of choosing visual space as embedding space.

1 Qualitative Results

In Figure 1, we have shown some qualitative results of the proposed BMVSc on the AwA2 and CUB
datasets. Although the test images of each class have an overall different appearance, the projection
function learned by our method can still capture important discriminative semantic information from
their visual characteristics, which corresponds to their semantic attributes. For example, the predicted
sheep images in AwA2 all share furry, bulbous and hooves attributes. However, we could also observe
some misclassified images such as the walrus in row 6 of AwA2. After careful analysis, we find two
possible reasons: 1) The discriminative ability of the pretrained CNN is not enough to separate the
visual appearances between too similar categories. In fact, the visual appearance of seal and walrus
are so close that even people could not distinguish them by rule and line without expert knowledge.
This problem can be solved only by more powerful visual features. 2) Some attribute annotations are
not accurate enough. For example, the seal category possesses spots of semantic descriptions, but
walrus does not, but both these two categories own this attribute in the semantic annotation. Such
incorrect supervision information will mislead the learning of the projection function.

2 Experiment Details

Datasets Extensive experiments are conducted on three widely-used ZSL benchmark datasets,
, Animals with Attributes2 (AwA2) [8], Caltech-UCSD Birds 200-2011 (CUB) [7] and Scene
UNderstanding (SUN) [5]. The statistics of these datasets are briefly introduced as below:

• Animals with Attributes1 (AwA1) [2] For fair comparison with previous methods, we
report the results on AwA1 which is an old version of animal datasets of ZSL. There are
totally 30,475 images coming from 50 different classes in AwA1, and 85-dim continuous
attributes are employed as semantice space.

• Animals with Attributes2 (AwA2) [8] contains 37,322 images from 50 animals categories,
where 40 of 50 classes are used for training and the rest 10 are used for testing. We adopt
the class-level continuous 85-dim attributes as the semantic representations.

• Caltech-UCSD Birds 200-2011 (CUB) [7] is a fine-grained bird dataset with 200 species
of birds and 11,788 images. Each image is associated with a 312-dim continuous attribute
vector. Following [8], we use the class-level attribute vector and the 150/50 split.
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Figure 1: Qualitative results of BMVSc on 6 categories of AwA2 and CUB datasets. We list the top-6
images classified to each category. The misclassified images are marked with red bounding boxes
and the right name of category is below the corresponding image.

• SUN-Attribute (SUN) [5] includes 14,340 images coming from 717 scenes. Each sample is
paired with a binary 102-dim semantic vector. We compute class-level continuous attributes
as our semantic representations by averaging the image-level attributes for each class. 707/10
(SUN10) and 645/72 (SUN72) splits are adopted in our experiments.

Evaluation Metrics Following previous work [9], the multi-way classification accuracy is adopted
as our evaluation metric:

accY =
1

‖Y‖

‖Y‖∑
i=1

# correct predictions in i

# samples in i
(1)

We also adopt the same data splits as [9] and denote accYs
and accYu

as the accuracy of images from
the seen and unseen classes respectively. Moreover, the harmonic mean is computed to measure the
ZSL performance in the generalized setting with the same weights of accYs

and accYu
:

H =
2 ∗ accYu

∗ accYs

accYu + accYs

(2)

Figure 2: The comparison of convergence curve between instance-based method (DEM) and our
center-based method (VCL).
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Figure 3: Matching matrixs between the pro-
jected semantic centers and visual cluster cen-
ters of CDVSc (left) and BMVSc (right) on
the AwA2 dataset. BMVSc can guarantee
strict one-one matching while CDVSc may
have many-to-one matching.
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Figure 4: The right matching number and dis-
tance between the projected semantic centers
and real visual centers during the training of
BMVSc on the SUN dataset.

3 More analysis

Possible many-to-one problem in CDVSc. To verify that there may exist many-to-one matching
problem during the training of CDVSc, we randomly select the output of embedding networks of
one epoch and visualize the matching results on the AwA2 dataset in Figure 3. It can be seen that
one projected semantic center can be matched by multiple visual cluster centers, and vice versa. By
contrast, BMVSc can guarantee strict one-one matching, which may be the reason of better results
shown in main text on this dataset.

Progressive improving of center matching in BMVSc. The final ZSL performance depends on
the alignment of the projected semantic centers and real visual centers. In our method we use
K-means cluster centers to approximate the real centers and minimize their matching distance. So
one natural question would be "whether we can achieve this final objective by training with cluster
centers from K-means?". To answer this question, we calculate the the number of right matching
point and distances between the projected semantic centers and real visual centers respectively during
the training of BMVSc . We plot these two metrics of the SUN dataset in Figure 4. Obviously,
BMVSc can definitely improve the matching of the projected semantic centers and real visual centers
by only using the cluster centers from K-means.

Center-based objective vs Instance-based objective Compared to previous instance-based opti-
mization objective, our center-based optimization objective is much more computationally efficient.
To verify this point, we re-implement the work DEM [10] and adopt the same network structure,
parameter setting and optimization algorithm with our VCL method on the AwA2 dataset. Then we
plot the change of loss and accuracy with epoch increasing in Figure 2 respectively. It shows that
our center-based optimization objective converges faster than previous instance-based optimization
objective and can even achieve slightly better final results.

Why slightly worse results are obtained by BMVSc than CDVSc on the CUB dataset? In our
paper, three different types of visual structure constraint are proposed to alleviate the domain shift
problem in ZSL. BMVSc can solve the possible many-to-one matching problem in CDVSc and satisfy
the strict one-to-one principle, which potentially helps to achieve better results, such as the gain can
be observed on the AwA2 and SUN datasets. However, on the CUB dataset, the performance of
BMVSc is slightly worse than CDVSc. Although this difference is quite subtle when it is compared
to the absolute gain coming from the visual structure constraint, we still want to find the possible
underlying reason.

To answer this question, we first plot the feature distribution of all the categories in the left subfigure
in Figure 5 with TSNE. We could find that the feature distribution of some categories is too close to
be distinguished because the feature pretrained on ImageNet is not representative enough for this
CUB dataset. This somehow violates our assumption that the separated clusters of unseen classes
obtained from pre-trained CNN models are already discriminative, and thus lead to this degradation
phenomenon. To verify it, we check the matching matrix obtained by our methods and find that there
indeed exists wrong matches due to very closed real centers. Specifically, consider synthetic center
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(a) Visualization of ResNet-101 features of 50 classes on the
CUB dataset.
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(b) Matching relations between synthetic
center and two similar real centers. Red
line denotes BMVSc matching, and
green line and red line denote CDVSc
matching.

Figure 5: Analysis to find the possible underlying reason why slightly worse performance is observed
by BMVSc on the CUB dataset.

X of yellow billed cuckoo, and two similar real centers Y and Z of mangrove cuckoo and yellow
billed cuckoo. X − Z is the right matching, and X − Y is the wrong matching. In BMVSc, if the
wrong matching happens, X will be pulled closer to inaccurate center Y (loss term: ‖X − Y ‖22). By

contrast, the contribution of CDVSc to the final loss is ‖X−Y ‖
2
2+‖X−Z‖

2
2

2 , which will also force X to
approach Z and alleviate the wrong matching problem to some certain degree.

Importance of unsupervised cluster centers and semantic attributes. In our method, to recog-
nize the target domain images, two different types of knowledge are leveraged: unsupervised cluster
centers and semantic attributes. To study the importance of these two components, we design a
simple voting algorithm to calculate the upper bound of unsupervised clustering algorithms for ZSL
recognition. Specifically, we assume the ground truth label for each unseen instance is accessible.
Then for each cluster center obtained by K-means, we predict its category through a voting process,
its category is the one which most images in this cluster belong to. Finally, the classification results
for test instances are directly set to the label of the corresponding cluster. In this way, because we
have already used the ground truth information, it can be viewed as the upper bound of K-means
clustering algorithm. As shown in Table 1, its performance is even better than our baseline VCL.
which demonstrates that the unsupervised clustering information is very useful. By combining the
semantic attributes and this unsupervised cluster information during the learning process, our method
CDVSc, BMVSc and WDVSc are all better than the upper bound of K-Means and VCL.

4 Hubness Problem

Hubness phenomenon means that several objects may occur as nearest neighbor of most points in a
high-dimensional vector space for nearest neighbour (NN) search. [6] shows that hubness is a special
property inheriting from data distribution and the key to tackle the hubness problem is to choose the
right embedding space.
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AwA2 CUB SUN
K-Means 75.0 67.4 57.6

VCL 61.5 59.6 59.4
CDVSc 78.2 71.7 61.2
BMVSc 81.7 71.0 62.2
WDVSc 87.3 73.4 63.4

Table 1: Analysis to demonstrate the importance of unsupervised cluster centers and semantic
attributes. By combining these two types of information during training, our CDVSc, BMVSc and
WDVSc achieve better results than the upper bound of K-Means and VCL.

Zero-Shot Learning (ZSL) aims to recognize unseen objects by learning a shared embedding space
which the visual features of object instances and semantic representations of object categories can
be projected to. Then in the test stages, unseen image instances will be mapped into the embedding
space, where the nearest neighbour search is operated to finish classification. Following this approach,
most of existing ZSL methods choose the semantic space as the embedding space, and aim to learn
a projection W : Rn → Rm from visual space to semantic space. The projection function can be
learned through standard ridge regression or neural networks. Formally,

W = argmin
W

‖WX − Y ‖2 + λ ‖W‖2 (3)

Leaning such a visual to semantic projection for ZSL has achieved promising ZSL resutls [4, 1, 3].
However, we will show that selecting the semantic space as the embedding space will make the
hubness problem worse. The proof procedure contains two parts:

• Using semantic space as the embedding space will aggravate shrinkage degree of projected
objects towards the origin point.

• The points closer to the origin are much more possible to become hubs.

The proof of the first part has been provided in [10], and we will give the proof of the second part in
this paper.

Definition 1 Let E [·] and V[·] be the expectation and variance respectively. Let f(·) be the squared
norm of vectors.

Definition 2 Let x = [x1, . . . , xn]T be a random vector sampled from distribution X (0, σ). Let
y = [y1, . . . , yn]T ∼ Y , where y is also a n-dimensional vector and Y is a normal distribution with

mean 0 and variance d2. Further denote δ as the standard deviation of ‖y‖2, i.e. δ =

√
VY [‖y‖2] =√

VY [f(y)], where ‖y‖2 could be viewed as the distance from y to the origin.

Proposition 1 Consider x as a query. Assume there are two points y1 and y2, we are interested in
that which vector is more likely to be closer to x. Formally, we have

f(y1)− f(y2) = αδ (4)

Then the expected difference ∆ between the distance from x to y1 and y2 could be written as

∆ = EX [f(x− y1)]− EX [f(x− y2)] (5)

∆ =
√

2nαd2 (6)

Proof 1 The expectation of distance from x to yi(i = 1, 2) is

EX [f(x− yi)] = EX [f(x)] + EX [f(yi)]− 2EX [x]TEX [yi]

= EX [f(x)] + f(yi)
(7)
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since EX [x] equals zero. Through Equation 4, 5 and 7 we have

∆ = {EX [f(x)] + f(y1)} − {EX [f(x)] + f(y2)}
= f(y1)− f(y2)

= αδ

(8)

Let z be a n-dimensional vector sampled from multivariate normal distributionN (0, I), we could get
y = dz. It could be noted that actually f(z) is distributed according to the chi-squared distribution
with n degrees of freedom, i.e.f(z) ∼ χ2(n), and its mean and variance are n and 2n respectively.
Hence,

δ =
√
VY [f(y)] =

√
VZ [d2f(z)] = d2

√
VZ [f(z)] = d2

√
2n (9)

Substituting this result in Equation 8, we could obtain Equation 6 finally.

In Equation 6, ∆ increases with α meaning y2 would be closer to x than y1. Meanwhile, due to the
growth of α, y2 will shift to the origin gradually through Equation 4. Hence, it could be illustrated
that points which are closer to original point tent to be hubs.

Through these two parts of proof, we could conclude that utilizing shared semantic embedding space
would make hubness worse.

Our proposed method could mitigate the shrinking degree to origin points with reversing projection
direction and utilizing visual space as embedding space, so it is helpful to alleviate hubness problem.
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