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A Appendix1

This appendix provides the proofs of the theoretical results for the main document.2

A.1 Proof of Theorem 13

First, we presents some Lemmas to facilitate the proof of Theorem 1.4

Let (Z̃, R̃) be an independent copy of (Z,R). We denote5

A(R, R̃) = E
[
(Z − Z̃)(Z − Z̃)ᵀ|R, R̃

]
. (1)

Let P be the projection onto the central space SR|Z with respect to the inner project a · b = aᵀb, and
let Q = Id − P . Further, define two quantities

C = 2Id −A(R, R̃) and G = E(C)2.

Lemma 1. Denote span(G) the column space of matrix G, then SSAVE = span(G).6

Proof of Lemma 1. Follow the Theorem 2 in [4] and notice E(ZZᵀ) = Id, the matrix G can be7

re-expressed as8

G =2E
[
E2(ZZᵀ − Id|R)

]
+ 2E2 [E(Z|R)E(Zᵀ|R)]

+ 2E [E(Zᵀ|R)E(Z|R)]E [E(Z|R)E(Zᵀ|R)] .

First, let v be a vector orthogonal to SSAVE. We have E(Zᵀ|R)v = 0 and [Id − var(Z|R)]v = 09

almost surely. Therefore, Giv = 0 for i = 1, . . . , 6. This implies that v is orthogonal to span(G),10

and hence span(G) ⊆ SSAVE.11

On the other hand, let v be a vector orthogonal to span(G). Then, vᵀGv = 0 implies12

vᵀE
[
E2(ZZᵀ − Id|R)

]
v = 0 (2)

and13

vᵀE [E(Zᵀ|R)E(Z|R)]E [E(Z|R)E(Zᵀ|R)] v = 0, (3)
almost surely.14

The second equality implies that E(Zᵀ|R) = 0 almost surely. Furthermore, Using the fact that15

E(ZZᵀ) = Id and E(ZZᵀ|R) = var(Z|R) + E(Z|R)E(Zᵀ|Y ), the first inequality can be re-16

expressed as17

0 =vᵀE [var(Z|R)− Id]
2
v

+vᵀE [(var(Z|R)− Ip)E(Z|R)E(Zᵀ|R)] v

+vᵀE [E(Z|R)E(Zᵀ|R)(var(Z|R)− Id)] v

+vᵀE [E(Z|R)E(Zᵀ|R)]
2
v.
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The second to fourth terms are 0 since E(Zᵀ|R) = 0. Thus the first term must also be 0, almost18

surely, implying . that v ⊥⊥ SSAVE. We complete the proof by showing that SSAVE ⊆ span(G).19

20

Lemma 2. Suppose the Assumption 1 (a) and (b) hold. Denote span(G) the column space of matrix21

G, then SSAVE = span(G).22

Proof of Lemma 2. By Lemma 2.1 of [5] and Propsition 4.6 of [1], (Z,R) ⊥⊥ (Z̃, R̃) implies that23

Z ⊥⊥ Z̃(R, R̃), Z ⊥⊥ R̃|R and Z̃ ⊥⊥ R|R̃. Thus A(R, R̃) can be re-expressed as24

A(R, R̃) =E(ZZᵀ|R)− E(Z|R)E(Z̃ᵀ|R̃)

−E(Z̃|R̃)E(Zᵀ|R) + E(Z̃Z̃ᵀ|R̃)) (4)

Let v be a vector orthogonal to SR|W . By assumption (a), E(vᵀZ|PZ) = αᵀPZ for some α ∈ Rd.25

Multiply both sides by ZPα and then take unconditional expectation to obtain vᵀPα = αᵀPα = 0.26

Thus E(vᵀZ|PZ) = 0.27

By Assumption 1 (a) and (b), E
[
(vᵀZ)2|PZ

]
= c+ E2(vᵀZ|PZ) = c, for some constant c. Take28

unconditional expectations on both sides to obtain c = vᵀv. Thus E
[
(vᵀZ)2|PZ

]
= vᵀv.29

Because R ⊥⊥ Z|PZ, we have30

E(vᵀZ|R) = E [E(vᵀZ|PZ|R)] = 0,

E
[
(vᵀZ)2|R

]
= E

{
E
[
(vᵀZ)2|PZ

]
|R
}

= vᵀv.

Substitute the above two lines into 4, we have31

vᵀA(R, R̃)v = 2vᵀv,

which implies vᵀGv = 0. Then, we have span(G) ⊆ SR|W .32

33

Lemma 3. Let G be a symmetric and positive semi-definite matrix which satisfies span(G) ⊆ SR|W .34

Then, span(G) = SR|W iff vᵀGv > 0 for all v ∈ SR|W , v 6= 0.35

Proof of Lemma 3. Suppose that span(G) is a strict subspace of SR|W . Then vᵀGv = 0 for any36

v 6= 0, v ∈ SR|W 	 span(G). Conversely, for span(G) = SR|W , v ∈ SR|W , v 6= 0, we have37

v ∈ span(G), and hence vᵀGv > 0.38

Proof of Theorem 1. We first show that span(G) = SR|W . G is symmetric and positive semi-39

definite according to its definition. Also, Lemma 2 shows span(G) ⊆ SR|W under Assumption 1 (a)40

and (b).41

Let v ∈ SR|W , v 6= 0. Without loss of generality, we assume ‖v‖ = 1. Then42

vᵀGv = vᵀE [C(Id − vvᵀ)C] v + E
[
(vᵀCv)2

]
. (5)

Because Id − vvᵀ ≥ 0, the first term on the right hand side of (5) is nonnegative. By Assumption 143

(c), vᵀA(R, R̃)v is non-degenerate. Therefore, vᵀCv is non-degenerate. Then, by Jensen’s inequality44

and notice E(C) = 0,45

E
[
(vᵀCv)2

]
> [E(vᵀCv)]

2
= 0. (6)

Then, by Lemma 1 and Lemma 3, we complete the proof by showing SSAVE = span(G) = SR|W .46

47
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A.2 Proof of Theorem 248

Proof of Theorem 2. Suppose Assumption 2 holds. By applying Theorem 3 and Proposition 3 in49

[2], we arrive at50

‖ξ̂1 − ξ1‖∞ ≤ max
1≤l≤r

‖ξ̂l − ξl‖∞

≤ C1d
−3/2(r4‖Σ̂SAVE − ΣSAVE‖∞ + r3/2‖Σ̂SAVE − ΣSAVE‖2)

≤ C2r
4d−1/2‖Σ̂SAVE − ΣSAVE‖max, (7)

where C1 and C2 are some positive constants.51

It can be shown that52

Σ̂SAVE − ΣSAVE

=
1

4

[
(Σ̂1 − Id)2 − (Σ1 − Id)2 + (Σ̂2 − Id)2 − (Σ2 − Id)2

]
=

1

4

[
(Σ̂1 + Σ1 − 2Id)(Σ̂1 − Σ1) + (Σ̂2 + Σ2 − 2Id)(Σ̂2 − Σ2)

]
Then,53

‖Σ̂SAVE − ΣSAVE‖max

≤ 1

4

[
‖(Σ̂1 + Σ1 − 2Id)(Σ̂1 − Σ1)‖max + ‖(Σ̂2 + Σ2 − 2Id)(Σ̂2 − Σ2)‖max

]
≤ 1

4

[
‖Σ̂1 + Σ1 − 2Id‖2‖Σ̂1 − Σ1‖max + ‖Σ̂2 + Σ2 − 2Id‖2‖Σ̂2 − Σ2‖max

]
(8)

Follow the classic asymptotic result in univariate OLS and use the union bound, we have54

‖Σ̂1 − Σ1‖max = Op(

√
log d

n
) and ‖Σ̂2 − Σ2‖max = Op(

√
log d

n
). (9)

Then, we bound the first operator norm in (8) as55

‖Σ̂1 + Σ1 − 2Id‖2
= ‖Σ̂1 − Σ1 + 2Σ1 − 2Id‖2
≤ ‖Σ̂1 − Σ1‖2 + 2‖Σ1 − Id‖2
≤ d‖Σ̂1 − Σ1‖max + 2‖Σ1 − Id‖2

= Op(

√
d2 log d

n
) +Op(

√
d), (10)

where the second term of the last equality is due to ‖Σ1‖2 = Op(
√
d) derived from Assumption 2.56

Similarly, we have57

‖Σ̂2 + Σ2 − 2Id‖2 = Op(

√
d2 log d

n
+
√
d). (11)

By plugging (9), (10) and (11) back to (7), we conclude the proof by showing58

‖ξ̂1 − ξ1‖∞ = Op(r4
√

log d

n
+ r4
√
d

log d

n
).

59
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A.3 Proof of Theorem 360

We will work on the space of probability measures on X ⊂ Rd with bounded pth moment, i.e.

Pp(X) ≡
{
µ ∈ P(X) : inf

X
|x|pdµ(x) <∞

}
.

The following Lemma follows the Theorem 5.10 in [6], which provides the weak convergence in61

Wasserstein distance. Hence we omit its proof.62

Lemma 4. Let X ⊂ Rd be compact, and µn, µ ∈ P(X). Then µn → µ if and only if Wp(µn, µ)→63

0.64

Denote Ŵ ∗p (X,Y) =

(
1
n

n∑
i=1

‖xi − φ∗(xi)‖p
)1/p

, the empirical Wasserstein distance with true65

OTM φ∗(·). The following Lemma follows the Theorem 2.1 in [3] guarantees that Ŵ ∗p (X,Y) is a66

consistent estimator of W2(px, py). We refer to [3] for its proof.67

Lemma 5. Under Assumption 2 (a) and (b), Ŵ ∗p (X,Y) converges almost surely to W2(px, py) as68

n→∞.69

Proof of Theorem 3. Notice that, we can decompose the empirical Wasserstein distance as70

Ŵp

(
φ(K)(X),X

)
=
{
Ŵp

(
φ(K)(X),X

)
−Wp

(
φ(K)(X), X

)}
+
{
Wp

(
φ(K)(X), X

)
−Wp

(
φ∗(X), X

)}
+Wp

(
φ∗(X), X

)
≡I1 + I2 + I3.

First, under Assumption 2 (a) and (b) and with Lemma 5, one can show that I1 converges to 0 almost71

surely as n→∞.72

For any k ≥ 0, denote ∆[k] = X[k+1] −X[k]. Then, we have73

∆[k] = (φ(k)(X[k]ξk)−X[k]ξk)ξᵀk

= (Yξk −X[k]ξk)ξᵀk

= (Y −X[k])ξkξ
ᵀ
k , (12)

where the second inequality used the fact that φ(k)(·) is the OTM between X[k]ξk and Yξk.74

Therefore, by taking the vector norm to both sides or (12), we have75

‖∆[k]‖2 = ‖(Y −X[k])ξkξ
ᵀ
k‖2

= Tr{ξᵀk(Y −X[k])ξk}
= λ2k‖Y −X[k]‖2
= λ2k‖(Y −X[k+1]) + ∆[k+1]‖2

≥ λ2k
{
‖Y −X[k+1]‖2 − ‖∆[k+1]‖2

}
≥ λ2k

{
λ−2k+1‖∆

[k+1]‖2
}

=
λ2k
λ2k+1

‖∆[k+1]‖2.

In other words, we have

‖∆[k+1]‖2 ≤
λ2k+1

λ2k
‖∆[k]‖2 ≤

λ2k+1

λ20
‖∆[0]‖2, for k ≥ 0.

According to Theorem 2, λk is a consistent estimator of the leading eigenvalue of ΣSAVE in the kth76

iteration. Also, according to Theorem 1, λk is upper bounded by the kth eigenvalue of Σ, almost77

surely. Then, under Assumption 2 (c), we have λk/λ1 converges to 0 as d → ∞ and k ≥ Cd for78

some C > 0. This implies ‖∆[k+1]‖2 → 0 as d→∞ and k ≥ Cd.79
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Then, Lemma 4 guarantees that I2 weakly converges to 0 as d→∞ and k ≥ Cd and hence completes80

our proof.81

82

5



References83

[1] R. D. Cook. Regression graphics: Ideas for studying regressions through graphics, volume 482.84

John Wiley & Sons, 2009.85

[2] J. Fan, W. Wang, and Y. Zhong. An l∞ eigenvector perturbation bound and its application to86

robust covariance estimation. Journal of Machine Learning Research, 18(207):1–42, 2018.87

[3] T. Klein, J.-C. Fort, and P. Berthet. Convergence of an estimator of the wasserstein distance88

between two continuous probability distributions. 2017.89

[4] B. Li and S. Wang. On directional regression for dimension reduction. Journal of the American90

Statistical Association, 102(479):997–1008, 2007.91

[5] B. Li, H. Zha, F. Chiaromonte, et al. Contour regression: a general approach to dimension92

reduction. The Annals of Statistics, 33(4):1580–1616, 2005.93

[6] F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55:58–63, 2015.94

6


	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3


