
Supplement: Competitive Gradient Descent

Anonymous Author(s)
Affiliation
Address
email

Abstract

This is the supplement to the paper "Competitive Gradient Descent"1

1 Proofs of convergence2

Proof of Theorem 2.3. To shorten the expressions below, we set a := ∇xf(xk), b := ∇yf(xk, yk),3

Hxx := D2
xxf(xk, yk), Hyy := D2

yyf(xk, yk), N := D2
xyf(xk, yk), Ñ := ηN , M̃ := Ñ>Ñ , and4

M̄ := ÑÑ>. Letting (x, y) be the update step of CGD and using Taylor expansion, we obtain5

(∇xf(x+ xk, y + yk)
2

+ (∇yf(x+ xk, y + yk)
2 − ‖a‖2 − ‖b‖2

≤2x>Hxxa+ 2x>Nb+ 2a>Ny + 2b>Hyyy

+ 4L(‖x‖2 + ‖y‖2)(‖a‖+ ‖b‖)

= + 2η
(
−a> − b>Ñ>

) (
Id +M̄

)−1
Hxxa

+ 2x>Nb+ 2a>Ny

+ 2ηb>Hyy

(
Id +M̃

)−1 (
b− Ñ>a

)
+ 4L(‖x‖2 + ‖y‖2)(‖a‖+ ‖b‖) = . . . ,

By expanding zero to ±2ηb>Ñ>
(
Id +M̄

)−1
Hxxa and ±2ηb>Hyy

(
Id +M̃

)−1
Ñ>a, we obtain6

. . . =− 2ηa>Hxxa+ 2ηa>M̄
(
Id +M̄

)−1
Hxxa

− 2ηb>Ñ>
(
Id +M̄

)−1
Hxxa

+ 2x>Nb+ 2a>Ny

+ 2ηb>Hyyb+ b>Hyy

(
Id +M̃

)−1
M̃b

− 2ηb>Hyy

(
Id +M̃

)−1
Ñ>a

+ 4L(‖x‖2 + ‖y‖2)(‖a‖+ ‖b‖) =

We now plug the update rule of CGD into x and y and observe that Ñ>(Id +M̄)−1 =7

(Id +M̃)−1Ñ> to obtain8

2x>Nb+ 2a>Ny = −2a>
(
Id +M̄

)−1
M̄a− 2b>

(
Id +M̃

)−1
M̃b.

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

By plugging this into our main computation, we obtain9

. . . =− 2ηa>Hxxa+ 2ηa>M̄
(
Id +M̄

)−1
Hxxa

− 2ηb>Ñ>
(
Id +M̄

)−1
Hxxa

− 2a>
(
Id +M̄

)−1
M̄a− 2b>

(
Id +M̃

)−1
M̃b

+ 2ηb>Hyyb− 2ηb>Hyy

(
Id +M̃

)−1
M̃b

− 2ηb>Hyy

(
Id +M̃

)−1
Ñ>a

+ 4L(‖x‖2 + ‖y‖2)(‖a‖+ ‖b‖) ≤

By positivity of squares, we have10

2ηa>M̄
(
Id +M̄

)−1
Hxxa ≤ a>

(
M̄
(
Id +M̄

)−1)2
a+ a> (ηHxx)

2
a

−2ηb>Hyy

(
Id +M̃

)−1
M̃b ≤ b>

(
M̃
(

Id +M̃
)−1)2

b+ b> (ηHyy)
2
b.

For λ ∈ [−1, 1] we have −2λ + λ2 = 2λ (1− λ/2) ≤ −h± (λ)) from which we deduce the11

result.12

Theorem 2.4 follows from Theorem 2.3 by relatively standard arguments:13

Proof of Theorem 2.4. Since ∇xf(x∗, y∗),∇xf(x∗, y∗) = 0 and the gradient and Hessian of f are14

continuous, there exists a neighbourhood V of (x∗, y∗) such that for all possible starting points15

(x1, y1) ∈ V , we have ‖(∇xf(x2, y2),∇yf(x2, y2)‖ ≤ (1− λmin/4)‖(∇xf(x1, y1),∇yf(x1, y1)‖.16

Then, by convergence of the geometric series there exists a closed neighbourhood U ⊂ V of (x∗, y∗),17

such that for (x0, y0) ∈ U we have (xk, yk) ∈ V,∀k ∈ N and thus (xk, yk) converges at an18

exponential rate to a point in U .19

2 Details regarding the experiments20

2.1 Experiment: Estimating a covariance matrix21

We consider the problem −g(V,W) = f(W,V) =
∑

ijkWij

(
Σ̂ij − (V Σ̂V >)i,j

)
, where the Σ̂22

are empirical covariance matrices obtained from samples distributed according to N (0,Σ). For our23

experiments, the matrix Σ is created as Σ = UUT , where the entries of U ∈ Rd×d are distributed24

i.i.d. standard Gaussian. We consider the algorithms OGDA, SGA, ConOpt, and CGD, with25

γ = 1.0, ε = 10−6 and let the stepsizes range over η ∈ {0.005, 0.025, 0.1, 0.4}. We begin with the26

deterministic case Σ̂ = Σ, corresponding to the limit of large sample size. We let d ∈ {20, 40, 60}27

and evaluate the algorithms according to the trade-off between the number of forward evaluations and28

the corresponding reduction of the residual ‖W +W>‖FRO/2 + ‖UU>− V V >‖FRO, starting with29

a random initial guess (the same for all algorithms) obtained as W1 = δW , V1 = U + δV , where the30

entries of δW, δV are i.i.d uniformly distributed in [−0.5, 0.5]. We count the number of "forward31

passes" per outer iteration as follows.32

• OGDA: 233

• SGA: 434

• ConOpt: 635

• CGD: 4 + 2 ∗ number of CG iterations36

The results are summarized in Figure 1. We see consistently that for the same stepsize, CGD has37

convergence rate comparable to that of OGDA. However, as we increase the stepsize the other38

methods start diverging, thus allowing CGD to achieve significantly better convergence rates by39

using larger stepsizes. For larger dimensions (d ∈ {40, 60}) OGDA, SGA, and ConOpt become40

2

Figure 1: The decay of the residual as a function of the number of forward iterations (d = 20, 40, 60,
from top to bottom). Note that missing combinations of algorithms and stepsizes correspond
to divergent experiments. While the exact behavior of the different methods is subject to some
stochasticity, results as above were typical during our experiments.

3

even more unstable such that OGDA with the smallest stepsize is the only other method that still41

converges, although at a much slower rate than CGD with larger stepsizes. We now consider the42

stochastic setting, where at each iteration a new Σ̂ is obtained as the empirical covariance matrix43

of N samples of N (0,Σ), for N ∈ {100, 1000, 10000}. In this setting, the stochastic noise very44

quickly dominates the error, preventing CGD from achieving significantly better approximations than45

the other algorithms, while other algorihtms decrease the error more rapidly, initially. It might be46

possible to improve the performance of our algorithm by lowering the accuracy of the inner linea47

system solve, following the intuition that in a noisy environment, a very accurate solve is not worth48

the cost. However, even without tweaking ε it is noticable than the trajectories of CGD are less noisy49

than those of the other algorithms, and it is furthermore the only algorithm that does not diverge for50

any of the stepsizes. It is interesting to note that the trajectories of CGD are consistently more regular51

than those of the other algorithms, for comparable stepsizes.52

2.2 Experiment: Fitting a bimodal distribution53

We use a GAN to fit a Gaussian mixture of two Gaussian random variables with means µ1 = (0, 1)>54

and µ2 = (2−1/2, 2−1/2)>, and standard deviation σ = 0.1 Generator and discriminator are given55

by dense neural nets with four hidden layers of 128 units each that are initialized as orthonormal56

matrices, and ReLU as nonlinearities after each hidden layer. The generator uses 512-variate standard57

Gaussian noise as input, and both networks use a linear projection as their final layer. At each58

step, the discriminator is shown 256 real, and 256 fake examples. We interpret the output of the59

discriminator as a logit and use sigmoidal crossentropy as a loss function. We tried stepsizes60

η ∈ {0.4, 0.1, 0.025, 0.005} together with RMSProp (ρ = 0.9) and applied SGA, ConOpt (γ = 1.0),61

OGDA, and CGD. Note that the RMSProp version of CGD with diagonal scaling given by the62

matrices Sx, Sy is obtained by replacing the quadratic penalties x>x/(2η) and y>y/(2η) in the63

local game by x>S−1x x/(2η) and y>S−1x y/(2η), and carrying out the remaining derivation as before.64

This also allows to apply other adaptive methods like ADAM. On all methods, the generator and65

discriminator are initially chasing each other across the strategy space, producing the typical cycling66

pattern. When using SGA, ConOpt, or OGDA, however, eventually the algorithm diverges with the67

generator either mapping all the mass far away from the mode, or collapsing the generating map68

to become zero. Therefore, we also tried decreasing the stepsize to 0.001, which however did not69

prevent the divergence. For CGD, after some initial cycles the Generator starts splitting the mass70

and distributes is roughly evenly among the two modes. During our experiments, this configuration71

appeared to be robust. In the supplement, we have included a number of visualizations of the games72

trajectories for a variety of stepsizes and algorithms. Here, for example the folder with the name73

two_mode_conOpt_25 contains the experiment with ConOpt and stepsize η = 25 ∗ 0.001 = 0.025.74

4

Figure 2: The decay of the residual as a function of the number of forward iterations in the stochastic
case with d = 20 and batch sizes of 100, 1000, 10000, from top to bottom).

5

	Proofs of convergence
	Details regarding the experiments
	Experiment: Estimating a covariance matrix
	Experiment: Fitting a bimodal distribution

