
Supplementary for
Learning in Generalized

Linear Contextual Bandits with Stochastic Delays

A Table of Parameters

Notation Definition

K number of arms
d feature dimension
 inf{kxk1,k✓�✓⇤k1} ġ(x0✓)
✓⇤ unknown parameter in GLCB model
� sub-Gaussian parameter for noise ✏t
Lg upper bound on ġ
Mg upper bound on g̈
�2
0 lower bound on �min(E[ 1K

P
a2[K] xt,ax0

t,a])
⇠D tail-envelope distribution for the delays
q parameter to characterize the tail-envelope distribution ⇠D

µD expectation of the tail-envelope distribution ⇠D
MD parameter of ⇠D
�D parameter of ⇠D
�G sub-Gaussian parameter of Gt

µ0
D expectation of iid delays

Dmax upper bound on bounded delays

Table 2: Parameters in the GLCB model with delays.

B Auxiliary Results

Theorem 8 (Maximum over a finite set, Wainwright (2019)). Let X1, · · · , Xn be centered �-sub-
Gaussian random variables. (i.e. E[exp(�Xi)]  exp

⇣
�2�2

2

⌘
). Then,

E
✓

max
1in

Xi

◆
 �

p
2 log(n),

and

E
✓

max
1in

|Xi|

◆
 �

p
2 log(2n).

Moreover, for any t � 0,

P( max
1in

Xi > t)  exp

✓
�

t
2

2�2
+ log n

◆
,

and

P( max
1in

|Xi| > t)  2 exp

✓
�

t
2

2�2
+ log n

◆
.

Note that the random variables in Theorem 8 need not be independent.
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Theorem 9 ( Sub-Gaussian parameter for centered indicator random variables, Ostrovsky and Sirota
(2014) ). Let p 2 [0, 1] and let ⌘ be a centered random variable such that P(⌘ = 1 � p) = p and
P(⌘ = �p) = 1� p, then

E[exp(�⌘)]  exp(�2
Q(p)),

where Q(p) = 1�2p
4 log( 1�p

p )
.

Theorem 10 (Hoeffding Bound, Wainwright (2019)). Let X1, · · · , Xn be independent random
variables. Assume Xi has mean µi and sub-Gaussian parameter �i. Then for all t � 0, we have

P
 

nX

i=1

(Xi � µi) � t

!
 exp

✓
�

t
2

2
Pn

i=1 �
2
i

◆
.

C Maximum Likelihood Estimators (MLEs).

We use data with timestamps in Tt to construct the MLE. Suppose we have independent samples of
{Ys : s 2 Tt} condition on {Xs : s 2 Tt}. The log-likelihood function of ✓ under (1) is

log l (✓ | Tt) =
X

s2Tt


YsX

0
s✓ �m(X 0

s✓)

v(⌘)
+B(Ys, ⌘)

�

=
1

v(⌘)

X

s2Tt

[YsX
0
s✓ �m(X 0

s✓)] + constant.

Therefore, the MLE can be defined as

✓̂t 2 argmax
✓2⇥

X

s2Tt

[YsX
0
s✓ �m(X 0

s✓)] .

Since m is differentiable with m̈ � 0, the MLE can be written as the solution of the following
equation

X

s2Tt

(Ys � g(X 0
s✓))Xs = 0, (12)

which is the estimator we use in Step 4 of Algorithm 1.

Note that, the general GLCB, a semi-parametric version of the GLM, is obtained by assuming only
that E[Y |X] = g(X 0

✓
⇤) (see (2)) without further assumptions on the conditional distribution of

Y given X . In this case, the estimator obtained by solving (12) is referred to as the maximum
quasi-likelihood estimator. It is well-documented that this estimator is consistent under very general
assumptions as long as matrix

P
s2Tt

XsX
0
s tends to infinity as t ! 1 (Chen et al. (1999); Filippi

et al. (2010)).

D Missing Proofs

In this section, we provide the proofs of Propostion 1, Theorem 2, Proposition 4, Lemma 6, Lemma 7
and Theorem 5.

Proof of Proposition 1. Now let us prove the three properties in Proposition 1.

Property 1. Let D̃ki be a random variable such that D̃ki � �(µD +MD) almost surely, E[D̃ki ]  0

and P(D̃ki � x)  exp
⇣
�

x1+q

2�2
D

⌘
for x � 0. One can view D̃ki as a shifted delay.

Define Ĩi = I
⇣
D̃ki � i

⌘
�pi with pi = P(D̃ki � i). Then P

⇣
Ĩi = 1� pi

⌘
= pi and P(Ĩi = pi) =

1� pi. Denote �i =
r

1�2pi

2 log
⇣

1�pi
pi

⌘ , it is easy to verify that

E exp
⇣
�Ĩi

⌘
= pi exp(�(1� pi)) + (1� pi) exp(�pi�)  exp

✓
�
2
i �

2

2

◆
.
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Therefore Ĩi is sub-Gaussian with parameter �i. (Also see Theorem 9.)

We first show that when i � max

⇢
1+q
p
2 log(2)�2

D,
q

q
2�2

D
1+q + 1

�
:= I , the following two facts

hold:

pi 
1

2
, (13)

and exp

✓
i
1+q

2�2
D

◆
� exp

✓
(i� 1)1+q

2�2
D

◆
� 1. (14)

• When i �
1+q
p

2 log(2)�2
D,

pi  e
� i1+q

2�2
D 

1

2
.

The first inequality holds by Assumption 2 and second inequality holds by simple calculation.

• Define h(x) = exp
⇣

x1+q

2�2
D

⌘
with q > 0, which is differentiable. By Mean Value Theorem,

h(x)� h(y) = exp
⇣

z1+q

2�2
D

⌘
(1+q)zq

2�2
D

(x� y) for some z 2 (x, y). Take x = i� 1 and y = i,
for some z 2 (i� 1, i), we have

exp

✓
i
1+q

2�2
D

◆
� exp

✓
(i� 1)1+q

2�2
D

◆
= exp

✓
z
1+q

2�2
D

◆
(1 + q)zq

2�2
D

�
(1 + q)zq

2�2
D

�
(1 + q)(i� 1)q

2�2
D

� 1. (15)

The last inequality in (15) holds since i � q

q
�2

1+q + 1.

Given (13)-(14), when i � I and q � 0,

�
2
i =

1� 2pi

2 log
⇣

1�pi

pi

⌘ 
1

2 log
⇣

1�pi

pi

⌘ (16)


�
2
D

(i� 1)1+q
. (17)

(16) holds since (13) and (17) holds since (14). Therefore

1X

i=I

�
2
i =

1X

i=I

1� 2pi

2 log
⇣

1�pi

pi

⌘ 

1X

i=I

1

2 log
⇣

1�pi

pi

⌘ 

1X

i=I�1

�
2
D

i1+q

 �
2
D

 
1 +

1X

i=2

1

i1+q

!
 �

2
D

✓
1 +

Z 1

1

1

x(1+q)
dx

◆
=

�
2
D(1 + q)

q
.

It is easy to check that �2
i = 1�2pi

2 log
⇣

1�pi
pi

⌘ 
1
4 for all pi 2 [0, 1]. Therefore,

P1
i=1 �

2
i 

1
4I+

�2
D(1+q)

q .

Define G̃ =
P1

i=1 Ĩi. combining above result with Theorem 10, G̃ is sub-Gaussian with parameter

�G =
q

I
4 +

�2
D(1+q)

q . Similarly, we can show that G̃t =
Pt

i=1 Ĩi is sub-Gaussian with parameter

�G =
q

I
4 +

�2
D(1+q)

q for any t = 1, 2, · · · , T .
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Recall Gt =
Pt�1

s=1 I(Ds � t�s). When t  µD+MD�1, Gt  µD+MD. When t � µD+MD�1,
specifying ki = t� (µD +MD)� i and D̃ki = Di � µD �MD,

Gt =
t�1X

s=1

I(Ds � t� s)

=
t�µD�MD�1X

s=1

I(Ds � t� s) +
t�1X

s=t�µD�MD

I(Ds � t� s)

=
t�1X

s=t�µD�MD

I(Ds � t� s) +
t�µD�MD�1X

s=1

I(Ds � µD �MD � t� s� µD �MD)

 µD +MD +
t�µD�MD�1X

s=1

I(Ds � µD �MD � t� s� µD �MD)

= µD +MD +
t�µD�MD�1X

i=1

I(Dt�(µD+MD)�i � µD �MD � i) (i = t� s� µD �MD)

= µD +MD +
t�µD�MD�1X

i=1

I(D̃ki � i)

Hence,

Gt 

t�µD�MD�1X

i=1

[I(D̃ki � i)� pi] + (
t�µD�MD�1X

i=1

pi) + µD +MD

= µD +MD +
t�µD�MD�1X

i=1

Ĩi + (
t�µD�MD�1X

i=1

pi)

 µD +MD +
t�µD�MD�1X

i=1

Ĩi + (µD +MD)

= G̃t�µD�MD�1 + 2(µD +MD) (18)

Therefore, we arrive at Gt  G̃t�µD�MD�1 + 2(µD +MD) with specific choice of ki = t� (µD +
MD)� i and D̃ki = Di � µD �MD.

Given the fact that E[G̃t] = 0 and G̃t is sub-Gaussian with parameter �G, Gt satisfies

P (Gt � 2(µD +MD) + x)  exp

✓
�x

2

2�2
G

◆
. (19)

Property 2. Further define G̃
⇤
T = max1tT {G̃t} as the running maximum of correlated sub-

exponentials G̃t up to time T , from Theorem 8, we have

E[G̃⇤
T ]  �G

p
2 log T .
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By the union bound,

P
⇣
G̃

⇤
T � �G

p
2 log T + x

⌘


TX

t=1

P
⇣
G̃t � �G

p
2 log T + x

⌘

 T exp

✓
�
(�G

p
2 log T + x)2

2�2
G

◆

= T exp

✓
�

x
2

2�2
G

�
2x�G

p
2 log T

2�2
G

� log T

◆

= exp

✓
�

x
2

2�2
G

�
2x�G

p
2 log T

2�2
G

◆

 exp

✓
�

x
2

2�2
G

◆
.

Therefore, with probability 1� �,

G̃
⇤
T  �G

p
2 log(T ) + �G

s

2 log

✓
1

�

◆
.

Recall that G⇤
T = max1tT Gt. When T  µD + MD � 1, G⇤

T  µD + MD. When T �

µD +MD � 1, specifying ki = T � (µD +MD)� i and D̃ki = Dki � µ�M , we have

G
⇤
T  G̃

⇤
T + 2(µD +MD).

The derivation is similar to the analysis in (18).

Therefore, with probability 1� �, we have

G
⇤
T  2(µD +MD) + �G

p
2 log(T ) + �G

s

2 log

✓
1

�

◆
.

Property 3. Given a fixed Gt (t = 1, 2, · · · , T ), from Vershynin (2010) and Li et al. (2017),
�min(Wt) � B with probability 1� �, when

t �

0

@
C1

p
d+ C2

q
log( 1� )

�min(⌃)

1

A

2

+
2B

�min(⌃)
+Gt. (20)

Combining above with (19), we have the desired result.

Proof of Theorem 2. We first bound the one-step regret. To do so, fix t and let X⇤
t = xt,a⇤

t
and

�t = ✓̂t � ✓
⇤, where a

⇤
t = argmaxa2[K] µ(x

0
t,a✓

⇤) is an optimal action at round t. The selection of
at in DUCB-GLCB implies

hX
⇤
t , ✓̂ti+ �tkX

⇤
t kV �1

t
 hXt, ✓̂ti+ �tkXtkV �1

t
.

Then we have

hX
⇤
t , ✓

⇤
i � hXt, ✓

⇤
i = hX

⇤
t �Xt, ✓̂ti � hX

⇤
t �Xt, ✓̂t � ✓

⇤
i (21)

 �t(kXtkV �1
t

� kX
⇤
t kV �1

t
) + kX

⇤
t �XtkV �1

t
k�kVt . (22)

Therefore, to bound hX
⇤
t , ✓

⇤
i � hXt, ✓

⇤
i, it suffices to bound k�kVt and kXtkV �1

t
.

Suppose �min(W⌧+1) � 1, for any � 2 [ 1T , 1) define event

E� :=

(
k�kWt 

�



s
d

2
log

✓
1 +

2(t�Gt)

d

◆
+ log

✓
1

�

◆)
.
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From Lemma 2 in (Li et al. (2017)), then event E� holds for all t � ⌧ with probability at least 1� �.

k�tk
2

Vt
= �0

tVt�t = �
0
t

 
Wt +

X

s2Mt

XsX
0
s

!
�t

= �0
tWt�t +

X

s2Mt

�0
tXsX

0
s�t

 �0
tWt�t +

X

s2Mt

k�sk
2
kXsk

2

 k�tk
2
Wt

+Gtk�tk
2
.

When �min(Wt) � 16�2 d+log( 1
� )

2 , from Lemma 7 in (Li et al. (2017)), with probability 1� �,

k�tk
2


4�



s
d+ log( 1� )

�min(Wt)
 1.

Therefore, when �min(Wt) � 16�2 d+log( 1
� )

2 , with probability 1� 2�,

k�tkVt 

s
�2

2

✓
d

2
log

✓
1 +

2(t�Gt)

d

◆
+ log

✓
1

�

◆◆
+Gt


�



s
d

2
log

✓
1 +

2(t�Gt)

d

◆
+ log

✓
1

�

◆
+
p
Gt. (23)

Let us come back to the satisfaction of conditions �min(Wt) � 16�2 d+log( 1
� )

2 and �min(W⌧+1) � 1.

From Proposition 1, �min(Wt) � max
n
1, 16�2 d+log( 1

� )
2

o
with probability 1� 2�, when

t �

0

@
C1

p
d+ C2

q
log( 1� )

�min(⌃)

1

A

2

+
2max{1, 16�2 d+log( 1

� )
2 }

�min(⌃)
+ 2(µD +MD) + �G

s

2 log

✓
1

�

◆
:= ⌧. (24)

We now choose �t =
�


r
d
2 log

⇣
1 + 2(t�Gt)

d

⌘
+ log( 1� ) +

p
Gt. If Et holds for all t � ⌧ , then,

hX
⇤
t , ✓

⇤
i � hXt, ✓

⇤
i  �t

⇣
kXtkV �1

t
� kX

⇤
t kV �1

t
+ kX

⇤
t �XtkV �1

t

⌘
. (25)

Suppose there is an integer m such that �min(Vm+1) � 1, from Lemma 2 in Li et al. (2017), we have

m+nX

t=m+1

kXtkV �1
t



s

2dn log

✓
n+m

d

◆
. (26)

for all n � 0. Combine (25) and (26), we have

TX

t=⌧+1

(hX⇤
t , ✓

⇤
i � hXt, ✓

⇤
i)  2 max

1tT
{�t}

s

2Td log

✓
T

d

◆

 2

"
�



s
d

2
log

✓
1 +

2T

d

◆
+ log

✓
1

�

◆
+
p

G⇤
T

#s

2Td log

✓
T

d

◆

 2
p
G⇤

T

s

2Td log

✓
T

d

◆
+

2d�


log

✓
T

d�

◆
p

T .
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Note that g is an increasing Lipschitz function with Lipschitz constant Lg and the g function is
bounded between 0 and 1. The regret of algorithm DUCB-GLCB can be upper bounded as

RT  ⌧ + Lg

TX

t=⌧+1

(hX⇤
t , ✓

⇤
i � hXt, ✓

⇤
i)

 ⌧ + Lg

 
2
p
G⇤

T

s

2Td log

✓
T

d

◆
+

2d�


log

✓
T

d�

◆
p

T

!
. (27)

Combining with the results in (6), (23) and (24), with probability 1� 5�,

RT  ⌧ + Lg

"
2

 
p
2(µD +MD) +

p
�G(2 log(T ))

1/4 +
p
�G

✓
2 log

✓
1

�

◆◆1/4
!s

2Td log

✓
T

d

◆

+
2d�


log

✓
T

d�

◆
p

T

�

= ⌧ + Lg

"
4
p
µD +MD

s

Td log

✓
T

d

◆
+ 27/4

p
�G

✓
log

✓
1

�

◆◆1/4
s

d log

✓
T

d

◆
T

+ 27/4
p
�G (log (T ))1/4

s

d log

✓
T

d

◆
T +

2d�


log

✓
T

d�

◆
p

T

#
.

Proof of Proposition 4. When there exists an upper bound Dmax on the delay, Proposition 1 can be
improved as follows.

Then there exist positive, universal constants C1 and C2 such that �min(Wt) � B with probability at
least 1� �, as long as

t �

0

@
C1

p
d+ C2

q
log( 1� )

�min(⌃)

1

A

2

+
2B

�min(⌃)
+Dmax.

Along with the fact that event (23) holds for all t � ⌧ with probability at least 1� 2�, we have with
probability 1� 3�,

(27)  ⌧ + Lg

 
2
p
Dmax

s

2Td log

✓
T

d

◆
+

2d�


log

✓
T

d�

◆
p

T

!
.

That is, O(RT ) = O(
p
Dmax

p
dT log(T ) + d

p
T log(T ))

When {Dt}
T
t=1 are iid with mean µ

0
D,

E[Gt] = E[
t�1X

s=1

I(s+Ds � t)] =
t�1X

s=1

P(s+Ds � t)  µ
0
D,

V[Gt] = V[
t�1X

s=1

I(s+Ds � t)] 
t�1X

s=1

P(s+Ds � t)  µ
0
D.

Therefore, with probability 1� 5�,

(27)  ⌧ + Lg

"
4
q
µ0
D

s

Td log

✓
T

d

◆
+ 27/4

p
�G

✓
log

✓
1

�

◆◆1/4
s

d log

✓
T

d

◆
T

+ 27/4
p
�G (log (T ))1/4

s

d log

✓
T

d

◆
T +

2d�


log

✓
T

d�

◆
p

T

#
.
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Proof of Lemma 6. Define

st,a =
q
xT
t,aA

�1
t xt,a 2 R+

Bt = [xT
⌧,a⌧

]⌧2 t 2 R| t|⇥d

Ct = [I(D⌧ + ⌧ < t� 1)xT
⌧,a⌧

]⌧2 t 2 R| t|⇥d

Zt = [y⌧,a⌧ ]⌧2 t 2 R| t|⇥1
.

Then At = Id +B
T
t Bt and ct = C

T
t Zt. (Note that At and ct are defined in Algorithm 2.)

ŷt,a � x
0
t,a✓

⇤ = x
0
t,a✓t � x

0
t,a✓

⇤

= x
0
t,aA

�1
t ct � x

0
t,aA

�1
t (Id +B

0
tBt)✓

⇤

= x
0
t,aA

�1
t C

0
tZt � x

0
t,aA

�1
t (✓⇤ +B

0
tBt✓

⇤)

= x
0
t,aA

�1
t B

0
t(Zt �Bt✓

⇤) + x
0
t,aA

�1
t (Ct �Bt)

0
Zt � x

0
t,aA

�1
t ✓

⇤
.

Since k✓
⇤
k  1,

|ŷt,a � x
0
t,a✓

⇤
|  |x

0
t,aA

�1
t B

0
t(Zt �Bt✓

⇤)|+ kx
0
t,aA

�1
t kk(Ct �Bt)

0
Ztk+ kx

0
t,aA

�1
t ✓

⇤
k.

Due to the statistical independence of samples indexed in  t, we have E[Zt �Bt✓
⇤] = 0. Denote

↵̄ =
q

1
2 ln

�
2TK
�

�
, following the analysis in (Chu et al., 2011, Lemma 1), we have

P(|x0
t,aA

�1
t B

0
t(Zt �Bt✓

⇤)| > ↵̄st,a)  2 exp

 
�

2↵̄2
s
2
t,a

kBtA
�1
t xt,ak

2

!
 2 exp

�
�2↵̄2

�
=

�

TK
,

and kA
�1
t xt,ak  st,a.

Further notice that k(Bt�Ct)0Ztk  Gt. Combining above facts, we arrive at the desired result.

Proof of Lemma 7. By Lemma 3 in Chu et al. (2011), for any s 2 [S],
X

⌧2 s
T+1

s⌧,a⌧  5
q
d| s

T+1| log | 
s
T+1|.

Hence,
X

⌧2 s
T+1

w⌧,a⌧ =
X

⌧2 s
T+1

↵⌧s⌧,a⌧

 5(↵̄+G
⇤
T + 1)

q
d| s

T+1| log | 
s
T+1|

 5
p

2↵̄(↵̄+G
⇤
T + 1)

q
d| s

T+1|. (28)

(28) holds since
p
2↵̄ �

p
log T �

q
log | s

T+1|. On the other hand, by Step 13 of Algorithm 3
(SupLinUCB) in Chu et al. (2011),

X

⌧2 s
T+1

w⌧,a⌧ � 2�s
| s

T+1|. (29)

Therefore,

| s
T+1|  2s5

p

2↵̄(↵̄+G
⇤
T + 1)

q
d| s

T+1|
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Sketch proof of Theorem 5. Denote �0 be the set of trails for which an alternative is chosen in step
7-8 of Algorithm 3. Since 2�S


1p
T

we have {1, 2, · · · , T} = �0 [s �s
T+1.

E [RT ] =
TX

t=1

[E < X
⇤
t , ✓

⇤
> �E < Xt, ✓

⇤
>]

=
X

t2�0

[E < X
⇤
t , ✓

⇤
> �E < Xt, ✓

⇤
>] +

SX

s=1

X

t2�s
t+1

[E < X
⇤
t , ✓

⇤
> �E < Xt, ✓

⇤
>]


2

p
T
|�0|+

SX

s=1

8 · 2�s
|�s

T+1| (30)


2

p
T
|�0|+

SX

s=1

40(
p

2↵̄(G⇤
T + ↵̄+ 1))

q
d|�s

T+1| (31)

 2
p

T + 40(
p

2↵̄(G⇤
T + ↵̄+ 1))

p

STd (32)

with probability 1� �S. (30) holds by (Auer, 2002, Lemma 15) or (Chu et al., 2011, Lemma 5), (31)
holds by Lemma 7, and (32) holds by some simple calculations.

Apply the Azuma-Hoeffding bound (Auer, 2002, Lemma 8) with ↵⌧ = 2 and B = 4
q

T log
�
2
�

�
, we

have

RT  2
p

T + 46
⇣p

2↵̄(G⇤
T + ↵̄+ 1)

⌘p
STd, (33)

with probability 1��(S+1). Recall that ↵̄ =
q

1
2 ln

�
2TK
�

�
. Replacing � by �/(S+1), substituting

S = log(T ), and combining with the result in (6) yields

RT  2
p

T + 46
p
log(T )Td

 
p

2

s
1

2
log

✓
2TK(log(T ) + 1)

�

◆
(2(µD +MD)

+ �G

p
2 log(T ) + �G

s

2 log

✓
1

�

◆
+

s
1

2
log

✓
2TK(log(T ) + 1)

�

◆
+ 1

!!

with probability 1� 2�.
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