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S1 Derivation of optimal decoders

Given the modulated Poisson model, knt(s,mt) ∼ Poiss
(
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mw
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))
, and as-

suming that the modulator mt and the modulation weights wn are known, the log probability of the
stimulus s at time point t given spike counts knt of the whole population, n = {1, 2 . . . N}, becomes:
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)
−
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)
. (1)

When discriminating between two stimuli s = {0, 1} under this model, the optimal decision is
given by the sign of log-odds ratio, L(s = 1)− L(s = 0) ≷ 0, which translates into the following
expression:

L(0)− L(1) =
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)
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)
(λn(0)− λn(1)) . (2)

This corresponds to thresholding a weighted combination of individual neural responses, with optimal
decoding weights:

a(MC)
n = log

(
λn(0)

λn(1)

)
. (3)

Since m is a known constant, it does not influence the decoding weights themselves, but merely
changes the threshold. For the same reason, the optimal decoding weights remain unchanged whether
the modulator is known (MC-ML), or whether its effects are marginalized over (MM-ML).

S2 Properties of the modulator-guided decoder

For the encoding model described above, we aim to estimate decoding weights a(MG)
n by correlating

the response of neuron n with the modulator m:

|a(MG)
n | = 1

T

T∑
t

mtknt. (4)
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Here we analyse the properties of this estimate. First, its mean is:

E
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where λ̄n denotes the average activation of the neuron, λ̄n =
∑
s P(s)λn(s); we have used the

encoding model and the fact that s and m are independent (Eq. 7) and mt is i.i.d. gaussian with zero
mean and variance σ2

m (Eq. 8). Under the assumption that wn = log λn(1)
λn(0)

, the MG estimates of the
decoding weights are biased. While the scaling with σ2

m could be easily corrected for by appropriately
rescaling the threshold, the neuron-specific λn bias is problematic. One could correct this bias by a
slight adjustment of the encoding model, i.e. assuming wn = 1

λn
log λn(1)

λn(0)
. This will not change the

optimal decoding weights a(MC), but will affect the expression of the optimal threshold.

The variance of the estimator can be computed in a similar way:
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The second moment term can be computed as:
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where λ2n =
∑
s λ

2
n(s)P(s) denotes the second moment of λn(s) and we have used the fact that the

second moment of a Poisson distribution with mean λ is λ+λ2, the fact that each of the two integrals
is the second moment of a gaussian. This holds for any setting of wn (with or without unbiasing).

Lastly, the covariance for the decoding weights of pairs of neurons n, l takes the form:
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where λnl =
∑
s λn(s)λl(s)P(s) is related to the signal correlations of the two neurons.

S3 Population size: number of inactive neurons

In Figure 2B of the main text we simulated an increasing encoding population size by adding inactive
neurons1 and demonstrating the different effect on performance of the sign-only decoder and the

1Inactive neurons are task-irrelevant, and have low but nonzero firing rate.
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Figure S1: Performance of all decoders as more inactive neurons are added to the encoding population. The
number of active neurons is fixed at 50 and the number of informative neurons at 12.

rate-guided decoder. Here we repeat this simulation using all decoders. The optimal decoders
(MC-ML and MM-ML) are unaffected by the increase in inactive neurons, while the MG decoder, as
the RG decoder, shows a slight decrease in performance due to the added noise. Neither is affected
to the same extent as the SO decoder, which drops to chance. This reflects the fact that SO cannot
average out the noise from the inactive neurons).
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