
Supplementary material for “Fast Convergence of Belief Propagation to Global Optima: Be-
yond Correlation Decay”

A Deferred proofs from Section 2.1

Proof of Lemma 2.2. Suppose there exist two critical points y and z. Recall that being a critical point
is equivalent to solving the mean-field equation y = tanh⊗n(Jy + h). Consider the line through y
and z; this line intersects the boundary region [0, 1]n \ (0, 1]n at some point; we parameterize the
line as x(t) so that x(0) is on this boundary, i.e. x(0)i = 0 for some i, x(t1) = y and x(t2) = z.
Without loss of generality we assume that t1 < t2. Now we consider the behavior of the function

g(t) := tanh(Ji · x(t) + hi)− x(t)i

on this line. Observe that by definition g(0) = tanh(Ji · x(0) + hi) − 0 ≥ 0 and g(t1) = 0. It
follows from strict concavity that g(t2) < 0 since t2 > t1, so z cannot be a fixed point, which gives
a contradiction.

Proof of Lemma 2.3. First we claim that ΦMF is concave at x∗. If x∗ is on the interior of [0, 1]n,
then this follows from the second-order optimality condition. From the mean-field equations (first
order optimality condition) we see that it’s impossible that there are any coordinates such that x∗i =
1, and that if the graph is connected and there is a single coordinate such that x∗i = 0, that the entire
vector x∗ = 0. If x∗ = 0, then the maximum eigenvalue of J must be 1, so the free energy functional
is globally concave – otherwise, by the Perron-Frobenius theorem there exists a eigenvector of J
with all nonnegative entries and with eigenvalue greater than 1, from which we see that x∗ = 0
cannot be the global optimum.

Now, it is easy to see that ΦMF is concave on all of S, becuase if 0 ≤ x ≤ y coordinate-wise then
∇2ΦMF (x) � ∇2ΦMF (y), which follows because

∇2ΦMF (x)−∇2ΦMF (y) = (1/4)
∑
i

(H ′′((1 + x)/2)−H ′′((1 + y)/2))eie
T
i � 0.

since H ′′((1 + x)/2) = −2
1−x2 .

B Deferred proofs from Section 2.2

Lemma B.1. Suppose that x ∈ S. Then

‖∇ΦMF (x)‖1 ≥
‖x− x∗‖44
‖x− x∗‖∞

where x∗ is as above, the global maximizer of ΦMF in [0, 1]n.

Proof. Recall that
∇ΦMF (x) = Jx+ h−

∑
i

tanh−1(xi)ei.

Since x∗ is a critical point and local maximum, so ∇ΦMF (x∗) = 0 and ∇2ΦMF (x∗) � 0, then
using that d2

dx2 tanh−1(x) = 2x
(1−x2)2 , we see that by applying the fundamental theorem of calculus

twice that

∇ΦMF (x) = J(x−x∗)−
∑
i

ei(tanh−1(xi)−tanh−1(x∗i )) = ∇2ΦMF (x∗)(x−x∗)−
∑
i

ei

∫ xi

x∗i

∫ z

x∗i

2y

(1− y2)2
dydz

and so

〈x∗ − x,∇ΦMF (x)〉 ≥
∑
i

(xi − x∗i )
∫ xi

x∗i

∫ z

x∗i

2y

(1− y2)2
dydz

≥
∑
i

(xi − x∗i )
∫ xi

x∗i

∫ z

x∗i

2ydydz
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=
∑
i

(xi − x∗i )(x3
i /3− (x∗i )

3/3− (xi − x∗i )(x∗i )2)

=
∑
i

(xi − x∗i )2(x2
i + xix

∗
i ) ≥

∑
i

(xi − x∗i )4

where in the last inequality we used xi ≥ x∗i ≥ 0. Finally the result follows combining the above
with 〈x∗ − x,∇ΦMF (x)〉 ≤ ‖x∗ − x‖∞‖∇ΦMF ‖1 by Hölder’s inequality.

Proof of Theorem 2.6. From Lemma B.1 we see that

‖x− x∗‖3∞ ≤
‖x− x∗‖44
‖x− x∗‖∞

≤ ‖∇ΦMF (x)‖1

and so as in the proof of Theorem 2.4 we see that for any T ,

‖xT−x∗‖3∞ ≤
1

T

T∑
t=1

‖xt−x∗‖3∞ ≤
1

T

T∑
t=1

‖∇ΦMF (xt)‖1 =
1

T

n∑
i=1

(y1,i−yT+1,i) =
‖J‖1 + ‖h‖1

T
.

Therefore for any t′ > T we see by convexity and Hölder’s inequality

ΦMF (x∗)− ΦMF (xt) ≤ 〈∇ΦMF (xt), x
∗ − xt〉 ≤

(
‖J‖1 + ‖h‖1

T

)1/3

‖∇ΦMF (xt)‖1

=

(
‖J‖1 + ‖h‖1

T

)1/3∑
i

| tanh−1(xt,i)− (Jxt + h)i|

=

(
‖J‖1 + ‖h‖1

T

)1/3∑
i

(yt,i − yt+1,i)

and summing this over t′ = T + 1 to 2T and telescoping we see that

ΦMF (x∗)− ΦMF (x2T ) ≤ 1

T

2T∑
t′=T+1

(ΦMF (x∗)− ΦMF (xt′)) ≤
(
‖J‖1 + ‖h‖1

T

)1/3∑
i

(yT,i − y2T,i)

≤
(
‖J‖1 + ‖h‖1

T

)4/3

which proves the result.

C Deferred proofs from Section 2.3

Theorem C.1 ([27]). Let (Σ,≤) be a finite alphabet equipped with a total ordering, fix a finite
graph G = (V,E) and fix functions fv : Σ → R and fu,v : Σ × Σ → R. Suppose that every
f = fu,v satisfies the following submodularity condition:

f(min(x1, x2),min(y1, y2)) + f(max(x1, x2),max(y1, y2)) ≤ f(x1, y1) + f(x2, y2)

Then the optimization problem

min
L:V→Σ

[∑
v∈V

fv(L(v)) +
∑
u∼v

fu,v(L(u), L(v))

]
.

is efficiently solvable in time poly(|Σ|, |V |).

Proof of Theorem 2.7. Supermodularity (which will become submodularity after converting to a
minimization problem by negating) for the edge interactions Jijxixj is immediate, so to apply this
theorem all we need to do is discretize the optimization problem max ΦMF appropriately: to do this
we compute Lipschitz constants on the relevant part of the space. First observe that

|x∗i | = | tanh(Ji · x∗∼i + hi)| ≤ tanh(‖Ji‖1 + |hi|)
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so if we restrict xi to lie within [− tanh(‖Ji‖1 + |hi|), tanh(‖Ji‖1 + |hi|) then

max
xi
| d
dxi

H(Ber(
1 + xi

2
)| = max

xi
tanh−1(tanh(‖Ji‖1 + |hi|)) = |Ji|1 + |hi|

so H(xi) is (‖Ji‖1 + |hi|)-Lipschitz on this interval. Similarly we observe that∣∣∣∣∣∣
∑
j

Jijxj + hi

∣∣∣∣∣∣ ≤ ‖Ji‖1 + |hi|

so if we discretize each coordinate with grid size ε
2(‖Ji‖1+|hi|) then we change the objective

by at most εn. Then by the result of [27] this problem can be solved to optimality in time
poly(1/ε, n,maxi ‖Ji‖+ |hi|).

D Deferred material from Section 3.1

In this section we quickly recall the basic definitions, facts, and notations involving the Bethe free
energy, its dual formulation, and the connection to Belief Propagation – as described in [36] and
reference text [21]. We repeat some of the standard calculations in order to express the results in our
variables νi→j . The Lagrangian corresponding to the optimization problem (5) over the polytope of
locally consistent distributions (which is defined over all, not necessarily consistent, Pij and Pi) is

L(P, λ) = ΦBethe(P ) +
∑
i,j,xi

λi→j(xi)(
∑
xj

Pij(xi, xj)− Pi(xi)) +
∑
i

λi(
∑
xi

Pi(xi)− 1)

where we ignore the constraint Pi(xi) ≥ 0 because, given the other constraints, this constraint is
always satisfied at a critical point (since the derivative of H(Ber(p)) diverges as p→ 0 or p→ 1).

By differentiating with respect to P , and setting λ′i→j =
λi→j(1)−λi→j(−1)

2 , one finds that at a
critical point of the Lagrangian that

Pij(xi, xj) ∝ eJijxixj+λi→j(xi)+λj→i(xj) ∝ eJijxixj+λ
′
i→jxi+λ

′
j→ixj

and

Pi(xi) ∝ exp

 1

deg(i)− 1

∑
j

λi→j(xi)−
hi

deg(i)− 1
xi

 ∝ exp

 1

deg(i)− 1

∑
j

λ′i→jxi −
hi

deg(i)− 1
xi

 .

Furthermore by differentiating with respect to λ we see that the constraints are satisfied, therefore
for any i ∼ j that Pi(xi) =

∑
xj
Pij(xi, xj) hence

Pi(xi)
deg(i)−1 ∝

∏
k∈∂i\{j}

∑
xk

Pik(xi, xk) ∝
∑
x∂i\j

e
∑
k(Jikxixk+λ′i→kxi+λ

′
k→ixk) = e

∑
k λ
′
i→kxi

∑
x∂i\j

e
∑
k(Jikxi+λ

′
k→i)xk

so
eλ
′
i→jxi−hixi ∝

∑
x∂i\j

e
∑
k(Jikxi+λ

′
k→i)xk ∝

∏
k

∑
xk

eJikxieλ
′
k→ixk .

Define νi→j := tanh(λ′i→j) so 1+νi→jxi
2 = e

λ′i→jxi

e
λ′
i→j+e

−λ′
i→j

, then we see

νi→j =
ehi
∏
k

∑
xk
eJikxkeλ

′
k→ixk − e−hi

∏
k

∑
xk
e−Jikxkeλ

′
k→ixk

ehi
∏
k

∑
xk
eJikxkeλ

′
k→ixk + e−hi

∏
k

∑
xk
e−Jikxkeλ

′
k→ixk

=
ehi
∏
k

∑
xk
eJikxk(1 + νk→ixk)− e−hi

∏
k

∑
xk
e−Jikxk(1− νk→ixk)

ehi
∏
k

∑
xk
eJikxk(1 + νk→ixk) + e−hi

∏
k

∑
xk
e−Jikxk(1− νk→ixk)

= tanh(hi +
∑

k∈∂i\j

tanh−1(tanh(Jik)νk→i))

which is the form of the BP equation we will typically refer to. We will denote the right hand side
by φ(ν)i→j so the BP iteration is given by ν 7→ φ(ν). We will also define θik = tanh(Jik). Finally,
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we will explicitly rewrite the Bethe free energy at a critical point in terms of the messages νi→j . We
claim that at a critical point (P, λ)

ΦBethe =
∑
i

Fi(λ)−
∑
i∼j

Fij(λ)

where

Fi(λ) := log
∑
xi

ehixi
∏
j∈∂i

∑
xj

eJijxixjeλ
′
j→ixj = log

∑
xi,x∂i

ehixi+
∑
j Jijxixj+λ

′
j→ixj

Fij(λ) := log
∑
xi,xj

eJijxixj+λ
′
i→jxi+λ

′
j→ixj .

To see this observe that from the Gibbs variational principle that (considering a joint distribution
where we sample Xi from Pi and then Xj |Xi according to Pij)

Fi(λ) = E[hiXi +
∑
j

JijXiXj + λ′j→iXj ] +H(Xi) +
∑
j∈∂i

H(Xj |Xi)

= E[hiXi +
∑
j

JijXiXj + λ′j→iXj ] +
∑
j∈∂i

H(Xi, Xj)− (deg(i)− 1)H(Xi)

and
Fij(λ) = E[

∑
j

JijXiXj + λ′i→jXi + λ′j→iXj ] +H(Xi, Xj)

so summing all of these terms does indeed give ΦBethe(P ). Finally we rewrite in terms of νi→j to
get

Fi(ν) = log

ehi ∏
j∈∂i

∑
xj

eJijxj
1 + νj→ixj

2
+ e−hi

∏
j∈∂i

∑
xj

e−Jijxj
1 + νj→ixj

2


= log

ehi ∏
j∈∂i

(1 + tanh(Jij)νj→i) + e−hi
∏
j∈∂i

(1− tanh(Jij)νj→i)

+
∑
j∈∂i

log
eJij + e−Jij

2

and

Fij(ν) = log
∑
xi

∑
xj

eJijxixj
1 + νi→jxi

2

1 + νj→ixj
2

= log

(
eJij + e−Jij

2
+

(eJij − e−Jij )νi→jνj→i
2

)
= log(1 + tanh(Jij)νi→jνj→i) + log

(
eJij + e−Jij

2

)
.

E Deferred proofs from Section 3.2

Proof of Lemma 3.1. Observe that

∂f

∂xi
(x) =

1− f(x)2

1− x2
i

≥ 0

which proves monotonicity, and

∂2f

∂xi∂xj
(x) =

−2f(x)(1− f(x)2)

(1− x2
i )(1− x2

j )
+1(i = j)

(1− f(x)2)2xi
(1− x2

i )
2

=
(2xi1(i = j)− 2f(x))(1− f(x)2)

(1− x2
i )(1− x2

j )
.

Note that for any vector w, if w′i = (1− f(x)2)wi/(1− x2
i ) then∑

ij

wi
∂2f

∂xi∂xj
(x)wj =

∑
ij

w′i(2xi1(i = j)− 2f(x))w′j =
∑
i

2xi(w
′
i)

2 − 2f(x)(
∑
i

w′i)
2 ≤ 0

since xi ≤ f(x), which proves concavity. If h > 0 or | supp(x)| ≥ 2 then this is a strictly inequality
since xi < f(x).
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Proof of Lemma 3.2. This will follow once we compute the gradient of Φ∗Bethe(ν). Recall that we
defined θij = tanh(Jij). Observe that

∂Φ∗Bethe
∂νi→j

(ν) =
∂Fj
∂νi→j

− ∂Fij
∂νi→j

=
ehjθij

∏
k∈∂j\i(1 + θjkνk→j)− e−hjθij

∏
k∈∂j\i(1− θjkνk→j)

ehj
∏
k∈∂j(1 + θjkνk→j) + e−hj

∏
k∈∂j(1− θjkνk→j)

− θijνj→i
1 + θijνi→jνj→i

=
1

νi→j + 1/(θijφ(ν)j→i)
− 1

νi→j + 1/(θijνj→i)
(8)

where (as defined earlier) φ(ν)j→i denotes the next BP message from j to i based on the current ν.
As long as ν ≥ 0, we see that∣∣∣∣ 1

νi→j + 1/(θijφ(ν)j→i)
− 1

νi→j + 1/(θijνj→i)

∣∣∣∣ =

∣∣∣∣∣
∫ 1/(θijνj→i)

1/(θijφ(ν)j→i)

1

(νi→j + x)2
dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 1/(θijνj→i)

1/(θijφ(ν)j→i)

1

x2
dx

∣∣∣∣∣ = θij |νj→i − φ(ν)j→i| ≤ 1

which proves that ‖∇Φ∗Bethe(ν)‖∞ ≤ 1. If ν ∈ Spre or Spost then the signs are determined by (8)
as claimed.

Proof of Lemma 3.3. If ν0)
i→j and ν(t) := φ(ν(t−1) then from monotonicity of φ (see Lemma 3.1)

we see this is a coordinate-wise decreasing sequence, which must converge to some fixed point.
By monotonicity and induction we also see that for any fixed point µ, µi→j ≤ ν

(t)
i→j for all t,

hence for ν∗ as well. Finally, consider any other point ν ∈ Spost: by convexity of Spost we see
that the line segment from ν to ν∗ is entirely contained in Spost, by Lemma 3.2 we see that for
any x on this interpolating line that ∇Φ∗Bethe(x) · (ν∗ − ν) ≥ 0, and integrating this gives that
Φ∗Bethe(ν) ≤ Φ∗Bethe(ν

∗) as desired.

As our final preparation for the theorem, we establish that at least one optimal BP fixed point has
only nonnegative messages. First we need the following technical lemma, which allows us to reason
about the behavior of the optimal couplings in the Bethe approximation. The realization that solving
for this coupling analytically is feasible is due originally to [34], although we parameterize the
solution differently.

Lemma E.1. Suppose that E[X] ≥ 0 and E[Y ] ≥ 0 where X,Y are valued in {±1}. Then

max
coupling

[−βCov(X,Y ) +H(X,Y )] ≤ max
coupling

[βCov(X,Y ) +H(X,Y )]

where the maximum ranges over all couplings (i.e. possible joint distributions) P of X and Y .

Proof. By subtracting H(Y ) on both sides we reduce to showing

max
coupling

[−βCov(X,Y ) +H(X|Y )] ≤ max
coupling

[βCov(X,Y ) +H(X|Y )]. (9)

We will do this by showing both sides are differentiable w.r.t. β and that the derivative of the rhs
(Cov(X,Y ) at the optimal coupling for the rhs) is larger than the derivative of the lhs (−Cov(X,Y )
for the optimal coupling for the lhs), so that integrating gives the desired inequality.

First we characterize the optimizer of the rhs of (9). Let ρ := Cov(X, Y
Var(Y ) ). Then E[X|Y ] =

E[X] + ρ(Y − EY ) since Cov(E[X|Y ], Y ) = Cov(X,Y ) = ρ. Thus the objective maximized by
the rhs is

f(ρ) := βVar(Y )ρ+ EYH(E[X] + ρ(Y − EY )).

where H(x) := H(Ber( 1+x
2 )). Differentiating in ρ we see that the optimum is when

Var(Y )β = EY [(Y −EY ) tanh−1(E[X]+ρ(Y −EY ))] = Cov(Y, tanh−1(E[X]+ρ(Y −EY ))).
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Let this relation define ρ(β) ≥ 0. Similarly, define ρ′(β) ≥ 0 to be the solution to −Var(Y )β =
Cov(Y, tanh−1(E[X]− ρ′(Y − EY ))) i.e.

Var(Y )β = Cov(Y, tanh−1(−E[X] + ρ′(Y − EY )))

We now claim that ρ(β) ≥ ρ′(β). As previously described, if we show this then by integrating w.r.t.
β we get the final inequality. To prove the claim, first subtract the above terms to get that

0 = Cov[Y, tanh−1(E[X] + ρ(Y − EY ))− tanh−1(−E[X] + ρ′(Y − EY ))].

Since the covariance is 0 and Y takes on only two values, it means that the rhs is independent of Y ,
therefore

tanh−1(E[X]+ρ(1−EY ))−tanh−1(−E[X]+ρ′(1−EY )) = tanh−1(E[X]+ρ(−1−EY ))−tanh−1(−E[X]+ρ′(−1−EY ))

and rearranging we get

tanh−1(E[X]+ρ(1−EY ))−tanh−1(E[X]+ρ(−1−EY )) = tanh−1(−E[X]+ρ′(1−EY ))−tanh−1(−E[X]+ρ′(−1−EY ))

Define g(x, r) := tanh−1(x + r) − tanh−1(x − r) for x, r s.t. |x| + |r| < 1 and r ≥ 0. Then the
above equation says g(E[X]−ρE[Y ], ρ) = g(−E[X]−ρ′E[Y ], ρ′). We obsere that g is even, strictly
increasing in r, and strictly increasing in x for x ≥ 0 since ∂

∂xg(x, r) = 1
1−(x+r)2 −

1
1−(x−r)2 ≥ 0.

Since g is an even function, we have

g(|E[X]− ρE[Y ]|, ρ) = g(|E[X] + ρ′E[Y ]|, ρ′). (10)

Suppose ρ < ρ′, then because g is a strictly increasing function in both x ≥ 0 and r we see that the
lhs of (10) is strictly less than the rhs, which is a contradiction. Therefore ρ ≥ ρ′.

Lemma E.2. There exists a BP fixed point in [0, 1)n which corresponds to a global maximizer of
the Bethe free energy.

Proof. Observe that for a locally consistent distribution P , the Bethe free energy can be rewritten to
give

ΦBethe(P ) =
1

2
E[X]TJE[X]+

∑
i

hiE[Xi]+
∑
i

H(Xi)+
∑
i∼j

(JijCov(Xi, Xj)+H(Xi, Xj)−H(Xi)−H(Xj)).

We first claim that there exists a global maximizer of this functional (over all locally consistent dis-
tributions) satisfying E[Xi] ≥ 0 for all i. To see this, we consider a fixed feasible local distribution
P and claim that there exists Q with sign-flipped marginals EQ[Xi] = |EP [Xi]| and no smaller
value of JijCov(Xi, Xj) + H(Xi, Xj). We now describe the couplings along each edge i ∼ j: if
neither or both of i and j were sign-flipped, then we can simply use the same/sign-flipped coupling
from before. Now suppose (w.l.o.g.) that j has the same marginal and i was sign-flipped. Then
it follows immediately from Lemma E.1 that there exists a coupling Qij between Xi and Xj s.t.
JijCovQij (Xi, Xj) +HQij (Xi, Xj) ≥ JijCovP (Xi, Xj) +HP (Xi, Xj).

Recall that at a critical point of the Lagrangian, for any edge i ∼ j

Pij(xi, xj) ∝ eJijxixj+λ
′
i→jxi+λ

′
j→ixj .

Since we have shown that there exists a global maximizer P such that E[Xi],E[Xj ] ≥ 0 it must
be that at least one of λ′i→j , λ

′
j→i ≥ 0. We now show that there exists another locally consistent

distribution Q with ΦBethe(Q) ≥ ΦBethe(P ) and with corresponding λ′i→j , λ
′
j→i ≥ 0 for all edges

i and j.

The construction of Q goes through the dual free energy Φ∗Bethe. First recall that ΦBethe(P ) =
Φ∗Bethe(ν) where νi→j = tanh(λ′i→j) is a fixed point of the BP equations. Furthermore, recall
from (8) that

∂νi→jΦ
∗
Bethe(ν) =

1

νi→j + 1/(θijφ(ν)j→i)
− 1

νi→j + 1/(θijνj→i)
.
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Based on this we claim that for µi→j = |νi→j |, Φ∗Bethe(µ) ≥ Φ∗Bethe(ν). We consider flipping
one negative coordinate νi→j to |νi→j | at a time and show Φ∗Bethe is non-decreasing under this
operation. First we compute the change using (8):

Φ∗Bethe(ν∼(i→j), |νi→j |)− Φ∗Bethe(ν) =

∫ |νi→j |
−|νi→j |

∂Φ∗Bethe
∂νi→j

dνi→j

= log
|νi→j |+ 1/(θijφ(ν)j→i)

−|νi→j |+ 1/(θijφ(ν)j→i)
− log

|νi→j |+ 1/(θijνj→i)

−|νi→j |+ 1/(θijνj→i)

= log
1 + |νi→j |θijφ(ν)j→i
1− |νi→j |θijφ(ν)j→i

− log
1 + |νi→j |θijνj→i
1− |νi→j |θijνj→i

.

Finally, we notice that this expression is nonnegative as long as φ(ν)j→i ≥ νj→i ≥ 0. Recall that
if we are flipping νi→j from negative to positive, by our previous argument it is guaranteed that
νj→i ≥ 0. Furthermore, initially we start from a BP fixed point so φ(ν)j→i = νj→i, and increasing
coordinates of ν only increases φ(ν), so we maintain the invariant φ(ν)j→i ≥ νj→i for all j, i except
possibly for those νj→i which have been previously flipped, in which case there is no issue because
we will never flip νi→j .

Therefore µ indeed satisfies that Φ∗Bethe(µ) ≥ Φ∗Bethe(ν), and also from the definition we see
that µ′i→j ≥ |φ(ν)i→j | = |νi→j | = µi→j so µ ∈ Spost. Therefore by Lemma 3.3 we see
Φ∗Bethe(µ

∗) ≥ Φ∗Bethe(µ) ≥ Φ∗Bethe(ν). Hence µ∗ is a BP fixed point which corresponds to a
locally consistent distribution Q with ΦBethe(Q) = Φ∗Bethe(µ

∗) ≥ Φ∗Bethe(ν) = ΦBethe(P ), so Q
is a global maximizer of ΦBethe, and µ∗i→j ≥ 0 for all i and j.

Proof of Theorem 3.4. By Lemma E.2 there exists some µ with µi→j ≥ 0 for all i, j such that
Φ∗Bethe(µ) equals the global maximum of the Bethe free energy. However, by Lemma 3.3, the
fixed point ν∗ satisfies Φ∗Bethe(ν

∗) ≥ Φ∗Bethe(µ). Therefore the locally consistent distribution P
corresponding to ν∗ (which satisfies Φ∗Bethe(ν

∗) = ΦBethe(ν)) must be a global maximizer of the
Bethe free energy.

F Deferred proofs from Section 3.3

Proof of Lemma 3.5. We prove this by constructing a coordinate-wise monotonically decreasing
path from µ to ν(T ) contained in Spre. Then, because the gradient is coordinate-wise nonposi-
tive in Spre due to Lemma 3.2, it follows that the first derivative of Φ∗ along (each segment of) this
path is nonnegative which proves the inequality by integration.

We construct this path segment-by-segment using an iterative process. For any ν such that ν(T ) ≤
ν ≤ ν(0), define T (ν, i, j) = Tν0(ν, i, j) := max{t ≥ 0 : νi→j ≤ ν

(t)
i→j}. In other words,

Tν0(ν, i, j) is the last time at which BP iterated from ν(0) has a larger message from i → j than in
the specified ν.

1. Let µ(0) = µ and set s := 0.

2. While there exists i and j such that T (µ(s), i, j) < T :

(a) Choose i and j which minimize t := T (µ(s), i, j).

(b) Define µ(s + 1)i→j = ν
(t+1)
i→j and µ(s + 1) = µ(s) in all other coordinates. For

s′ ∈ (s, s+ 1) define µ(s′) by linearly interpolating µ(s) and µ(s+ 1).
(c) Set s := s+ 1.

Note that this process maintains the invariant µ(s) ≥ ν(t) and that at each step of the above process,
we increase T (µ(s), i, j) by 1 so the process must terminate in a finite number of steps with the path
µ(·) terminating at ν(T ). It remains to check that this process stays inside of Spre which we check
by induction. Given that µ(s) ∈ Spre, let t be as defined in step 2 (a) above and let µ′ be any linear
interpolate between µ(s) and µ(s+ 1). Then we know µ(s) ≤ ν(t) so φ(µ(s)) ≤ φ(ν(t)) = ν(t+1)
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hence φ(µ′)i→j ≤ φ(µ(s))i→j ≤ ν
(t+1)
i→j = µ(s + 1)i→j ≤ µ′i→j . For the other coordinates a, b

it’s immediate from monotonicity and the induction hypothesis that φ(µ′)a→b ≤ φ(µ(s))a→b ≤
µ(s)a→b = µ′a→b so µ′ ∈ Spre.

The following Lemma gives the bound (in parameter space) for BP at positive external field which
we will use; it is a variant of Lemma 4.3 from [7] which is more optimized for our use. It is con-
venient to rephrase the result of Ising models on trees, in which case it gives a quantitative bound
showing that under positive external field, the root marginal on an infinite tree does not distinguish
between all-plus and free boundary conditions. The connection to our problem is that, because BP
computes exact marginals on trees, Loopy BP computes true marginals on its corresponding “com-
putation tree” which is a truncation of the non-backtracking walk tree, with boundary conditions on
the bottom level determined by its initialization.
Lemma F.1 (Variant of Lemma 4.3 from [7]). Suppose T is an infinite tree rooted at ρ and suppose
the minimum external field is hmin := mini hi > 0. Then

ET (`)[Xρ|XT (`) = 1]− ET (`)[Xρ] ≤
1 + ‖J‖∞
` tanh(hmin)

where ET (`) denotes the expectation under the measure where the tree is truncated at level `.

Proof. The proof is largely the same as in [7] with a slight difference in the bounds. Observe that
ET (`)[Xρ|XT (`) = 1] is the same as ET (`−1),B [Xρ] where B corresponds to additional external
field

∑
j∈C(i) Jij at every node i on level `− 1. Similarly, ET (`)[Xρ] is the same as ET (`−1),h[Xρ]

where there is additional fieldB′i of
∑
j∈C(i) tanh−1(tanh(Jij) tanh(hj)) at the leaves of T (`−1).

Define

M := sup
i∈T,j∈C(i)

Jij

tanh−1(tanh(Jij) tanh(hj))
≤ sup
i∈T,j∈C(i)

Jij
tanh(Jij) tanh(hmin)

≤ 1 + ‖J‖∞
tanh(hmin)

where we used the inequalities tanh−1(x) ≥ x and x/ tanh(x) ≤ 1 + x for x ≥ 0.

Note from above that ET (`)[Xρ] = ET (`−1),h[Xρ] ≥ ET (`−1)[Xρ] by Griffith’s inequality. There-
fore we find

ET (`)[Xρ|XT (`) = 1]− ET (`)[Xρ] ≤ ET (`)[Xρ|XT (`) = 1]− ET (`−1)[Xρ] = ET (`−1),B [Xρ]− ET (`−1)[Xρ]

≤ ET (`−1),MB′ [Xρ]− ET (`−1)[Xρ]

≤M(ET (`−1),B′ [Xρ]− ET (`−1)[Xρ])] = M(ET (`)[Xρ]− ET (`−1)[Xρ])]

where the last two inequalities were by Griffith’s inequality5 (using that B ≤MB′) and by concav-
ity of the root marginal w.r.t. the external field along the line from 0 to B′, which follows6 from the
fact that the marginal at the root can be computed via the BP recursion and that this recursion is a
composition of concave and monotone functions due to Lemma 3.1, hence itself concave.

Summing the corresponding inequality for levels k = 1 to ` we find

`(ET (`)[Xρ|XT (`) = 1]− ET (`)[Xρ]) ≤
∑̀
k=1

(ET (k)[Xρ|XT (k) = 1]− ET (k)[Xρ]) ≤M

which gives the result.

We are now ready to prove the main theorem, Theorem 1.3. For the reader’s convenience we recall
the statement below; note that we rewrote using Φ∗Bethe(ν

∗) = ΦBethe(P
∗) by Theorem 3.4 and

the definition of Φ∗Bethe (see Appendix D).

Theorem F.2 (Restatement of Theorem 1.3). Initializing ν(0)
i→j = 1 for all i ∼ j and performing t

steps of the BP iteration on a graph with m edges we have

0 ≤ Φ∗Bethe(ν
∗)− Φ∗Bethe(ν

(t)) ≤
√

8mn(1 + ‖J‖∞)

t
5This states the root marginal is monotone in the external fields. As with concavity, this can be seen on the

tree by writing the root marginal in terms of the BP recursion and using Lemma 3.1.
6Alternatively, this can be proved from the GHS inequality as in [7].
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Proof. Observe the lower bound is immediate from Lemma 3.5 and the definition of ν∗ as the limit
of the iterates from ν(0). It remains to prove the upper bound.

Let B > 0 be arbitrary and define ν∗(B) to be the optimal BP fixed point when the external field
everywhere is increased by B. Then since ν∗(B) corresponds to a global maximum of the Bethe
free energy with added external field, we see from the definition of the Bethe free energy that

Φ∗Bethe(ν
∗) +

∑
i

BEν∗ [Xi] ≤ Φ∗Bethe(ν
∗(B)) +

∑
i

BEν∗(B)[Xi].

so
Φ∗Bethe(ν

∗) ≤ Φ∗Bethe(ν
∗(B)) +Bn.

Define ν(t)(B) to be the result of the BP iteration after t steps from ν(0) after having increased the
external field at every node by B. Observe by monotonicity that ν(t) ≤ ν(t)(B).

Now we appeal to Lemma 3.2 and Lemma F.1 to see that

Φ∗(ν∗(B))− Φ∗(ν(t)(B)) ≤ ‖ν(t)(B)− ν∗(B)‖1 ≤ 2m(1 + ‖J‖∞)/Bt

(using that ν(t)(B) is sandwiched between the output of BP initialized from 0 and from all-1 with
additional external field B to get the last inequality from Lemma F.1) hence

Φ∗(ν∗)− Φ∗(ν(t)(B)) ≤ Bn+ 2m(1 + ‖J‖∞)/Bt.

By Lemma 3.5 this implies that

Φ∗(ν∗)− Φ∗(ν(t)) ≤ Bn+ 2m(1 + ‖J‖∞)/Bt

as well since ν(t) ≤ ν(t)(B) ≤ ν(0). Finally we optimize the choice ofB: solvingBn = 2m/Btwe
findB2 = 2m(1+‖J‖∞)/nt so the final upper bound on the excess error is 2

√
2mn(1 + ‖J‖∞)/t.

G Some Examples

The previous analysis shows how to compute the Bethe free energy by using a small number of
rounds of BP to find approximate maximizer of Φ∗Bethe (on S). However, these messages may be
far in parameter space (e.g. `1-distance) from the optimal BP fixed point due to flat directions in
the objective. In fact, simple examples show that the number of iterations to reach o(n) distance in
parameter space may be exponential in β. These examples also show lower bounds on how quickly
the BP estimate for the free energy can converge.

Example G.1. Consider the Ising model on the cycle with fixed edge weight β. Starting from the
all-1s initialization, the messages output at time t are all equal to tanh(β)t, so they converge to 0
as t → ∞. Since 1 − tanh(β) = 2e−β

eβ+e−β
= O(e−2β) we see it takes Ω(e2β) iterations for the

messages to go below 1/2.

We also see the that

Φ∗Bethe(ν
(t)) = n log

[
(1 + tanh(β)t+1)2 + (1− tanh(β)t+1)2

]
+ n log

eβ + e−β

2
− n[log(1 + tanh(β)2t+1)]

= n log

[
2 + 2 tanh(β)2t+2

1 + tanh(β)2t+1

]
+ n log

eβ + e−β

2

= n log(2) + n log
eβ + e−β

2
+ n log(1 +

tanh(β)2t+2 − tanh(β)2t+1

1 + tanh(β)2t+1
)

= n log(2) + n log
eβ + e−β

2
+ Θ(ne−2β tanh(β)2t+1).

Therefore if we want to achieve εn error in Φ∗Bethe for ε < e−2β , at least Ω(eβ) iterations of BP are
required.
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Figure 1: Results of mean-field iteration and BP from all-ones initialization on a 40×40 square grid
with edge weights β = tanh−1(1/3) ≈ 0.347, with zero external field except for external field of
strength 5 at the bottom-left node. In (b) we plot the difference between the true Bethe free energy
and the estimated free energy of BP at each iteration on a log-log plot.

Example G.2. Consider a d-regular graph on n nodes with fixed edge weight β and no external
field. Let β be the critical value given by solving (d − 1) tanh(β) = 1. Then using symmetry
to reduce to a 1-dimensional recursion as before, we see that the BP iteration behaves locally like
x 7→ x − cx3 near the fixed point x = 0, where c = c(d) > 0. Solving this recurrence, we see
that BP converges in parameter space (in `∞ norm) at a Θ(1/

√
t) rate and the objective value (i.e.

estimate for the Bethe free energy density) converges at a Θ(1/t2) rate asympotically.

Furthermore for fixed β, it’s impossible for the convergence rate in parameter space under `∞ norm
to be dimension-independent, whereas when h > 0 we knew this was indeed true by Lemma F.1:

Example G.3. Consider the Ising model on the 2-ary tree for β sufficiently large (past the percola-
tion threshold), so the expectation of the root under all-1s is bounded away from 0 by a constant. If
the depth of the tree is k = Θ(log n), then after k − 1 rounds of BP initialized from ~1 the message
from the root to its immediate children will be bounded below by a constant, but after k rounds it
will be 0.

Finally, to illustrate the behavior of BP highlighted by our results, we ran the mean-field iteration
and BP on a simple 40× 40 square grid example with external field at a single node; the results are
shown in Figure 1. As shown, a small number of iterations already suffices to get a good estimate of
the mean-field and Bethe free energies; as shown on the log-log plot (Figure 1 (b)), the convergence
rate is consistent with a power law decay as shown in Theorem 1.3, although with a better exponent
than the worst-case bound shows. This is expected as we expect this model to behave similarly to
Example G.2; we chose β based on the critical value for the 4-regular tree. In this example, the
mean-field iteration converged even faster; again this is consistent with what one would guess based
on the behavior in Example 2.5, where one observes that away from the critical β the mean field
iteration converges faster, at an exponential rate asymptotically.

We also see in Figure 2 the importance of initializing from all-ones; the model is the same as before
except that β is larger, so that long-range behavior can affect BP. In simple examples like this, BP
and mean-field iteration will require at least on the order of the diameter many steps in order to
converge if started from all-zeros.

H Computing exponentially good BP messages in polynomial time

The bound we proved for BP in Theorem 1.3 showed that if we want to achieve εn error then
poly(1/ε) steps of BP suffice. What if ε is exponentially small? Can a small number of steps of BP
achieve ε error? It turns out the answer to this is negative. In Example G.1 from the previous section
(Ising model on a line at inverse temperature β), we saw that BP cannot achieve error O(e−2β)
approximating the free energy without taking at least Ω(eβ) many steps. Therefore, if we want
to estimate Φ∗BP within an exponentially small error in polynomial time we must use a different
algorithm.
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Figure 2: Comparison of BP and mean-field iteration at all-ones initializes (MF,BP) vs. all-zeros
initialization (MF-0,BP-0). The instance is the same as in Figure 1 except that β ≈ 0.384; we
see that all-ones initialization leads to quick convergence (consistence with Theorems 1.2 and 1.3)
whereas with all-zeros it does not.

In this section we use the ideas developed while analyzing BP to give such algorithm, with runtime
poly(log(1/ε), n) . In order to achieve asymptotically fast convergence to the optimum, we use tools
from convex optimization instead of message-passing. Recall that

Spost = {ν ≥ 0 : φ(ν)i→j ≥ νi→j}

is a convex set (with an obvious separation oracle) and observe that by Theorem 3.4, the optimum
ν∗ is the maximizer of the following convex program:

ν∗ = arg max
ν∈Spost

∑
i,j

νi→j . (11)

We show how to compute the maximizer using the ellipsoid method (although a wide variety of
methods are applicable, see e.g. [5]). First we analyze the case where h is bounded below, and we
show the dependence on hmin is very benign.

Lemma H.1. Suppose that hmin := minhi > 0. Then given ε > 0, the ellipsoid method applied to
(11) computes ν ∈ S′ such that

‖ν∗ − ν‖1 ≤ ε

after O(m2(log(n/hmin) + log(1/ε))) steps of the ellipsoid method.

Proof. Recall from Theorem 2.4 of [5] that the feasible set S contains a ball of radius r and is
contained in a ball of radius R, then for any convex function f : Rd → [−B,B] and xt the result of
t steps of ellipsoid method, satisfies

max
x∈S

f(x)− f(xt) ≤
2BR

r
e−t/2d

2

as long as t ≥ 2d2 log(R/r). Note that our function of interest
∑
i,j νi→j is bounded with

B = 2m and is contained in [0, 1]n ⊂ B(0, 2
√
n). By assumption we see that Spost contains

[0, tanh(hmin)]2m so it contains a ball of radius tanh(hmin)
2 .

In order to guarantee the optimization problem is well-behaved, we perturb it by a tiny amount,
and this gives an algorithm for the general case. (If we do not perturb the model by adding a tiny
external field, Spost may be a lower-dimensional, measure-zero set which would be problematic for
the ellipsoid method.)

Theorem H.2. Suppose ε > 0. There is an algorithm which runs in time poly(n, log(1/ε)) and
returns ν such that

|Φ∗Bethe(ν∗)− Φ∗Bethe(ν)| ≤ ε
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Proof. Fix B > 0 to be optimized later. We add external field B everywhere in the model and apply
Lemma H.1 to see that we can compute ν such that

‖ν∗(B)− ν‖1 ≤ ε/2

in time poly(log(1/ε), n, log(1/B)). Then we see by the same argument as in Theorem 1.3 that

|Φ∗Bethe(ν∗)− Φ∗Bethe(ν)| ≤ Bm+ ε/2.

Finally taking B = ε/2m shows the result.

The same approach works for the mean-field problem as well:
Theorem H.3. Suppose ε > 0. There is an algorithm which runs in time poly(n, log(1/ε)) and
returns x such that

ΦMF (x)− ΦMF (x∗) ≤ ε

Proof. Recall the definition of the convex set Spre := {x ≥ 0 : tanh⊗n(Jx+h) ≤ x} and consider
the optimization problem

max
x∈Spre

∑
i

xi.

Then we do everything the same way as in the proof of Theorem H.2: the algorithm proceeds
perturbing the problem by adding a tiny external field B = ε/2, and then solving it with ellipsoid
method.
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