
Supplementary materials for “Communication-Efficient Distributed

Learning via Lazily Aggregated Quantized Gradients"

A Proof of Lemma 2

With the LAQ update, we have:

f(✓k+1)� f(✓k) 
*
rf(✓k),�↵[rf(✓k)� "k +

X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))]

+
+

L
2
k✓k+1 � ✓kk22

�↵krf(✓k)k22 + ↵

*
rf(✓k), "k �

X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))

+
+

L
2
k✓k+1 � ✓kk22

=�↵krf(✓k)k22 +
↵
2
[krf(✓k)k22 + k"k �

X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))k22 �

k✓k+1 � ✓kk22
↵2

]+
L
2
k✓k+1 � ✓kk22

�↵
2
krf(✓k)k22 + ↵k

X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))k22 + (

L
2
� 1

2↵
)k✓k+1 � ✓kk22 + ↵k"kk22

where the second equality follows from: ha, bi = 1
2 (kak

2 + kbk2 � ka� bk2) and the last inequality
is resulted from: k

Pn
i=1 aik22  n

Pn
i=1 kaik2.

B Proof of Lemma 3

With Assumption 1, under the LAQ we have:
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For the ease of expression, we define �d := 1
↵

PD
j=d ⇠j , d = 1, 2, · · · , D. Then the Lyapunov function

defined in (16) can be written as
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where the second inequality follows from Young’s Equality: ka+ bk22  (1+ ⇢)kak22 + (1+ ⇢�1)kbk22.
The last inequality is resulted from
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where the second inequality follows from (7a). Substituting Q(✓k) = rf(✓k)� "k into (22) gives
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Then,
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C Proof of Theorem 1

We can first prove that there exist constants �2 2 (0, 1) and B1 > 0 such that,
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where the last inequality is the result of (32a).

2) proof of (31b) for k + 1:
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Having this we can show
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Here we have finished the proof that (31) hold for any integer k � 0.
Now we show that there do exist �1 2 (0, 1) and �2 2 (0, 1) such that (17) and (32) are satisfied. First,
we fix ⇢1 = 1

2 , ⇢2 = 1, and ⇠1 = ⇠2 = · · · = ⇠D = ⇠, which reduces (17) as:
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Above values enforce (17) satisfied. Then we check (32). That (32c) holds means
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Note that µ > 27M/4 can be achieved by scaling the loss function. Scaling the loss function does not
change the learning problem and does not changes the condition constant . It worths mentioning that
it is only when ⇢1 = 1

2 and ⇢2 = 1 (46) and (48) should hold. Actually, ⇢1 and ⇢2 are only constrained
as 0 < ⇢1 < 1 and ⇢2 > 0. Consequently, ⌘ has a lager range of choice instead of only in the range
described by (46) and (48).

For any �2 2 (0, 1), there exists a t̄ � 1 such that ��t̄
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When ⌘0 is chosen to be small enough and �2 is close enough to 1, (49a) is equivalent to (47). Hence,
choosing ⌘ satisfying (46) and (48) is sufficient to guarantee (49a). With ⌘0 fixed, we can let ⌧ to be
small enough to ensure that (49b) holds. So far, we have shown that we can find �1 and �2 satisfying
0 < �1 < �2 < 1, thus validate LAQ converges at linear rate.

D Alternative proof of Theorem 1 based on a new Lyapunov function

For this proof we define Lyapunov function as
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Then the one-step Lyapunov function difference is bounded as
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2]krf(✓k)k22

+ {[(↵
2
+ (

L
2
+ �1 + 3�⌧2L02)(1 + ⇢�1

2 )↵2)M + 3�⌧2]
⇠D

↵2M
� �D}k✓k+1�D � ✓k�Dk22

+
D�1X

d=1

{[(↵
2
+ (

L
2
+ �1 + 3�⌧2L02)(1 + ⇢�1

2 )↵2)M + 3�⌧2]
⇠d

↵2M
+ �d+1 � �d}k✓k+1�d � ✓k�dk22

+ [
3↵
2

+ (
3L
2

+ 3�1 + 9�⌧2L02)(1 + ⇢�1
2 )↵2 + 3�⌧2]M

X

m2Mk
c

(k"k
mk22 + k"̂k�1

m k22)

+ [
1
2⇢1

↵+ (L+ 2�1 + 6�⌧2L02)(1 + ⇢2)↵
2]k"kk22 + �(3⌧2 � 1)

X

m2M

k"k
mk21

(52)
where the second inequality uses the Young’ inequality and the third inequality follows from (23).

It is straightforward that the following condition guarantees the first three terms in above inequality
are nonpositive

(�1
2
+

1
2
⇢1)↵+ (L+ 2�1 + 6�⌧2L02)(1 + ⇢2)↵

2  0;

[(
↵
2
+ (

L
2
+ �1 + 3�⌧2L02)(1 + ⇢�1

2 )↵2)M + 3�⌧2]
⇠D

↵2M
� �D  0;

[(
↵
2
+ (

L
2
+ �1 + 3�⌧2L02)(1 + ⇢�1

2 )↵2)M + 3�⌧2]
⇠d

↵2M
+ �d+1 � �d  0.

(53)

For the ease of exposition, we define constant c and B as

c = min{(1 � ⇢1)↵ � 2µ(L + 2�1 + 6�⌧2L02)(1 + ⇢2)↵
2,

1 � [(
↵

2
+ (

L

2
+ �1 + 3�⌧2L02)(1 + ⇢�1

2 )↵2)M + 3�⌧2]
⇠D

↵2M�D
,

1 � �d+1

�d
� [(

↵

2
+ (

L

2
+ �1 + 3�⌧2L02)(1 + ⇢�1

2 )↵2)M + 3�⌧2]
⇠d

↵2M�d
}

(54)
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and,

B = max{[
3↵

2
+(

3L

2
+3�1+9�⌧2L02)(1+⇢�1

2 )↵2+3�⌧2]M,
1

2⇢1
↵+(L+2�1+6�⌧2L02)(1+⇢2)↵

2}.
(55)

Assumption 2 indicates f(·) satisfies the PL condition:
2µ(f(✓k)� f(✓⇤))  krf(✓k)k22. (56)

Plugging (56) into (52) gives

V(✓k+1)  �1V(✓k) +B[k"kk22 +
X

m2M

(k"k
mk22 + k"̂k�1

m k22)] + �(3⌧2 � 1)
X

m2M

k"k
mk21

 �1V(✓k) + [BMp2 +B + �(3⌧2 � 1)]
X

m2M

k"k
mk22 +Bp2

X

m2M

k"̂k�1
m k22

(57)

where �1 = 1 � c.

By choosing parameter stepsize ↵ that impose the following inequality hold
[BMp2 +B + �(3⌧2 � 1)]  0, (58)

one can obtain
V(✓k+1)  �1V(✓k) +Bp2

1
�
· �

X

m2M

k"̂k�1
m k22

 �1V(✓k) +Bp2
1
�

X

m2M

max
k�t̄t0k�1

V(✓t0)

 �1V(✓k) +BMp2
1
�

max
k�t̄t0k�1

V(✓t0).

(59)

For simplicity, we fix ⇢1 = 1
2 , ⇢2 = 1, �d = (D�d+1)⇠

↵ , ↵ = a
L , and �⌧2 = bL

L02 , with a, b > 0.
Consequently, we obtain

B = [
3↵
2

+ (
3L
2

+ 3�1 + 9�⌧2L02)↵2 + 3�⌧2]M

= [
3a
2L

+ (
3a
2

+ 3D⇠ + 9ab)
2a
L

+
9bL
ML02 ]M

(60)

and

c = min

(
[ 12 � 4(a+ 2D⇠ + 6ab)]a


,

1
2 � ( 12a+D⇠ + 3ab) + 3bL2

aL02M

D � d+ 1

)
. (61)

For the design parameter D, we impose D  . From (61), it is obvious that the following condition

[
1
2
� 4(a+ 2D⇠ + 6ab)]a  1

2
� (

1
2
a+D⇠ + 3ab) +

3bL2

aL02M
(62)

guarantees

c =
[ 12 � 4(a+ 2D⇠ + 6ab)]a


. (63)

Thus, we obtain �1 = 1 � c = 1 � [ 12�4(a+2D⇠+6ab)]a
 .

Following [8, Lemma 3.2], if the following condition holds

�1 +BMp2
1
�

< 1 (64)

then it guarantees the linear convergence of V, that is,
V(✓k)  �k

2V(✓k) (65)

where �2 = (�1 + BMp2 1
� )

1
1+t̄ . It can be verified that a = 1

20 , b = 1
10 , D⇠ = 1

50 and ⌧2 
1

100/[M
2p2( 93L

02

10L2 + 9
M )] is a sufficient condition for (53), (62) and (64) being satisfied. Therefore,

the linear convergence of (65) is indeed guaranteed. With above selected parameters, we can obtain
�1 = 1 � 1

1000 and �2 = (1 � 1
1000 +M2p2( 93L02

100L2 + 9
10M )⌧2)

1
1+t̄ . It is thus obvious that with the

quantization being accurate enough, i.e., ⌧2 ! 0, the dependence of convergence rate on condition
number is of order 1

 , which is the same as standard gradient descent.
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E Proof of Proposition 1

Suppose that at current iteration k the last iteration when worker m communicated with server is
d0 where 1  d0  dm, then ✓k�1

m = ✓k�d0 . Therefore,

kQm(✓̂
k�1
m )�Qm(✓k)k22 =kQm(✓k�d0)�rfm(✓k�d0)�Qm(✓k) +rfm(✓k) +rfm(✓k�d0)�rfm(✓k)k22

3(kfm(✓k�d0)�rfm(✓k)k22 + k"k
mk22 + k"k�d0

m k22)

3L2
mk✓k�d0 � ✓kk22 + 3(k"k

mk22 + k"k�d0
m k22)

=3L2
mk

d0X

d=1

✓k+1�d � ✓k�dk22 + 3(k"k
mk22 + k"k�d0

m k22)

3L2
md0

d0X

t=1

k✓k+1�d � ✓k�dk22 + 3(k"k
mk22 + k"k�d0

m k22).

(66)

From the definition of dm and ⇠1 � ⇠2 � · · · � ⇠D, it can be obtained that:

L2
m  ⇠d0

3↵2M2D
, for all d0 satisfying 1  d0  dm. (67)

Substituting (67) into (66) gives:

kQm(✓̂
k�1
m )�Qm(✓k)k22  ⇠d0

↵2M2

d0X

d=1

⇠dk✓k+1�d � ✓k�dk22 + 3(k"k
mk22 + k"̂k�1

m k22)

 1
↵2M2

DX

d=1

⇠dk✓k+1�d � ✓k�dk22 + 3(k"k
mk22 + k"̂k�1

m k22)

(68)

which exactly means that (7a) is satisfied. Since dm  D  t̄, the criterion (7) holds, which means
that worker m will not upload its information until at least tm iterations after last communication.
therefore, in first k iterations, worker m has at most k/(dm + 1) communications with the server.

F Intuition of the selective aggregation criterion (7a)

The following part shows the inspiration for the criterion, which is not mathematically strict but
provides the intuition. For simplicity, we fix ↵ = 1/L, then we have:

�k
GD = �↵

2
||rf(✓k)||22;

�k
LAQ = �↵

2
||rf(✓k)||22 � ↵||

X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))||22.

(69)

The lazy aggregation criterion selects the quantized gradient innovation by judging its contribution to
decreasing the loss function. LAQ is expected to be more communication-efficient than GD, that is,
each upload results more descent, which translates to:

�k
LAQ

|Mk|  �k
GD

M
(70)

By simple manipulation, it can be obtained that (70) is equivalent to:

||
X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))||22  |Mk

c |
2M

||rf(✓k)||22. (71)

Since
||

X

m2Mk
c

(Qm(✓̂
k�1
m )�Qm(✓k))||22  |Mk

c |
X

m2Mk
c

||(Qm(✓̂
k�1
m )�Qm(✓k)||22, (72)

the following condition is sufficient to guarantee (71):

||(Qm(✓̂
k�1
m )�Qm(✓k)||22  ||rf(✓k)||22/(2M2), 8m 2 Mk

c . (73)
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However, to check (73) locally for each worker is impossible because the fully aggregated gradient
rf(✓k) is required, which is exactly what we want to avoid. Moreover, it does not make sense to
reduce uploads if the fully aggregated gradient has been obtained. Therefore, we bypass directly
calculating ||rf(✓k)||22 using its approximation below.

||rf(✓k)||22 ⇡ 2
↵2

DX

k=1

⇠d||✓k+1�d � ✓k�d||22 (74)

where {⇠d}Dd=1 are constants. The fundamental reason why (74) holds is that rf(✓k) can be approxi-
mated by weighted previous gradients or parameter differences since f(·) is L-smooth. Combining
(74) and (73) leads to proposed criterion (7a) with quantization error ignored.

G Simulation details

Logistic regression In multi-class logistic regression, suppose there are C classes, for instance,
in MNIST dataset, C = 10. The training data xm,n is denoted as feature-label pair (xf

m,n,x
l
m,n),

where xf
m,n 2 RF is the feature vector and xl

m,n 2 RC is the one-hot label vector. Hence the model
parameter ✓ 2 RC⇥F is a matrix, which is slightly different from previous description. Note that
the model is formulated in this way for the convenience of expression, which does not change the
learning problem. The estimated probability of (m,n)-th sample belonging to class i is given by

x̂l
m,n = softmax(✓xf

m,n) (75)

which can be explicitly written as:

[x̂l
m,n]i =

e[✓x
f
m,n]i

PC
j=1 e

[✓xf
m,n]j

, 8i 2 {1, 2, · · · , C}. (76)

Regularized logistic regression adopts loss as cross-entropy plus regularizer:

`(xm,n,✓) = �
CX

i

[xl
m,n]i log[x̂

l
m,n]i +

�
2
Tr(✓T✓) (77)

where Tr(·) denotes trace operator, and ✓T is the transpose of ✓. With `(xm,n,✓) defined, the local
loss functions can be determined as fm(✓) =

PNm
n=1 `(xm,n;✓), and the global loss function adopts

following form:

f(✓) =
1

N

X

m2M
fm(✓) (78)

where N is the total number of data samples. In our tests, the regularizer coefficient � is 0.01.

Neural network. We employ a ReLU network of one hidden layer with 200 nodes, the dimensions
of input layer and output layer are 784 and 10, respectively. The regularizer parameter � = 0.01.
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