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A Comparison of SFO Complexity for Smooth Nonconvex Optimization

Table 2: Comparison of SFO complexity for smooth nonconvex optimization

Algorithms Stepsize η
Finite-sum Finite-sum/Online

SFO SFO

GD [23] O(L−1) O(nε−2) N/A2

SGD [11] O(L−1) N/A O(ε−4)

SVRG
[29] O(L−1n−2/3) O(n+ n2/3ε−2) N/A
[4]

SCSG [18] O(L−1(n−2/3 ∧ ε4/3)) O(n+ n2/3ε−2) O(ε−2 + ε−10/3)

SARAH [25, 24] O((L
√
q)−1)3 N/A O(ε−4)

SNVRG [36] O(L−1) O((n+ n1/2ε−2) log(n)) O((ε−2 + ε−3) log(ε−1))

SPIDER [8] O(εL−1) 4 O(n+ n1/2ε−2) O(ε−2 + ε−3)

SpiderBoost (This Work) O(L−1) O(n+ n1/2ε−2) O(ε−2 + ε−3)

2 For deterministic algorithms, the online setting does not exist.
3 The stepsize η = O(1/(L

√
q)) is chosen in [24] to guarantee the convergence of SARAH.

4 SPIDER uses the normalized gradient descent, which can also be viewed as the gradient descent with the stepszie
O(εL−1/‖vk‖).

B Prox-SpiderBoost for Constrained Optimization under Non-Euclidean
Geometry

Prox-SpiderBoost proposed in Section 3 adopts the proximal mapping that solves an unconstrained
subproblem under the `2 Euclidean distance. Such a mapping can be further generalized to solve
constrained composite optimization under a non-Euclidean geometry.

To elaborate, consider solving the composite optimization problem (Q) subject to a convex constraint
set X . We introduce the following Bregman distance V associated with a kernel function ω : X → R
defined as: for all x, y ∈ X ,

V (x, y) = ω(x)− ω(y)− 〈∇ω(y), x− y〉 . (5)

Here, the function ω is smooth and α-strongly convex with respect to a certain generic norm. The
specific choice of the kernel function ω should be compatible to the underlying geometry of the
constraint set. For example, for the unconstrained case, one can choose ω(x) = 1

2‖x‖2 so that
V (x, y) = 1

2‖x − y‖2, which is 1-strongly convex with regard to the `2-norm, whereas for the
simplex constraint set, one can choose ω(x) =

∑d
i=1(xi log xi − xi) that yields the KL relative

entropy distance V (x, y) =
∑d
i=1(xi log xi

yi
+ yi − xi), which is 1-strongly convex with regard to

the `1-norm.

Based on the Bregman distance, the proximal gradient step in Algorithm 2 can be generalized to the
following update rule for solving the constrained composite optimization.

Tηh(x, v) = arg min
u∈X

{
h(u) + 〈v, u〉+

1

η
V (u, x)

}
. (6)

Moreover, the characterization of critical points in Fact 1 remains valid by defining the generalized
gradient as Gη(x) = 1

η (x − Tηh(x,∇f(x))). Then, we obtain the following oracle complexity
result of Prox-SpiderBoost under the Bregman distance (replace the proximal step in Algorithm 2 by
xk+1 = Tηh(xk, vk) ) for solving constrained composite optimization.
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Theorem 4. Let Assumption 1 hold and consider the problem (Q). Apply Prox-SpiderBoost with
a proper Bregman distance V that is α-strongly convex, where α > 7/8. Choose the parameters
q = |S| =

√
n and η = 1

2L . Then, the algorithm outputs a point xξ satisfying E‖Gη(xξ)‖ ≤ ε
provided that the total number K of iterations satisfies

K =
4L(Ψ(x0)−Ψ∗)

ε2

(
α− 7

8

)−1(
1 +

1

4α

)
.

Moreover, the total SFO complexity is O(
√
nε−2 + n), and the PO complexity is O(ε−2).

C Prox-SpiderBoost under Polyak-Łojasiewicz Condition

Despite the nonconvexity geometry, many machine learning problems have been shown to satisfy
the so-called Polyak-Łojasiewicz condition such as phase retrieval [40], blind deconvolution [20]
and neural networks [39], etc. This motivates us to explore the theoretical performance of the
Prox-SpiderBoost for solving the composite optimization problem (Q) under the generalized Polyak-
Łojasiewicz geometry we define below, where the function can still be nonconvex.
Definition 1. Let x∗ be a minimizer of function Ψ = f + h. Then, Ψ is said to satisfy the Polyak-
Łojasiewicz condition with parameter τ if for all x ∈ Rd and η > 0 one has

Ψ(x)−Ψ(x∗) ≤ τ‖Gη(x)‖2,
where Gη(x) is the generalized gradient defined in Fact 1.

Definition 1 generalizes the traditional Polyak-Łojasiewicz condition for single smooth objective
functions to composite objective functions. In particular, such a condition allows the objective
function to be nonsmooth and nonconvex, and it requires the growth of the function value to be
controlled by the gradient norm.

Algorithm 4 Prox-SpiderBoost-PL
Input: x0 ∈ Rd, q ∈ N, η < 1

16L .
For k = 0, 1, 2, . . .K − 1

If mod(k, q) = 0:
Set xk = xξ, where ξ is selected from
{k − q + 1, . . . , k − 2} uniformly at random.
Compute vk = ∇f(xk),

Else:
Draw |S| samples with replacement.
Compute vk according to eq. (1).

xk+1 = proxηh(xk − ηvk).
Output: xξ from {x0, ·, xK−1} uniformly at random.

In order to solve the composite optimization problems under the generalized Polyak-Łojasiewicz
condition, we propose a variant of Prox-SpiderBoost, which we refer to as Prox-SpiderBoost-PL,
described in Algorithm 4. We note that Prox-SpiderBoost-PL can also be viewed as a generalization
of SARAH [25] to a proximal algorithm with further differences lying in a much larger stepsize than
that chosen by SARAH and random sampling with replacement for inner loop iterations, as opposed
to sampling without replacement taken by SARAH.

Next, we present the convergence rate characterization of Algorithm 4 for solving composite opti-
mization problems under the generalized Polyak-Łojasiewicz condition.
Theorem 5. Let Assumprion 1 hold and apply Prox-SpiderBoost-PL in Algorithm 4 to solve the
problem (Q) with X = Rd. Assume the objective function satisfies the Polyak-Łojasiewicz condition
with parameter τ and set q = |S| = Θ(Lτ), η = 1

8L . Then, the generated variable sequence satisfies,
for all t = 1, 2, ...

E‖Gη(xtq)‖2 ≤
64τL

q − 2
E‖Gη(x(t−1)q)‖2.

Consequently, the oracle complexity of Algorithm 4 for finding a point xξ that satisfies E‖Gη(xξ)‖ ≤
ε is in the order O((n+ L2τ2) log 1

ε ).
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Theorem 5 shows that Prox-SpiderBoost-PL in Algorithm 4 converges linearly to a stationary point
for solving composite optimization problems under the generalized Polyak-Łojasiewicz condition.
We compare the SFO complexity in Theorem 5 with those of previous proposed stochastic proximal
algorithms in Table 3. Our result outperforms the state-of-art result in the regime of τ < n2/3, which
is desirable for solving large data problem (i.e., n is large). Moreover, we note that both the results
of ProxSVRG and ProxSVRG+ requires the condition number to satisfy Lτ > √n , whereas our
result of Prox-SpiderBoost-PL does not require the aforementioned condition, and has the most
relaxed dependency on n,L and τ demonstrating the superior performance of Prox-SpiderBoost-PL
for optimizing functions under Polyak-Łojasiewicz geometry.

Table 3: Comparison of results on SFO compelxity and PO compelxity under Polyak-Łojasiewicz
condition.

Algorithms Stepsize η
Finite-Sum Additional

SFO PO Condition

ProxGD [17] O(L−1) O(nτ log(1/ε)) O(τ log(1/ε)) -

ProxSVRG/SAGA [30] O(L−1) O((n+ n2/3τ) log(1/ε)) O(τ log(1/ε)) Lτ > √
n

ProxSVRG+ [22] O(L−1) O(n2/3τ log(1/ε)) O(τ log(1/ε)) Lτ > √
n

Prox-SpiderBoost-PL (This Work) O(L−1) O((n+ τ2) log(1/ε)) O(τ log(1/ε)) -

For the case with h = 0 (i.e., the problem objective reduces to the smooth function f ), our algorithm
achieves a total SFO complexity of (n + L2τ2) log(1/ε), which is the same as that achieved by
SARAH [25]. However, we note that our algorithm allows to use a constant stepsize at the order of
O(1/L), whereas SARAH used a much smaller stepsize at the order of O(1/(L

√
q)).

D Prox-SpiderBoost-O for Online Nonconvex Composite Optimization

In this section, we study the performance of a variant of Prox-SpiderBoost for solving nonconvex
composite optimization problems under the online setting.

D.1 Unconstrained Optimization under Euclidean Geometry

In this subsection, we study the following composite optimization problem.

min
x∈X

Ψ(x) := f(x) + h(x), f(x) = Eζ [fζ(x)]. (R)

Here the objective function Ψ(x) consists of a population risk Eζ [fζ(x)] over the underlying data
distribution, a nonsmoooth but simple convex regularizer h(x), and a convex constrain set X . Such
a problem can be viewed to have infinite samples as opposed to finite samples in the finite-sum
problem (as in the problem (Q)), and the underlying data distribution is typically unknown a priori.
Therefore, one cannot evaluate the full-gradient ∇f over the underlying data distribution in practice.
For such a type of problems, we propose a variant of Prox-SpiderBoost, which applies stochastic
sampling to estimate the full gradient for initializing the gradient estimator in each inner loop. We
refer to this variant as Prox-SpiderBoost-O, the details of which are summarized in Algorithm 5. It
can be seen that Prox-SpiderBoost-O in Algorithm 5 draws |S1| stochastic samples to estimate the
full gradient for initializing the gradient estimator. To analyze its performance, we introduce the
following standard assumption on variance.
Assumption 2. The variance of stochastic gradients is bounded, i.e., there exists a constant σ > 0
such that for all x ∈ Rd and all random draws of ζ, it holds that Eζ‖∇fζ(x)−∇f(x)‖2 6 σ2.

Under Assumption 2, the variance of a mini-batch gradient with size |S1| can be bounded by
O(σ2/|S1|). We obtain the following result on the oracle complexity for Prox-SpiderBoost-O in
Algorithm 5.
Theorem 6. Let Assumptions 1 and 2 hold and consider the problem (R) with X = Rd. Apply
Prox-SpiderBoost-O with parameters |S1| = 24σ2ε−2, q = |S| =

√
|S1|, η = 1

2L . Then, the
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Algorithm 5 Prox-SpiderBoost-O for online optimization
Input: η = 1

2L , q,K, |S1|, |S| ∈ N.
For k = 0, 1, . . . ,K − 1

If mod(k, q) = 0:
Draw |S1| samples with replacement.
Set vk = 1

|S1|
∑
i∈S1

fi(xk).
Else:

Draw |S| samples with replacement
Compute vk according to eq. (1).

xk+1 = proxηh(xk − ηvk).
Output: xξ from {x0, ·, xK−1} uniformly at random.

corresponding output xξ satisfies E‖Gη(xξ)‖ ≤ ε provided that the total number K of iterations
satisfies

K ≥ O
(L(Ψ(x0)−Ψ∗)

ε2

)
.

Moreover, the resulting total SFO complexity is O(ε−3 + ε−2), and the PO complexity is O(ε−2).

To the best of our knowledge, the SFO complexity of Algorithm 5 improves the state-of-art result
O(ε−10/3) [22, 3] of online stochastic composite optimization by a factor of ε1/3.

In the smooth case with h(x) = 0, the problem (R) reduces to the online case of problem (P),
and Algorithm 5 reduces to a online version of SpiderBoost. We refer to such an algorithm as
SpiderBoost-O. The following corollary characterizes the performance of SpiderBoost-O to solve an
online problem.
Corollary 1. Let Assumptions 1 and 2 hold and consider the online setting of problem (P). Apply
SpiderBoot-O with parameters |S1| = 24σ2ε−2, q = |S| =

√
|S1|, η = 1

2L . Then, the corresponding
output xξ satisfies E‖∇f(xξ)‖ ≤ ε provided that the total number K of iterations satisfies

K ≥ O
(L(Ψ(x0)−Ψ∗)

ε2

)
.

Moreover, the resulting total SFO complexity is O(ε−3 + ε−2), and the PO complexity is O(ε−2).

D.2 Constrained Optimization under Non-Euclidean Geometry

Algorithm 5 can be generalized to solve the online optimization problem (R) subject to a convex
constraint set X with a general distance function. To do this, one replaces the proximal gradient
update in Algorithm 5 with the generalized proximal gradient step in eq. (6) which is based on a
proper Bregman distance V . For such an algorithm, we obtain the following result on the oracle
complexity for Prox-SpiderBoost-O in solving constrained stochastic composite optimization under
non-Euclidean geometry.
Theorem 7. Let Assumptions 1 and 2 hold and consider the problem (R). Apply Prox-SpiderBoost-O
with a proper Bregman distance V that is α-strongly convex with α > 7

8 . Choose the parameters as

|S1| = 2
((
α− 7

8

)−1 (
1 + 1

4α2

)
+ 2

α2

)
σ2ε−2, η = 1

2L , and q = |S| =
√
|S1|. Then, the algorithm

outputs a point xξ that satisfies E‖Gη(xξ)‖ ≤ ε provided that the total number K of iterations
satisfies

K ≥ 8L(Ψ(x0)−Ψ∗)
ε2

(
α− 7

8

)−1(
1 +

1

4α

)
.

Moreover, the overall SFO complexity is O(ε−3 + ε−2) and the PO complexity is O(ε−2).

E Prox-SpiderBoost-M-O for Online Nonconvex Composite Optimization

As the online problem (R) depends on the population risk that contains infinite samples, we propose
a variant of Prox-SpiderBoost-M that can solve it in an online setting. We summarize the detailed
steps of the algorithm in Algorithm 6, where we refer to it as Prox-SpiderBoost-M-O.
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Algorithm 6 Prox-SpiderBoost-M-O

Input: q,K ∈ N, {λk}K−1
k=1 , {βk}K−1

k=1 > 0.
Set: αk = 2

dk/qe+1 .
Initialize: y0 = x0 ∈ Rd.
for k = 0, 1, . . . ,K − 1 do

zk = (1− αk+1)yk + αk+1xk,
if mod(k, q) = 0 then

draw ξ1 data samples and compute vk = 1
|ξ1|
∑|ξ1|
i=1∇fui(x)

else
draw ξ2 data samples and compute vk = 1

|ξ2|
∑|ξ2|
i=1(∇fui(zk)−∇fui(zk−1)) + vk−1.

end
xk+1 = proxλkg

(
xk − λkvk

)
,

yk+1 = zk − βk
λk
xk + βk

λk
proxλkg

(
xk − λkvk

)
.

end
Output: zζ , where ζ Unif∼ {0, . . . ,K − 1}.

Note that unlike the Prox-SpiderBoost-M for the finite-sum case, the Prox-SpiderBoost-M-O keeps
drawing new data samples from the underlying distribution to construct the gradient estimate vk. To
study its convergence guarantee, we make the following standard assumption on the variance of the
random sampling. We next present the convergence guarantee for Prox-SpiderBoost-M-O.
Theorem 8. Let Assumptions 1 and 2 hold. Apply Prox-SpiderBoost-M-O (see Algorithm 6) to solve
the problem (R). Choose any desired accuracy ε > 0 and set parameters αk = 2

k+1 , q = |ξ2| =
√
|ξ1| =

√
2σ2

ε2 , βk ≡ 1
8L and λk ∈ [βk, (1 + αk)βk]. Then, the output zζ of the algorithm satisfies

E‖Gλζ (zζ ,∇f(zζ))‖ ≤ ε provided that the total number of iterations K satisfies

K ≥ Θ

(
L(F (x0)− F ∗)

ε2

)
. (7)

Moreover, the total number of stochastic gradient calls is at most Θ(ε−3) and the total number of
proximal mapping calls is at most Θ(ε−2).

The orders of the results in Theorem 8 match those of state-of-arts [8]. Our result demonstrates that
the momentum scheme can be applied to facilitate the convergence of Prox-SpiderBoost for solving
online nonsmooth and nonconvex problems with a provable convergence guarantee.

F Objective Functions in Experiments

We specify the two objective functions that we adopt in our experiments. The nonsmooth problems
are the regularized versions of these problems. The first problem is the logistic regression problem
with a nonconvex regularizer, which takes the following form

min
w∈Rd

f(w) :=
1

n

n∑

i=1

`(wᵀxi, yi) + α
d∑

i=1

w2
i

1 + w2
i

,

where xi ∈ Rd denotes the features and yi ∈ {±1} corresponds to the labels, and α = 0.1. We set
the loss ` to be the cross-entropy loss given by

`(wᵀxi, yi) = −yi log

(
1

1 + e−wT xi

)
.

The second loss function is the following nonconvex robust linear regression problem

min
w∈Rd

f(w) :=
1

n

n∑

i=1

`(yi − wᵀxi),
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where we use the nonconvex loss function `(x) := log(x
2

2 + 1).

Technical Proofs

G Analysis of SpiderBoost (Proof of Theorem 1)

Throughout the paper, let nk = dk/qe such that (nk − 1)q ≤ k ≤ nkq − 1. Next, we establish our
main result that yields Theorem 1.

Theorem 9. Under Assumption 1, if the parameters η, q and S are chosen such that

β1 , η

2
− Lη2

2
− η3L2q

2|S| > 0, (8)

and if it holds that for mod(k, q) = 0, we always have

E‖vk −∇f(xk)‖2 ≤ ε21, (9)

then the output point xξ of SpiderBoost satisfies

E‖∇f(xξ)‖2 ≤
2

Kβ1

(
1 +

L2η2q

|S|

)
(f(x0)− f∗) +

(
η

β1
+ 2 +

L2η3q

|S|β1

)
ε21. (10)

G.1 Proof of Theorem 9

We first present an auxiliary lemma from [8].

Lemma 1 ([8], Lemma 1). Let Assumption 1 hold. The gradient estimator vk generated by eq. (1)
satisfies for all (nk − 1)q + 1 ≤ k ≤ nkq − 1,

E‖vk −∇f(xk)‖2 ≤ L2

|S|E‖xk − xk−1‖2 + E‖vk−1 −∇f(xk−1)‖2. (11)

Telescoping Lemma 1 over k from (nk − 1)q + 1 to k, where k ≤ nkq − 1, we obtain that

E‖vk −∇f(xk)‖2 ≤
k−1∑

i=(nk−1)q

L2

|S|E‖xi+1 − xi‖2 + E‖v(nk−1)q −∇f(x(nk−1)q)‖2

≤
k∑

i=(nk−1)q

L2

|S|E‖xi+1 − xi‖2 + E‖v(nk−1)q −∇f(x(nk−1)q)‖2. (12)

We note that the above inequality also holds for k = (nk − 1)q, which can be simply checked by
plugging k = (nk − 1)q into above inequality.

Proof. By Assumption 1, the entire objective function f is L-smooth, which further implies that

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

(i)
= f(xk)− η 〈∇f(xk), vk〉+

Lη2

2
‖vk‖2

= f(xk)− η 〈∇f(xk)− vk, vk〉 − η‖vk‖2 +
Lη2

2
‖vk‖2

(ii)

≤ f(xk) +
η

2
‖∇f(xk)− vk‖2 − (

η

2
− Lη2

2
)‖vk‖2,

where (i) follows from the update rule of SpiderBoost, (ii) uses the inequality that 〈x, y〉 ≤
(‖x‖2 + ‖y‖2)/2 for all x, y ∈ Rd. Taking expectation on both sides of the above inequality
yields that
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Ef(xk+1)

≤ Ef(xk) +
η

2
E‖∇f(xk)− vk‖2 − (

η

2
− Lη2

2
)E‖vk‖2

(i)

≤ Ef(xk) +
η

2

k∑

i=(nk−1)q

L2

|S|E‖xi+1 − xi‖2 +
η

2
E‖v(nk−1)q −∇f(x(nk−1)q)‖2 − (

η

2
− Lη2

2
)E‖vk‖2

(ii)
= Ef(xk) +

η3

2

k∑

i=(nk−1)q

L2

|S|E‖vi‖
2 +

η

2
ε21 − (

η

2
− Lη2

2
)E‖vk‖2, (13)

where (i) follows from eq. (12), and (ii) follows from eq. (9), and the fact that xk+1 = xk − ηvk.
Next, telescoping eq. (13) over k from (nk − 1)q to k where k ≤ nkq − 1 and noting that for
(nk − 1)q ≤ j ≤ nkq − 1, nj = nk , we obtain

Ef(xk+1)

≤ Ef(x(nk−1)q) +
η3

2

k∑

j=(nk−1)q

j∑

i=(nk−1)q

L2

|S|E‖vi‖
2 +

η

2

k∑

j=(nk−1)q

ε21 − (
η

2
− Lη2

2
)

k∑

j=(nk−1)q

E‖vj‖2

(i)

≤ Ef(x(nk−1)q) +
η3

2

k∑

j=(nk−1)q

k∑

i=(nk−1)q

L2

|S|E‖vi‖
2 +

η

2

k∑

j=(nk−1)q

ε21 − (
η

2
− Lη2

2
)

k∑

j=(nk−1)q

E‖vj‖2

(ii)

≤ Ef(x(nk−1)q) +
η3L2q

2|S|
k∑

i=(nk−1)q

E‖vi‖2 +
η

2

k∑

j=(nk−1)q

ε21 − (
η

2
− Lη2

2
)

k∑

j=(nk−1)q

E‖vj‖2

= Ef(x(nk−1)q)−
k∑

i=(nk−1)q

(
η

2
− Lη2

2
− η3L2q

2|S|

)
E‖vi‖2 +

η

2

k∑

i=(nk−1)q

ε21

(iii)
= Ef(x(nk−1)q)−

k∑

i=(nk−1)q

(
β1E‖vi‖2 −

η

2
ε21

)
(14)

where (i) extends the summation of the second term from j to k, (ii) follows from the fact that
k 6 nkq − 1. Thus, we obtain

k∑

j=(nk−1)q

k∑

i=(nk−1)q

L2

|S|E‖vi‖
2 ≤ (k + q − nkq + 1)L2

|S|
k∑

i=(nk−1)q

E‖vi‖2 ≤
qL2

|S|
k∑

i=(nk−1)q

E‖vi‖2,

and (iii) follows from the definition of β1.

We continue the proof by further driving

Ef(xK)−Ef(x0)

= (Ef(xq)− Ef(x0)) + (Ef(x2q)− Ef(xq)) + · · ·+ (Ef(xK)− Ef(x(nk−1)q))

(i)

≤ −
q−1∑

i=0

(
β1E‖vi‖2 −

η

2
ε21

)
−

2q−1∑

i=q

(
β1E‖vi‖2 −

η

2
ε21

)
− · · · −

K−1∑

i=(nK−1)q

(
β1E‖vi‖2 −

η

2
ε21

)

= −
K−1∑

i=0

(
β1E‖vi‖2 −

η

2
ε21

)
= −

K−1∑

i=0

β1E‖vi‖2 +
Kη

2
ε21,

where (i) follows from eq. (14). Note that Ef(xK) ≥ f∗ , infx∈Rd f(x). Hence, the above
inequality implies that

K−1∑

i=0

β1E‖vi‖2 ≤ f(x0)− f∗ +
Kη

2
ε21. (15)
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We next bound E‖∇f(xξ)‖2, where ξ is selected uniformly at random from {0, . . . ,K−1}. Observe
that

E‖∇f(xξ)‖2 = E‖∇f(xξ)− vξ + vξ‖2 ≤ 2E‖∇f(xξ)− vξ‖2 + 2E‖vξ‖2. (16)
Next, we bound the two terms on the right hand side of the above inequality. First, note that

E‖vξ‖2 =
1

K

K−1∑

i=0

E‖vi‖2 ≤
f(x0)− f∗

Kβ1
+

η

2β1
ε21, (17)

where the last inequality follows from eq. (15). On the other hand, note that

E‖∇f(xξ)− vξ‖2
(i)

≤ E
ξ∑

i=(nξ−1)q

L2

|S|E‖xi+1 − xi‖2 + ε21
(ii)
= ε21 + E

ξ∑

i=(nξ−1)q

L2η2

|S| E‖vi‖
2

(iii)

≤ ε21 + E
min{(nξ)q−1,K−1}∑

i=(nξ−1)q

L2η2

|S| E‖vi‖
2

(iv)

≤ ε21 +
q

K

K−1∑

i=0

L2η2

|S| E‖vi‖
2

(v)

≤ ε21 +
L2η2q

K|S|β1
(f(x0)− f∗) +

L2η3q

2|S|β1
ε21, (18)

where (i) follows from eqs. (9) and (12), (ii) follows from the fact that xk+1 = xk − ηvk, (iii) follows
from the definition of nξ , which implies ξ 6 min{(nξ)q − 1,K − 1}, (iv) follows from the fact that
the probability that nξ = 1, 2, · · · , nK is less than or equal to q/(K), and (v) follows from eq. (15).

Substituting eqs. (17) and (18) into eq. (16), we obtain

E‖∇f(xξ)‖2 ≤
2 (f(x0)− f∗)

Kβ1
+

η

β1
ε21 + 2ε21 +

2L2η2q

K|S|β1
(f(x0)− f∗) +

L2η3q

|S|β1
ε21

=
2

Kβ1

(
1 +

L2η2q

|S|

)
(f(x0)− f∗) +

(
η

β1
+ 2 +

L2η3q

|S|β1

)
ε21.

G.2 Proof of Theorem 1

Based on the parameter setting in Theorem 1 that

q =
√
n, S =

√
n, and η =

1

2L
, (19)

we obtain

β1 =
η

2
− Lη2

2
− η3L2q

2|S| =
1

16L
> 0. (20)

Moreover, for mod(k, q) = 0, as the algorithm is designed to take the full-batch gradient of the
finite-sum problem, we have

E‖vk −∇f(xk)‖2 = E‖∇f(xk)−∇f(xk)‖2 = 0. (21)
Equations (20) and (21) imply that the parameters in Theorem 1 satisfy the assumptions in Theorem 9
with β1 = 1/(16L) and ε1 = 0. Plugging eqs. (19) to (21) into Theorem 9, we obtain that, after K
iterations, the output of SpiderBoost satisfies

E‖∇f(xξ)‖2 ≤
40L

K
(f(x0)− f∗) . (22)

To ensure E‖∇f(xξ)‖ 6 ε, it is sufficient to ensure E‖∇f(xξ)‖2 6 ε2 (because (E‖∇f(xξ)‖)2 ≤
E‖∇f(xξ)‖2 due to Jensen’s inequality). Thus, we need the total number K of iterations satisfies
that 40L

K (f(x0)− f∗) ≤ ε2, which gives

K =
40L

ε2
(f(x0)− f∗) . (23)

Then, the total SFO complexity is given by⌈
K

q

⌉
· n+K · S 6 (K + q) · n

q
+K · S = K

√
n+ n+K

√
n = O(

√
nε−2 + n),

where the last equation follows from eq. (23), which completes the proof.
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H Analysis of Prox-SpiderBoost and Prox-SpiderBoost-O (Proofs of
Theorems 2, 4, 6 and 7)

We first establish the following major theorem, which is applicable to both the finite-sum and the
online problem. We then generalize it for these two cases.
Theorem 10. Under Assumption 1, choose a proper prox-funtion V (·) : X → R with modulus α.
Then, if the parameters η, q and S are chosen such that

β2 , αη − Lη2

2
− η

2
− η3L2q

2|S| > 0, (24)

and if it holds that for mod(k, q) = 0, we always have

E‖vk −∇f(xk)‖2 ≤ ε21, (25)

then, the output point xξ of Prox-SpiderBoost or Prox-SpiderBoost-O satisfies

E‖g̃ξ‖2 ≤
2

Kβ2

(
1 +

L2η2q

α2|S|

)
(f(x0)− f∗) +

(
η

β2
+

2

α2
+

L2η3q

α2|S|β2

)
ε21, (26)

where g̃ξ = PX (xξ,∇f(xξ), η).

As stated in the theorem, we require β =
(
αη − Lη2

2 −
η
2 −

η3L2

2

)
> 0 to conclude our theorem. A

simple case would be η = 1/(2L) and w(x) = ‖x‖2/2, which gives α = 1 and β = 1/(16L).

H.1 Proof of Theorem 10

To prove Theorem 10, we first introduce a useful lemma.
Lemma 2 ([11], Lemma 1 and Proposition 1). Let X be a closed convex set in Rd, h : X → R be a
convex function, but possibly nonsmooth, and V : X → R be defined in eq. (5). Moreover, define

x+ = arg min
u∈X

{
〈g, u〉+

1

η
V (u, x) + h(u)

}
(27)

PX (x, g, η) =
1

η
(x− x+), (28)

where g ∈ Rd, x ∈ X , and η > 0. Then, the following statement hold

〈g, PX (x, g, η)〉 > α‖PX (x, g, η)‖2 +
1

η
[h(x+)− h(x)]. (29)

Moreover, for any g1, g2 ∈ Rd, we have

‖PX (x, g1, η)− PX (x, g2, η)‖ 6 1

α
‖g1 − g2‖. (30)

Now, we are ready to prove Theorem 10. To ease our nation, let gk = PX (xk, vk, η), which is defined
in eq. (28). We begin with the analysis at iteration k. By the Lipschitz continuity of∇f , we obtain

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

(i)
= f(xk)− η 〈∇f(xk), gk〉+

Lη2

2
‖gk‖2

= f(xk)− η 〈∇f(xk)− vk, gk〉 − η 〈vk, gk〉+
Lη2

2
‖gk‖2

(ii)

≤ f(xk) +
η

2
‖∇f(xk)− vk‖2 − η 〈vk, gk〉+

(
Lη2

2
+
η

2

)
‖gk‖2

(iii)

≤ f(xk) +
η

2
‖∇f(xk)− vk‖2 − αη‖gk‖2 + h(xk)− h(xk+1) +

(
Lη2

2
+
η

2

)
‖gk‖2

(31)
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where (i) follows from the definition of PX (xk, vk, η), and the update rule of Prox-SpiderBoost and
Prox-SpiderBoost-O, (ii) follows from the inequality that 〈x, y〉 ≤ ‖x‖

2+‖y‖2
2 for x, y ∈ Rd, and (iii)

follows from eq. (29) with g = vk, x = xk and PX (xk, vk, η) = gk.

Taking expectation on both sides of eq. (31), and arranging it with the definition of Ψ(x) :=
f(x) + h(x), we obtain

EΨ(xk+1) ≤ EΨ(xk) +
η

2
E‖∇f(xk)− vk‖2 −

(
αη − Lη2

2
− η

2

)
E‖gk‖2

(i)

≤ EΨ(xk) +
η

2

k∑

i=(nk−1)q

L2

|S|E‖xi+1 − xi‖2

+
η

2
E‖v(nk−1)q −∇f(x(nk−1)q)‖2 −

(
αη − Lη2

2
− η

2

)
E‖gk‖2

(ii)

≤ EΨ(xk) +
η3

2

k∑

i=(nk−1)q

L2

|S|E‖gi‖
2 +

ηε21
2
−
(
αη − Lη2

2
− η

2

)
E‖gk‖2

where (i) follows from eq. (12), and (ii) follows from eq. (25) and the fact that xk+1 = xk − ηgk.
Telescoping the above inequality over k from (nk − 1)q to k where k ≤ nkq − 1 and noting that for
(nk − 1)q ≤ j ≤ nkq − 1, nj = nk, we have

EΨ(xk+1)−EΨ(x(nk−1)q)

≤ η3

2

k∑

j=(nk−1)q

j∑

i=(nk−1)q

L2

|S|E‖gi‖
2 +

η

2

k∑

j=(nk−1)q

ε21 −
(
αη − Lη2

2
− η

2

) k∑

j=(nk−1)q

E‖gj‖2

(i)

≤ η3

2

k∑

j=(nk−1)q

k∑

i=(nk−1)q

L2

|S|E‖gi‖
2 +

η

2

k∑

j=(nk−1)q

ε21 −
(
αη − Lη2

2
− η

2

) k∑

j=(nk−1)q

E‖gj‖2

(ii)

≤ η3L2q

2|S|
k∑

i=(nk−1)q

E‖gi‖2 +
η

2

k∑

j=(nk−1)q

ε21 −
(
αη − Lη2

2
− η

2

) k∑

j=(nk−1)q

E‖gj‖2

= −
k∑

i=(nk−1)q

(
αη − Lη2

2
− η

2
− η3L2q

2|S|

)
E‖gi‖2 +

η

2

k∑

i=(nk−1)q

ε21

(iii)
= −

k∑

i=(nk−1)q

(
β2E‖gi‖2 −

η

2
ε21

)
(32)

where (i) extends the summation of second term from j to k, (ii) follows from the fact that k 6 nkq−1
and thus

k∑

j=(nk−1)q

k∑

i=(nk−1)q

L2

|S|E‖gi‖
2 ≤ (k + q − nkq + 1)L2

|S|
k∑

i=(nk−1)q

E‖gi‖2 ≤
qL2

|S|
k∑

i=(nk−1)q

E‖gi‖2,

and (iii) follows from the definition of β2. We continue to derive

EΨ(xK)−EΨ(x0)

= (EΨ(xq)− EΨ(x0)) + (EΨ(x2q)− EΨ(xq)) + · · ·+ (EΨ(xK)− EΨ(x(nk−1)q))

(i)

≤ −
q−1∑

i=0

(
β2E‖gi‖2 −

η

2
ε21

)
−

2q−1∑

i=q

(
β2E‖gi‖2 −

η

2
ε21

)
− · · · −

K−1∑

i=(nK−1)q

(
β2E‖gi‖2 −

η

2
ε21

)

= −
K−1∑

i=0

(
β2E‖gi‖2 −

η

2
ε21

)
= −

K−1∑

i=0

β2E‖gi‖2 +
Kη

2
ε21,

21



where (i) follows from eq. (32). Note that EΨ(xK) ≥ Ψ∗ , infx∈Rd Ψ(x). The above inequality
implies that

K−1∑

i=0

β2E‖gi‖2 ≤ Ψ(x0)−Ψ∗ +
Kη

2
ε21. (33)

We next bound the output of algorithms. Define g̃ξ = P (xξ,∇f(xξ), η), where ξ is selected
uniformly at random from {0, . . . ,K − 1}. Observe that

E‖g̃ξ‖2 ≤ 2E‖gξ‖2 + 2E‖g̃ξ − gξ‖2
(i)

≤ 2E‖gξ‖2 +
2

α2
E‖∇f(xξ)− vξ‖2 (34)

where (i) follows from the definition of g̃k, gk and the property of gk and g̃k in eq. (30).

Next, we bound the two terms on the right hand side of the above inequality. First, note that

E‖gξ‖2 =
1

K

K−1∑

i=0

E‖gi‖2 ≤
Ψ(x0)−Ψ∗

Kβ2
+

η

2β2
ε21, (35)

where the last inequality follows from eq. (33). On the other hand, note that

E‖∇f(xξ)− vξ‖2
(i)

≤ E
ξ∑

i=(nξ−1)q

L2

|S|E‖xi+1 − xi‖2 + ε21
(ii)
= ε21 + E

ξ∑

i=(nξ−1)q

L2η2

|S| E‖gi‖
2

(iii)

≤ ε21 + E
min{(nξ)q−1,K−1}∑

i=(nξ−1)q

L2η2

|S| E‖gi‖
2

(iv)

≤ ε21 +
q

K

K−1∑

i=0

L2η2

|S| E‖gi‖
2

(v)

≤ ε21 +
L2η2q

K|S|β2
(Ψ(x0)−Ψ∗) +

L2η3q

2|S|β2
ε21, (36)

where (i) follows from eqs. (12) and (25), (ii) follows from the fact that xk+1 = xk − ηgk, (iii)
follows from the definition of nξ, which implies ξ 6 min{(nξ)q − 1,K − 1}, (iv) follows from the
fact that the probability that nξ = 1 or 2 , · · · or nk is less than or equal to q/K, and (v) follows
from eq. (35).

Substituting eqs. (35) and (36) into eq. (34) yields

E‖g̃ξ‖2 ≤
2 (f(x0)− f∗)

Kβ2
+

η

β2
ε21 +

2

α2

(
ε21 +

L2η2q

K|S|β2
(f(x0)− f∗) +

L2η3q

2|S|β2
ε21

)

=
2

Kβ2

(
1 +

L2η2q

α2|S|

)
(Ψ(x0)−Ψ∗) +

(
η

β2
+

2

α2
+

L2η3q

α2|S|β2

)
ε21,

which completes the proof.

H.2 Proof of Theorem 2

Proof. Theorem 2 as a special case follows from the more general Theorem 4 that we develop in
Appendix B with the choices of the Bregman distance function V (x, y) = 1

2‖x−y‖2 and α = 1.

H.3 Proof of Theorem 4

Based on the parameter setting in Theorem 2 that

α >
7

8
, q =

√
n, S =

√
n, and η =

1

2L
, (37)

we obtain

β1 = αη − Lη2

2
− η

2
− η3L2q

2|S| =
1

2L
(α− 7

8
) > 0. (38)
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Moreover, for mod(k, q) = 0, as the algorithm is designed to take the full-batch gradient of the
finite-sum problem, we have

E‖vk −∇f(xk)‖2 = E‖∇f(xk)−∇f(xk)‖2 = 0. (39)

Equations (38) and (39) imply that the parameters in the finite-sum case satisfy the assumptions in
Theorem 10 with β1 = (α− 7/8)/(2L) and ε1 = 0. Plugging eqs. (37) to (39) into Theorem 10, we
obtain that, after K iterations, the output of Prox-SpiderBoost satisfies

E‖g̃ξ‖2 ≤
4L

K

(
α− 7

8

)−1(
1 +

1

4α

)
(Ψ(x0)−Ψ∗) . (40)

To ensure E‖g̃ξ‖ 6 ε, it is sufficient to ensure E‖g̃ξ‖2 6 ε2, thus, we obtain

K =
4L

ε2

(
α− 7

8

)−1(
1 +

1

4α

)
(Ψ(x0)−Ψ∗) . (41)

Then, the SFO is
⌈
K

q

⌉
· n+K · S 6 (K + q) · n

q
+K · S = K

√
n+ n+K

√
n = O(

√
nε−2 + n),

where the last equation follows from eq. (23). The proximal oracle follows from the total iteration in
eq. (41), which completes the proof.

H.4 Proof of Theorem 6

Proof. Theorem 6 follows as a special case from the more general Theorem 7 that we develop in
appendix D.2 with the choices of Bregman distance function V (x, y) = 1

2‖x− y‖2 and α = 1.

H.5 Proof of Theorem 7

Based on the parameter setting in Theorem 7 that

α >
7

8
, S1 = 2

((
α− 7

8

)−1(
1 +

1

4α2

)
+

2

α2

)
σ2ε−2, q =

√
S1, S =

√
S1, and η =

1

2L
,

(42)

we obtain

β2 = αη − Lη2

2
− η

2
− η3L2q

2|S| =
1

2L
(α− 7

8
) > 0. (43)

Moreover, for mod(k, q) = 0, we have

E‖vk −∇f(xk)‖2 = E

∥∥∥∥∥
1

|S1|
∑

i∈S1

∇fi(xk)−∇f(xk)

∥∥∥∥∥

2

=
1

|S1|2

∥∥∥∥∥
∑

i∈S1

∇fi(xk)−∇f(xk)

∥∥∥∥∥

2

(44)

(i)
=

1

|S1|2
∑

i∈S1

‖∇fi(xk)−∇f(xk)‖2 =
1

|S1|
‖∇fi(xk)−∇f(xk)‖2 (ii)

=
σ2

|S1|
(45)

(iii)

≤
((

α− 7

8

)−1(
1 +

1

4α2

)
+

2

α2

)−1
ε2

2
. (46)

where (i) follows from E∇fi(xk)−∇f(xk) = 0, and the fact that the samples from S1 are drawn
with replacement, and (iii) follows from eq. (42).

Equations (43) and (46) imply that the parameters in the online case satisfy the assumptions in

Theorem 10 with β2 = (α − 7/8)/(2L) and ε21 =
((
α− 7

8

)−1 (
1 + 1

4α2

)
+ 2

α2

)−1
ε2

2 . Plugging
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eqs. (42), (43) and (46) into Theorem 10, we obtain that, after K iterations, the output of Prox-
SpiderBoost-O satisfies

E‖g̃ξ‖2 ≤
2

Kβ2

(
1 +

L2η2q

α2|S|

)
(Ψ(x0)−Ψ∗) +

(
η

β2
+

2

α2
+

L2η3q

α2|S|β2

)
ε21 (47)

=
4L

K

(
α− 7

8

)−1(
1 +

1

4α

)
(Ψ(x0)−Ψ∗) +

ε2

2
. (48)

To ensure E‖g̃ξ‖ 6 ε, it is sufficient to ensure E‖g̃ξ‖2 6 ε2, thus, we need

K =
8L

ε2

(
α− 7

8

)−1(
1 +

1

4α

)
(Ψ(x0)−Ψ∗) . (49)

Then, the total SFO complexity is
⌈
K

q

⌉
· S1 +K · S 6 (K + q) · S1

q
+K · S = K

√
S1 + S1 +K

√
S1 = O(ε−3 + ε−2),

where the last equation follows from eq. (49). The proximal oracle follows from the total iteration in
eq. (49), which finishes the proof.

H.6 Proof of Corollary 1

Proof. Corollary 1 follows directly from Theorem 6, becasue the online setting of problem (P) is a
special case of the problem (R).

I Analysis of Prox-SpiderBoost-PL (Proof of Theorem 5)

Let us consider one outer loop. Following a similar proof as that of eq.(25) in [22], we obtain the
following inequality for Prox-SpiderBoost-PL in finite-sum case.

EΨ(xk+1) ≤ E
[
Ψ(xk)− (

1

2η
− L

2
)‖xk+1 − xk‖2 − (

1

3η
− L)‖xk+1 − xk‖2 + η‖∇f(xk)− vk‖2

]
,

where xk+1 := proxηg(xk − η∇f(xk)). Substituting the variance bound of Spider into the above
inequality we obtain that

EΨ(xk+1) ≤ E
[
Ψ(xk)− (

1

2η
− L

2
)‖xk+1 − xk‖2 − (

1

3η
− L)‖xk+1 − xk‖2 + η

k∑

i=(nk−1)q

L2

|S| ‖xi+1 − xi‖2
]
.

Summing the above inequality over k from (nk − 1)q to nkq − 2 and relax the upper bound of i to
nkq − 2, we further obtain that

EΨ(xnkq−1) ≤ EΨ(x(nk−1)q)−
nkq−2∑

i=(nk−1)q

(
1

2η
− L

2
− ηL2(q − 2)

|S| )E‖xi+1 − xi‖2 − (
1

3η
− L)

nkq−2∑

i=(nk−1)q

E‖xi+1 − xi‖2.

Noting that q = |S|, ηL = 1
8 , we further obtain that

EΨ(xnkq−1) ≤ EΨ(x(nk−1)q)−
nkq−2∑

i=(nk−1)q

3LE‖xi+1 − xi‖2 − Lη2

nkq−2∑

i=(nk−1)q

E‖Gη(xi)‖2

≤ EΨ(x(nk−1)q)− Lη2

nkq−2∑

i=(nk−1)q

E‖Gη(xi)‖2

Since EΨ(xnkq−1) ≥ Ψ∗, the above inequality further implies that

nkq−2∑

i=(nk−1)q

E‖Gη(xi)‖2 ≤ 64L(EΨ(x(nk−1)q)−Ψ∗).
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By the scheme of Prox-SpiderBoost-gd, we know that E‖Gη(xnkq)‖2 =
1
q−2

∑nkq−2
i=(nk−1)q+1 E‖Gη(xi)‖2. Therefore, combining this inequality with the above inequality, we

obtain that

E‖Gη(xnkq)‖2 =
1

q − 2

nkq−2∑

i=(nk−1)q+1

E‖Gη(xi)‖2

≤ 64L

q − 2
(EΨ(x(nk−1)q)−Ψ∗)

≤ 64Lτ

q − 2
E‖Gη(x(nk−1)q)‖2.

In order to produce a point such that E‖Gη(xtq)‖ ≤ ε, we deduce from the above inequality that
at least t = Θ(log 1

ε / log q
Lτ ) number of outer loops is needed. Note that |S| = q = Θ(Lτ),

we conclude that t = Θ(log 1
ε ). In summary, the total proximal oracle complexity (PO) is in

the order O(q log 1
ε ) = O(τ log 1

ε ), and the total stochastic first-order oracle complexity (SFO) is
O((n+ q|S|) log 1

ε ) = O((n+ L2τ2) log 1
ε ).

J Analysis of Prox-SpiderBoost-M and SpiderBoost-M-O (Proof of
Theorem 3 and Theorem 8)

J.1 Proof of Theorem 3

In this section, we provide the convergence analysis of Prox-SpiderBoost-M. Throughout, for any
k ∈ N, denote τ(k) ∈ N the unique integer such that (τ(k)− 1)q ≤ k ≤ τ(k)q − 1. We also define
Γ0 = 0,Γ1 = 1 and Γk = (1 − αk)Γk−1 for k = 2, 3, .... Since we set αk = 2

dk/qe+1 , it is easy
to check that Γk = 2

dk/qe(dk/qe+1) . We first provide some auxiliary lemmas that are useful for the
analysis later.

Auxiliary Lemmas

We first present an auxiliary lemma from [8].
Lemma 3. [8] Under Assumption 1, the estimation vk of gradient constructed by SPIDER satisfies
that for all (τ(k)− 1)q + 1 ≤ k ≤ τ(k)q − 1,

E‖vk −∇f(zk)‖2 ≤ L2

|ξk|
E‖zk − zk−1‖2 + E‖vk−1 −∇f(zk−1)‖2.

Telescoping Lemma 3 and noting that vk = ∇f(zk) for all k such that mod(k, q) = 0, we obtain the
following bound.
Lemma 4. Under Assumption 1, the estimation vk of gradient constructed by SPIDER satisfies that
for all k ∈ N,

E‖vk −∇f(zk)‖2 ≤
k−1∑

i=(τ(k)−1)q

L2

|ξi|
E‖zi+1 − zi‖2. (50)

Next, recall the following definition of the gradient mapping for some η > 0 and x, u ∈ Rd:

Gη(x, u) :=
1

η

(
x− proxηh(x− ηu)

)
.

Based on this definition, we can rewrite the updates of Algorithm 3 as follows:

zk = (1− αk+1)yk + αk+1xk,

xk+1 = xk − λkGλk(xk, vk),

yk+1 = zk − βkGλk(xk, vk).

Next, we prove the following auxiliary lemma.
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Lemma 5. Let the sequences {xk}k, {yk}k, {zk}k be generated by Algorithm 3. Then, the following
inequalities hold

yk − xk = Γk

k∑

t=1

λt−1 − βt−1

Γt
Gλt−1(xt−1, vt−1), (51)

‖yk − xk‖2 ≤ Γk

k∑

t=1

λt−1 − βt−1

αtΓt
‖Gλt−1(xt−1, vt−1)‖2, (52)

‖zk+1 − zk‖2 ≤ 2β2
k‖Gλk(xk, vk)‖2 + 2α2

k+2Γk+1

k+1∑

t=1

(λt−1 − βt−1)2

αtΓt
‖Gλt−1(xt−1, vt−1)‖2.

(53)

Proof. We prove the first equality. By the update rule of the momentum scheme, we obtain that

yk − xk = zk−1 − βk−1Gλk−1
(xk−1, vk−1)− (xk−1 − λk−1Gλk−1

(xk−1, vk−1))

= (1− αk)(yk−1 − xk−1) + (λk−1 − βk−1)Gλk−1
(xk−1, vk−1). (54)

Dividing both sides by Γk and noting that 1−αk
Γk

= 1
Γk−1

, we further obtain that

yk − xk
Γk

=
yk−1 − xk−1

Γk−1
+
λk−1 − βk−1

Γk
Gλk−1

(xk−1, vk−1). (55)

Telescoping the above equality over k yields the first desired equality.

Next, we prove the second inequality. Based on the first equality, we obtain that

‖yk − xk‖2 = ‖Γk
k∑

t=1

λt−1 − βt−1

Γt
Gλt−1

(xt−1, vt−1)‖2

= ‖Γk
k∑

t=1

αt
Γt

λt−1 − βt−1

αt
Gλt−1

(xt−1, vt−1)‖2

(i)

≤ Γk

k∑

t=1

αt
Γt

(λt−1 − βt−1)2

α2
t

‖Gλt−1
(xt−1, vt−1)‖2

= Γk

k∑

t=1

(λt−1 − βt−1)2

Γtαt
‖Gλt−1

(xt−1, vt−1)‖2, (56)

where (i) uses the facts that {Γk}k is a decreasing sequence,
∑k
t=1

αt
Γt

= 1
Γk

and Jensen’s inequality.

Finally, we prove the third inequality. By the update rule of the momentum scheme, we obtain that
zk+1 − zk = yk+1 − zk + αk+2(xk+1 − yk+1). Then, we further obtain that

‖zk+1 − zk‖ ≤ ‖yk+1 − zk‖+ αk+2‖xk+1 − yk+1‖
≤ βk‖Gλk(xk, vk)‖+ αk+2

√
‖xk+1 − yk+1‖2

≤ βk‖Gλk(xk, vk)‖+ αk+2

√√√√Γk+1

k+1∑

t=1

(λt−1 − βt−1)2

Γtαt
‖Gλt−1(xt−1, vt−1)‖2.

The desired result follows by taking the square on both sides of the above inequality and using the
fact that (a+ b)2 ≤ 2a2 + 2b2.

We also need the following lemma, which was established as Lemma 1 and Proposition 1 in [11].
Lemma 6 (Lemma 1 and Proposition 1, [11]). Let g be a proper and closed convex function. Then,
for all u, v, x ∈ Rd and η > 0, the following statements hold:

〈u,Gη(x, u)〉 ≥ ‖Gη(x, u)‖2 +
1

η

(
g(proxηg(x− ηu))− g(x)

)
,

‖Gη(x, u)−Gη(x, v)‖ ≤ ‖u− v‖.
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Proof of Theorem 3:

Consider any iteration k of the algorithm. By smoothness of f , we obtain that

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉+
L

2
‖xk − xk−1‖2

= f(xk−1) +
〈
∇f(xk−1),−λk−1Gλk−1

(xk−1, vk−1)
〉

+
Lλ2

k−1

2
‖Gλk−1

(xk−1, vk−1)‖2

= f(xk−1)− λk−1

〈
∇f(xk−1)− vk−1, Gλk−1

(xk−1, vk−1)
〉
− λk−1

〈
vk−1, Gλk−1

(xk−1, vk−1)
〉

+
Lλ2

k−1

2
‖Gλk−1

(xk−1, vk−1)‖2

(i)

≤ f(xk−1)− λk−1

〈
∇f(xk−1)− vk−1, Gλk−1

(xk−1, vk−1)
〉
− λk−1‖Gλk−1

(xk−1, vk−1)‖2

−
(
h(proxλk−1h

(xk−1 − λk−1vk−1))− h(xk−1)
)

+
Lλ2

k−1

2
‖Gλk−1

(xk−1, vk−1)‖2

= f(xk−1)− λk−1

〈
∇f(xk−1)− vk−1, Gλk−1

(xk−1, vk−1)
〉
− λk−1‖Gλk−1

(xk−1, vk−1)‖2

−
(
h(xk)− h(xk−1)

)
+
Lλ2

k−1

2
‖Gλk−1

(xk−1, vk−1)‖2,

where (i) follows from Lemma 6. Rearranging the above inequality and using Cauchy-Swartz
inequality yields that

Ψ(xk) ≤ Ψ(xk−1)− λk−1(1− Lλk−1

2
)‖Gλk−1

(xk−1, vk−1)‖2 + λk−1‖∇f(xk−1)− vk−1‖‖Gλk−1
(xk−1, vk−1)‖.

(57)

Note that

‖∇f(xk−1)− vk−1‖ ≤ ‖∇f(xk−1)−∇f(zk−1)‖+ ‖∇f(zk−1)− vk−1‖
(i)

≤ L‖xk−1 − zk−1‖+ ‖∇f(zk−1)− vk−1‖
(ii)

≤ L(1− αk)‖yk−1 − xk−1‖+ ‖∇f(zk−1)− vk−1‖,

where (i) uses the Lipschitz continuity of ∇f and (ii) follows from the update rule of the momentum
scheme. Substituting the above inequality into eq. (57) yields that

Ψ(xk) ≤ Ψ(xk−1)− λk−1(1− Lλk−1

2
)‖Gλk−1

(xk−1, vk−1)‖2 + Lλk−1(1− αk)‖Gλk−1
(xk−1, vk−1)‖‖yk−1 − xk−1‖

+ λk−1‖Gλk−1
(xk−1, vk−1)‖‖∇f(zk−1)− vk−1‖

≤ Ψ(xk−1)− λk−1(1− Lλk−1

2
)‖Gλk−1

(xk−1, vk−1)‖2 +
Lλ2

k−1

2
‖Gλk−1

(xk−1, vk−1)‖2

+
L(1− αk)2

2
‖yk−1 − xk−1‖2 +

λk−1

2
‖Gλk−1

(xk−1, vk−1)‖2 +
λk−1

2
‖∇f(zk−1)− vk−1‖2

= Ψ(xk−1)− λk−1(
1

2
− Lλk−1)‖Gλk−1

(xk−1, vk−1)‖2 +
L(1− αk)2

2
‖yk−1 − xk−1‖2

+
λk−1

2
‖∇f(zk−1)− vk−1‖2

≤ Ψ(xk−1)− λk−1(
1

2
− Lλk−1)‖Gλk−1

(xk−1, vk−1)‖2 +
LΓk−1

2

k−1∑

t=1

λt−1 − βt−1

αtΓt
‖Gλt−1

(xt−1, vt−1)‖2

+
λk−1

2
‖∇f(zk−1)− vk−1‖2,
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where the last inequality uses item 2 of Lemma 5 and the fact that 0 < αk < 1. Telescoping the
above inequality over k from 1 to K yields that

Ψ(xK) ≤ Ψ(x0)−
K−1∑

k=0

λk(
1

2
− Lλk)‖Gλk(xk, vk)‖2 +

K−1∑

k=0

LΓk
2

k−1∑

t=0

(λt − βt)2

Γt+1αt+1
‖Gλt(xt, vt)‖2

+

K−1∑

k=0

λk
2
‖∇f(zk)− vk‖2

= Ψ(x0)−
K−1∑

k=0

λk(
1

2
− Lλk)‖Gλk(xk, vk)‖2 +

L

2

K−1∑

k=0

(λk − βk)2

Γk+1αk+1
‖Gλk(xk, vk)‖2(

K−1∑

t=k

Γt)

+
K−1∑

k=0

λk
2
‖∇f(zk)− vk‖2, (58)

where we have exchanged the order of summation in the second equality. Furthermore, note that∑K−1
t=k Γt = 2

∑K−1
t=k

1
dt/qe − 1

dt/qe+1 ≤ 2
dk/qe . Then, substituting this bound into the above

inequality and taking expectation on both sides yield that

E[Ψ(xK)] ≤ Ψ(x0)−
K−1∑

k=0

λk(
1

2
− Lλk)E‖Gλk(xk, vk)‖2 +

L

2

K−1∑

k=0

2(λk − βk)2

dk/qeΓk+1αk+1
E‖Gλk(xk, vk)‖2

+
K−1∑

k=0

λk
2
E‖∇f(zk)− vk‖2. (59)

Next, we bound the term E‖∇f(zk)− vk‖2 in the above inequality. By Lemma 4 we obtain that

E‖∇f(zk)− vk‖2 ≤
k−1∑

i=(τ(k)−1)q

L2

|ξi|
E‖zi+1 − zi‖2

≤
k−1∑

i=(τ(k)−1)q

L2

|ξi|
[
2β2

i ‖Gλi(xi, vi)‖2 + 2α2
i+2Γi+1

i∑

t=0

(λt − βt)2

αt+1Γt+1
‖Gλt(xt, vt)‖2

]
,

(60)

where the last inequality uses item 3 of Lemma 5. Substituting eq. (60) into eq. (59) and simplifying
yield that

E[Ψ(xK)] ≤ Ψ(x0)−
K−1∑

k=0

[
λk(

1

2
− Lλk)− L(λk − βk)2

dk/qeΓk+1αk+1

]
E‖Gλk(xk, vk)‖2

+

K−1∑

k=0

λk
2
E
[ k−1∑

i=(τ(k)−1)q

L2

|ξi|

[
2β2

i ‖Gλi(xi, vi)‖2 + 2α2
i+2Γi+1

i∑

t=0

(λt − βt)2

αt+1Γt+1
‖Gλt(xt, vt)‖2

]]

︸ ︷︷ ︸
T

.

(61)

Before we proceed the proof, we first specify the choices of all the parameters. Specifically, we
choose a constant mini-batch size |ξk| ≡ |ξ|, a constant q = |ξ|, a constant βk ≡ β > 0, λk ∈
[β, (1 + αk+1)β]. Based on these parameter settings, the term T in the above inequality can be
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bounded as follows.

T
(i)

≤
K−1∑

k=0

λk
2
E
[ τ(k)q−1∑

i=(τ(k)−1)q

L2

|ξi|

[
2β2

i ‖Gλi(xi, vi)‖2 + 2α2
i+2Γi+1

k−1∑

t=0

(λt − βt)2

αt+1Γt+1
‖Gλt(xt, vt)‖2

]]

(ii)

≤
K−1∑

k=0

λkL
2qβ2

|ξ| E‖Gλk(xk, vk)‖2 +
K−1∑

k=0

2λkL
2

|ξ|τ(k)3

k−1∑

t=0

(λt − βt)2

αt+1Γt+1
E‖Gλt(xt, vt)‖2

(iii)

≤
K−1∑

k=0

λkL
2β2E‖Gλk(xk, vk)‖2 +

2L2β2

|ξ|
K−1∑

k=0

αk+1

Γk+1
E‖Gλk(xk, vk)‖2(

K−1∑

t=k

λk
τ(t)3

)

(iv)

≤
K−1∑

k=0

λkL
2β2E‖Gλk(xk, vk)‖2 +

4L2β3

|ξ|
K−1∑

k=0

(dk/qe+ 1)E‖Gλk(xk, vk)‖2(

τ(K)q∑

t=(τ(k)−1)q

1

τ(t)3
)

=
K−1∑

k=0

λkL
2β2E‖Gλk(xk, vk)‖2 +

4L2β3

|ξ|
K−1∑

k=0

(dk/qe+ 1)E‖Gλk(xk, vk)‖2(

τ(K)∑

t=τ(k)−1

q

(t+ 1)3
)

≤
K−1∑

k=0

λkL
2β2E‖Gλk(xk, vk)‖2 + 2L2β3

K−1∑

k=0

(dk/qe+ 1)E‖Gλk(xk, vk)‖2 1

τ(k)2

(v)

≤
K−1∑

k=0

λkL
2β2E‖Gλk(xk, vk)‖2 + 2L2β3

K−1∑

k=0

E‖Gλk(xk, vk)‖2 dk/qe+ 1

τ(k)2

≤
K−1∑

k=0

λkL
2β2E‖Gλk(xk, vk)‖2 + 2L2β3

K−1∑

k=0

E‖Gλk(xk, vk)‖2, (62)

where (i) follows from the facts that i ≤ k − 1 and k − 1 ≤ τ(k)q − 1, (ii) uses the fact that∑τ(k)q−1
i=(τ(k)−1)q α

2
i+2Γi+1 ≤ 2

τ(k)3 , (iii) uses the parameter settings q = |ξ| and λt − βt ≤ αtβ, (iv)
uses the facts that λk ≤ 2β and (τ(k)− 1)q ≤ k ≤ τ(k)q and (v) uses the fact that k ≤ τ(k)q − 1.
Substituting the above inequality into eq. (61) and simplifying, we obtain that

E[Ψ(xK)] ≤ Ψ(x0)−
K−1∑

k=0

[
λk(

1

2
− Lλk − L2β2)− L(λk − βk)2

dk/qeΓk+1αk+1
− 2L2β3

]
E‖Gλk(xk, vk)‖2

(63)

≤ Ψ(x0)−
K−1∑

k=0

[
β(

1

2
− 2Lβ − L2β2)− Lβ2 − 2L2β3

]
E‖Gλk(xk, vk)‖2. (64)

Choosing β ≤ 1
8L , the above inequality further implies that

E[Ψ(xK)] ≤ Ψ(x0)−
K−1∑

k=0

β

16
E‖Gλk(xk, vk)‖2. (65)

Then, it follows that 1
K

∑K−1
k=0 E‖Gλk(xk, vk)‖2 ≤ 16(Ψ(x0) − Ψ∗)/(Kβ). Next, we bound the

term E‖Gλζ (zζ ,∇f(zζ))‖2, where ζ is selected uniformly at random from {0, . . . ,K− 1}. Observe
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that

E‖Gλζ (zζ ,∇f(zζ))‖2 = E‖Gλζ (zζ ,∇f(zζ))−Gλζ (zζ , vζ) +Gλζ (zζ , vζ)‖2

≤ 2E‖Gλζ (zζ ,∇f(zζ))−Gλζ (zζ , vζ)‖2 + 2E‖Gλζ (zζ , vζ)‖2
(i)

≤ 2E‖∇f(zζ)− vζ‖2 + 2E‖Gλζ (zζ , vζ)−Gλζ (xζ , vζ) +Gλζ (xζ , vζ)‖2

≤ 2E‖∇f(zζ)− vζ‖2 + 4E‖Gλζ (zζ , vζ)−Gλζ (xζ , vζ)‖2 + 4E‖Gλζ (xζ , vζ)‖2

≤ 2E‖∇f(zζ)− vζ‖2 + 4E‖Gλζ (xζ , vζ)‖2

+
4

λ2
ζ

E‖zζ − xζ + proxλζh(xζ − λζvζ)− proxλζh(zζ − λζvζ)‖2

≤ 2E‖∇f(zζ)− vζ‖2 + 4E‖Gλζ (xζ , vζ)‖2

+
8

λ2
ζ

E‖zζ − xζ‖2 +
8

λ2
ζ

E‖proxλζh(xζ − λζvζ)− proxλζh(zζ − λζvζ)‖2

(ii)

≤ 2E‖∇f(zζ)− vζ‖2 + 4E‖Gλζ (xζ , vζ)‖2 +
8

λ2
ζ

E‖zζ − xζ‖2 +
8

λ2
ζ

E‖zζ − xζ‖2

(iii)

≤ 2E‖∇f(zζ)− vζ‖2 + 4E‖Gλζ (xζ , vζ)‖2 +
16

λ2
ζ

E‖yζ − xζ‖2 (66)

where (i) uses the non-expansiveness property of the operator G in Lemma 6, (ii) follows from
the non-expansiveness of the proximal operator, and (iii) uses the update rule and the fact that
0 < αk < 1.

Next, we bound the three terms on the right hand side of the above inequality separately. First, note
that

E‖Gλζ (xζ , vζ)‖2 =
1

K

K−1∑

k=0

E‖Gλk(xk, vk)‖2 ≤ 16(Ψ(x0)−Ψ∗)
Kβ

.

Second, note that eq. (60) implies that

E‖∇f(zζ)− vζ‖2

≤ E
ζ−1∑

i=(τ(ζ)−1)q

L2

|ξi|
[
2β2

i ‖Gλi(xi, vi)‖2 + 2α2
i+2Γi+1

i∑

t=0

(λt − βt)2

αt+1Γt+1
‖Gλt(xt, vt)‖2

]

≤ 2L2β2

|ξ| E
( τ(ζ)q−1∑

i=(τ(ζ)−1)q

‖Gλi(xi, vi)‖2
)

+
L2

|ξ|E
( ζ−1∑

i=(τ(ζ)−1)q

2α2
i+2Γi+1

i∑

t=0

(λt − βt)2

αt+1Γt+1
‖Gλt(xt, vt)‖2

)

≤ 2L2β2

|ξ|K
K−1∑

ζ=0

( τ(ζ)q−1∑

i=(τ(ζ)−1)q

E‖Gλi(xi, vi)‖2
)

+
L2β2

|ξ|K
K−1∑

ζ=0

( τ(ζ)q−1∑

i=(τ(ζ)−1)q

2α2
i+2Γi+1

ζ−1∑

t=0

(t+ 1)E‖Gλt(xt, vt)‖2
)

≤ 2L2β2q

|ξ|
1

K

K−1∑

ζ=0

E‖Gλζ (xζ , vζ)‖2 +
L2β2

|ξ|
1

K

K−1∑

ζ=0

(
4

τ(ζ)3

ζ−1∑

t=0

(dt/qe+ 1)E‖Gλt(xt, vt)‖2
)

≤ 2L2β2

(
1

K

K−1∑

ζ=0

E‖Gλζ (xζ , vζ)‖2
)

+
L2β2

|ξ|
1

K

K−1∑

ζ=0

(dζ/qe+ 1)E‖Gλζ (xζ , vζ)‖2
K−1∑

t=ζ

4

τ(t)3

≤ 2L2β2

(
1

K

K−1∑

ζ=0

E‖Gλζ (xζ , vζ)‖2
)

+ L2β2 1

K

K−1∑

ζ=0

E‖Gλζ (xζ , vζ)‖2
2(dζ/qe+ 1)

τ(ζ)]2

≤ 3L2β
16(Ψ(x0)−Ψ∗)

K
,

where we have used the fact that ζ is sampled uniformly from 0, ...,K − 1 at random.
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Third, note that by item 2 of Lemma 5, we know that

E‖yζ − xζ‖2 ≤ E
(

Γζ

ζ−1∑

t=0

λt − βt
αt+1Γt+1

‖Gλt(xt, vt)‖2
)

≤ 1

K

K−1∑

ζ=0

Γζ

ζ−1∑

t=0

λt − βt
αt+1Γt+1

E‖Gλt(xt, vt)‖2

≤ β2

K

K−1∑

ζ=0

Γζ

ζ−1∑

t=0

(dt/qe+ 1)E‖Gλt(xt, vt)‖2

=
β2

K

K−1∑

ζ=0

(dζ/qe+ 1)E‖Gλζ (xζ , vζ)‖2
( K−1∑

t=ζ+1

Γt

)

≤ β2

K

K−1∑

ζ=0

E‖Gλζ (xζ , vζ)‖2. (67)

Combining the above three inequalities and note that Lβ = Θ(1) and β
λk
≤ 1, we finally obtain that

E‖Gλζ (zζ ,∇f(zζ))‖2 ≤ O
(
L(Ψ(x0)−Ψ∗)

K

)
. (68)

This further implies that

E‖Gλζ (zζ ,∇f(zζ))‖ ≤
√

E‖Gλζ (zζ ,∇f(zζ))‖2 ≤ O
(√

L(Ψ(x0)−Ψ∗)
K

)
.

Setting the right hand side of the above inequality to be bounded by ε, we obtain that K ≥
O
(
L(Ψ(x0)−Ψ∗)

ε2

)
. Then, the total number of stochastic gradient calls is bounded by (K + q)nq +

K|ξ| ≤ O(n+
√
nε−2).

J.2 Proof of Theorem 8

The proof follows exactly from that of Theorem 3 (the same treatment of the momentum schemes
applies).
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