
A Prior of a Googol Gaussians: a Tensor Ring
Induced Prior for Generative Models

(Supplementary)

Maksim Kuznetsov1,∗ Daniil Polykovskiy1,∗ Dmitry Vetrov2 Alexander Zhebrak1

1Insilico Medicine 2National Research University Higher School of Economics
{kuznetsov,daniil,zhebrak}@insilico.com vetrovd@yandex.ru

1 Derivations for one-dimensional conditional distributions

In the paper, we stated that one-dimensional conditional distributions are Gaussian Mixture Models
with the same means and variances as priors, but with different weights pψ(sk | z1:k−1). With Tensor
Ring decomposition, we can efficiently compute those weights (we denote

∏d
j=k+1 Q̃j as Q̃k+1:d):

pψ(sk | z1:k−1) ∝ pψ(sk, z1:k−1)

=
∑
s1:k−1

pψ(s1:k−1, sk, z1:k−1)

=
∑
s1:k−1

pψ(s1:k)pψ(z1:k−1 | s1:k−1)

∝
∑
s1:k−1

Tr

(
k−1∏
j=1

Qj [sj]Qk[sk]Q̃k+1:d

)
k−1∏
j=1

pψ(zj | sj)

= Tr

(∑
s1:k−1

k−1∏
j=1

[
Qj [sj]pψ(zj | sj)

]
·Qk[sk]Q̃k+1:d

)

= Tr

(
k−1∏
j=1

(∑
sj

Qj [sj]pψ(zj | sj)
)
·Qk[sk]Q̃k+1:d

)

(1)

2 Calculation of marginal probabilities in Tensor Ring

In Algorithm 1 we show how to compute marginal probabilities for a distribution parameterized in
Tensor Ring format. Note that we compute a normalizing constant on-the-fly.

3 Model architecture

We manually tuned the hyperparameters: first we selected the best encoder-decoder architecture
for a Gaussian prior and then tuned TRIP parameters for a fixed architecture. For models from a
GAN family, we used a deconvolutional generator with kernel size 5 × 5 and ReLU activations.
The number of channels in layers was [512, 256, 128, 64, 3]. For the discriminator, we used the
symmetric convolutional architecture with a LeakyReLU. We trained a model using Adam [1]

∗equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Algorithm 1 Calculation of marginal probabilities in Tensor Ring
Input: A set M of variable indices, values of these variables ri for i ∈M
Output: Joint probability log p(rM), where rM = {ri ∀i ∈M}
Initialize Qbuff = I ∈ Rm1×m1 , Qnorm = I ∈ Rm1×m1

for j = 1 to d do
if j is marginalized out (j /∈M) then
Qbuff = Qbuff ·

(∑Nj−1
sj=0 Qj [sj]

)
else
Qbuff = Qbuff ·Qj [rj]

end if
Qnorm = Qnorm ·

(∑Nj−1
sj=0 Qj [sj]

)
end for
log p = logTr (Qbuff)− log Tr (Qnorm)

optimizer with a learning rate of 0.0001 for 100000 iterations with a batch size 128. We used a
schedule of 4 discriminator updates per one generator update. A TRIP prior was 128-dimensional
with 10 Gaussians per dimension and core size mk = 40 (sizes of matrices Qk[sk]). For a baseline
Gaussian Mixture Model (GMM) prior we used 128 · 10 = 1280 Gaussians. We conducted all the
experiments on Tesla K80.

For VAE models, we used a convolutional encoder and a deconvolutional decoder with a kernel
size 5 × 5, and the number of channels [3, 64, 128, 256, 512] for the encoder, and a symmetrical
architecture for the decoder. We used LeakyReLU for the encoder and ReLU for the decoder. We
trained the model for 80,000 weight updates with batch size 128. The latent dimension was 100 for
all VAE-based models. For TRIP we used 10 Gaussians per dimension and a Tensor Ring with core
size mk = 20. For a GMM prior we used 1000 Gaussians.

For conditional generation with TRIP, the architecture was the same as for unconditional generation.
For CVAE we parameterized a posterior model pψ(z | y) as a fully connected network with layer
sizes [2, 128, 100] and LeakyReLU activations. For the VAE TELBO baseline model [2], we used a
fully connected network for pψ(y | z) with layer sizes [100, 64, 64, 2] and LeakyReLU activations.

4 Implementation details

Implementing the TRIP module is straight-forward and requires two functions. The first function
that we use during training computes log pψ(zM) for an arbitrary subset M of latent dimensions.
The second function is used for sampling, and samples from pψ(z) with a chain rule, for which
calculations are described in Eq 1.

During training we enforce values of cores Q to be non-negative by replacing each element of tensors
Q with their absolute values before computation. To make computations more stable, we divide Qbuff
and Qnorm by the ‖Qbuff‖ at each iteration when computing log pψ(z).

Table 1: Impact of core size mk (CIFAR-10 and CelebA)

mk
CIFAR-10 CelebA

ELBO Reconstruction KL ELBO Reconstruction KL

1 -89.5 60.5 29.0 -243.40 177.63 65.76
5 -89.3 60.2 29.1 -231.57 166.89 64.67
10 -89.3 60.4 28.9 -223.59 156.99 66.60
20 -89.1 60.2 28.9 -215.62 158.95 56.67

2

5 Impact of core size

In Table 1 we compared the performance of VAE-TRIP model with different core sizes mk on
CIFAR-10 and CelebA datasets. Note that for mk = 1, TRIP is factorized over dimensions, where
each dimension is a 1D Gaussian Mixture Model. Notice that models with higher core sizes perform
better as the prior becomes more complex. In Table 2 we show computational complexity and memory
usage of TRIP model to illustrate a tradeof between quality and computational complexity of the
model.

Table 2: Time and memory consumption of operations with prior (per batch). mk is a core size, latent
space dimension d = 100, number of Gaussians per dimension N = 10, batch size b = 128. Other
parameters are the same as used in the paper. We performed the experiments on Tesla K80. MS
stands for milliseconds, MB stands for megabytes. Results averaged over 10 runs; Reported mean ±
std.

mk LOG-LIKELIHOOD, MS SAMPLING, MS MEMORY, MB

O-NOTATION O(b · d · (m3
k +m2

kN +N)) O(d · (m2
k +N))

1 126 ± 7 201 ± 21 0.023
10 137 ± 4 232 ± 13 0.77
20 193 ± 15 312 ± 18 3.1
50 200 ± 20 360 ± 17 19.5

100 308 ± 12 882 ± 15 78.1

Table 3: Condition satisfaction (accuracy) for conditional generative models with different rates of
missing attributes in the training set.

MODEL
% MISSING

0% 90% 99%

CVAE [3] 86.69 85.31 84.61
VAE TELBO [2] 82.80 74.87 73.92
JMVAE [4] 81.87 80.65 73.68
VAE-TRIP (OURS) 88.7 87.08 84.89

5.1 Conditional Generation

For the conditional generation, we used images of size 64× 64. We study the model performance
for different rates of missing attributes (0%, 90%, 99%). For each model, we generated 30,000
images for randomly sampled complete sets of attributes from the test set. We trained a predictive
convolutional neural network on a validation set to predict the attributes with 92.3% accuracy and
predicted the attributes of generated images. We report the condition matching accuracy—when
requested attributes matched the actual attributes. We trained all models except for CVAE [3] directly
on data with missing attributes. For CVAE, we imputed missing values with a predictive model. For
the missing rate of 90%, the predictive test accuracy was 90%, and for 99%—87%. In the results
shown in Table 3, we see that the VAE-TRIP model outperforms other baselines.

Table 4: Preliminary results on combining TRIP and normalizing flows to form a prior; Number of
parameters of model components

N (0, 1) GMM TRIP COMBINATION WITH FLOW

N (0, I) GMM TRIP

PARAMETERS (MODEL) 11.4M 11.1M 10.7M 11.3M 10.7M 10.4M
PARAMETERS (PRIOR) 0 0.2M 0.6M 0.3M 0.5M 0.7M
PARAMETERS (TOTAL) 11.4M 11.3M 11.1M 11.5M 11.2M 11.1M
ELBO -192.6 -190.05 -189.1 -185.3 -186.0 -184.7

3

5.2 Additional experiments for VAE

In Table 4 we compare VAE model with Gaussian, GMM and TRIP priors with a comparable number
of parameters. We also provide preliminary results on combining normalizing flows with a TRIP
prior.

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International

Conference on Learning Representations, 2015.

[2] Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative Models of
Visually Grounded Imagination. International Conference on Learning Representations, 2018.

[3] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
Learning with Deep Generative Models. In Advances in neural information processing systems,
pages 3581–3589, 2014.

[4] Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Joint Multimodal Learning with Deep
Generative Models. International Conference on Learning Representations Workshop, 2017.

4

	Derivations for one-dimensional conditional distributions
	Calculation of marginal probabilities in Tensor Ring
	Model architecture
	Implementation details
	Impact of core size
	Conditional Generation
	Additional experiments for VAE

