
Non-asymptotic Analysis of Stochastic Methods for
Non-Smooth Non-Convex Regularized Problems

Yi Xu1, Rong Jin2, Tianbao Yang1

1. Department of Computer Science, The University of Iowa, Iowa City, IA 52246, USA
2. Machine Intelligence Technology, Alibaba Group, Bellevue, WA 98004, USA

{yi-xu, tianbao-yang}@uiowa.edu, jinrong.jr@alibaba-inc.com

Abstract

Stochastic Proximal Gradient (SPG) methods have been widely used for solv-
ing optimization problems with a simple (possibly non-smooth) regularizer in
machine learning and statistics. However, to the best of our knowledge no non-
asymptotic convergence analysis of SPG exists for non-convex optimization with a
non-smooth and non-convex regularizer. All existing non-asymptotic analysis
of SPG for solving non-smooth non-convex problems require the non-smooth
regularizer to be a convex function, and hence are not applicable to a non-smooth
non-convex regularized problem. This work initiates the analysis to bridge this
gap and opens the door to non-asymptotic convergence analysis of non-smooth
non-convex regularized problems. We analyze several variants of mini-batch
SPG methods for minimizing a non-convex objective that consists of a smooth
non-convex loss and a non-smooth non-convex regularizer. Our contributions are
two-fold: (i) we show that they enjoy the same complexities as their counterparts
for solving convex regularized non-convex problems in terms of finding an ap-
proximate stationary point; (ii) we develop more practical variants using dynamic
mini-batch size instead of a fixed mini-batch size without requiring the target
accuracy level of solution. The significance of our results is that they improve upon
the-state-of-art results for solving non-smooth non-convex regularized problems.
We also empirically demonstrate the effectiveness of the considered SPG methods
in comparison with other peer stochastic methods.

1 Introduction

In this work, we consider the following stochastic non-smooth non-convex optimization problem:
min
x∈Rd

F (x) := Eξ[f(x; ξ)]︸ ︷︷ ︸
f(x)

+r(x), (1)

where ξ is a random variable, f(x) is a smooth non-convex function, and r(x) : Rd → R is a proper
non-smooth non-convex lower-semicontinuous function. A special case of problem (1) in machine
learning is of the following finite-sum form:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x) + r(x), (2)

where n is the number of data samples. In the sequel, we refer to the problem (1) with a finite-sum
structure as in the finite-sum setting and otherwise as in the online setting [29, 43]. The family of
optimization problems with a non-convex smooth loss and a non-convex non-smooth regularizer
is important and broad in machine learning and statistics. Examples of smooth non-convex losses
include non-linear square loss for classification [20], truncated square loss for regression [44], and
cross-entropy loss for learning a neural network with a smooth activation function. Examples of
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Table 1: Summary of Complexities for finding an ε-stationary point of (1). LC denotes Lipchitz
continuous function; FV means finite-valued over Rd; PM denotes the proximal mapping exists and
can be obtained efficiently. Õ(·) suppresses a logarithmic factor in terms of ε−1.

Problem Algorithm complexity r(x)

Online MBSGA [29], SSDC-SPG [43] O(ε−5) PM, LC
Online SSDC-SPG [43] O(ε−6) PM, FV
Online MB-SPG (this work) O(ε−4) PM
Online SPGR (this work) O(ε−3) PM

Finite-sum VRSGA [29] O(n2/3ε−3) PM, LC
Finite-sum SSDC-SVRG [43] Õ(nε−3) PM, LC
Finite-sum SSDC-SVRG [43] Õ(nε−4) PM, FV
Finite-sum SPGR (this work) O(n1/2ε−2 + n) PM

non-smooth non-convex regualerizers include `p (0 ≤ p < 1) norm, smoothly clipped absolute
deviation (SCAD) [17], log-sum penalty (LSP) [9], minimax concave penalty (MCP) [48], and an
indicator function of a non-convex constraint as well (e.g., ‖x‖0 ≤ k).

Although non-convex minimization with a non-smooth convex regularizer has been extensively
studied in both online setting [19, 14, 41, 35] and finite-sum setting [16, 38, 1, 34, 26, 12, 41, 35],
stochastic optimization for the considered problem with a non-smooth non-convex regularizer is
still under-explored. The presence of non-smooth non-convex functions r makes the analysis more
challenging, which renders previous analysis that hinges on the convexity of r not applicable. A
special case of non-convex r that can be written as a DC (Difference of Convex) function, i.e.,
r(x) = r1(x) − r2(x) with r1 and r2 being convex, has been recently tackled by several studies
with stochastic algorithms [43, 33, 40]. In this paper, we focus on first-order stochastic algorithms
for solving the problem (1) with a general non-smooth non-convex regularizer and study their
non-asymptotic convergence rates.

Although there are plenty of studies devoted to non-smooth non-convex regularized problems [3, 5,
49, 23, 25, 47, 6, 2, 46, 27], they are restricted to deterministic algorithms and asymptotic or local
convergence analysis. There are few studies concerned with the non-asymptotic convergence analysis
of stochastic algorithms for the problem (1). To the best of our knowledge, [43] is the first work that
presents stochastic algorithms with non-asymptotic convergence results for finding an approximate
critical point of a non-convex problem with a non-convex non-smooth regularizer. Indeed, they
considered a more general problem in which f is a DC function and assumed that the second
component of the DC decomposition of f has a Hölder-continuous gradient. Their convergence
results are the state-of-the-art for stochastic optimization of the problem (1) in the online setting.
Later, [29] presented two algorithms, namely mini-batch stochastic gradient algorithm (MBSGA) and
variance reduced stochastic gradient algorithm (VRSGA), for solving (1) and (2) with an improved
complexity for the finite-sum setting. To tackle the non-smooth non-convex regularizer, both of these
works use a Moreau envelope of r to approximate r, which inevitably introduces approximation error
and hence worsen the convergence rates.

A simple idea for tackling a non-smooth regularizer is to use proximal gradient methods, which
has been studied extensively in the literature for a convex regularizer [19, 14, 16, 38, 1, 34, 26,
12, 41, 35]. A natural question is whether stochastic proximal gradient (SPG) methods still enjoy
similar convergence guarantee for solving a non-smooth non-convex regularized problem as their
counterparts for convex regularized non-convex minimization problems. In this paper, we provide an
affirmative answer to this question. Our contributions are summarized below:

• We establish the first convergence rate of standard mini-batch SPG (MB-SPG) for solving (1) in
terms of finding an approximate stationary point, which is the same as its counterpart for solving a
non-convex minimization problem with a convex regularizer [19].

• Furthermore, we analyze improved variants of mini-batch SPG that use a recursive stochastic
gradient estimator (SARAH [32, 31] or SPIDER [18, 41]) referred to as SPGR, and achieve the
new state of the art convergence results for both online setting and the finite-sum setting.

2

• Moreover, we propose more practical variants of MB-SPG and SPGR by using dynamic mini-
batch size instead of a fixed mini-batch size to remove the requirement on the target accuracy level
of solution for running the algorithms.

The complexity results of our algorithms and other works for finding an ε-stationary solution of the
considered problem are summarized in Table 1. It is notable that the complexity result of SPGR
for the finite-sum setting is optimal matching an existing lower bound [18]. Before ending this
section, it is worth mentioning that the differences between this work and [15] that provides the first
convergence analysis of SPG to critical points of a non-smooth non-convex minimization problem: (i)
their convergence analysis is asymptotic and hence provides no convergence rate; (ii) their analysis
applies to non-smooth f but requires stronger assumptions on r (e.g., local Lipchitz continuity) that
precludes `0 norm regularizer or an indicator function of a non-convex constraint; (ii) their analyzed
SPG imposes no requirement on the mini-batch size.

2 Preliminaries
In this section, we present some preliminaries and notations. Let ‖x‖ denote the Euclidean
norm of a vector x ∈ Rd. Denote by S = {ξ1, . . . , ξm} a set of random variables, let
|S| be the number of elements in set S and fS(x) = 1

|S|
∑
ξi∈S f(x; ξi). We denote by

dist(x,S) the distance between the vector x and a set S. Denote by ∂̂h(x) the Fréchet sub-
gradient and ∂h(x) the limiting subgradient of a non-convex function h(x) : Rd → R, i.e.,
∂̂h(x̄) =

{
v ∈ Rd : limx→x̄ inf h(x)−h(x̄)−v>(x−x̄)

‖x−x̄‖ ≥ 0
}
, ∂h(x̄) = {v ∈ Rd : ∃xk

h−→ x̄, vk ∈

∂̂h(xk),vk → v}, where x
h−→ x̄ means x→ x̄ and h(x)→ h(x̄).

We aim to find an ε-stationary point of problem (1), i.e., to find a solution x such that dist(0, ∂̂F (x)) ≤
ε. Since f is differentiable, then we have ∂̂F (x) = ∂̂(f + r)(x) = ∇f(x) + ∂̂r(x) (see Exercise
8.8, [39]). Thus, it is equivalent to find a solution x satisfying

dist(0,∇f(x) + ∂̂r(x)) ≤ ε. (3)
For problem (1), we make the following basic assumptions, which are standard in the literature on
stochastic gradient methods for non-convex optimization [19, 29].

Assumption 1. Assume the following conditions hold:

(i) Eξ[∇f(x; ξ)] = ∇f(x), and there exists a constant σ > 0, such that Eξ[‖∇f(x; ξ) −
∇f(x)‖2] ≤ σ2.

(ii) Given an initial point x0, there exists ∆ <∞ such that F (x0)−F (x∗) ≤ ∆, where x∗ denotes
the global minimum of (1).

(iii) f(x) is smooth with a L-Lipchitz continuous gradient, i.e., it is differentiable and there exists a
constant L > 0 such that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x,y.

In addition, we assume r(x) is simple enough such that its proximal mapping exists and can be
obtained efficiently:

proxηr[x] = arg min
y∈Rd

{
1

2η
‖y − x‖2 + r(y)

}
.

This assumption is standard to proximal algorithms for non-convex functions [3, 8, 24]. The notation
arg min denotes the set of minimizers. The closed form of proximal mapping for non-convex regular-
izers include hard thresholding for `0 regularizer [3], and `p thresholding for `1/2 regularizer [45]
and `2/3 regularizer [10].

An immediate difficulty in solving problem (1) is the presence of non-smoothness non-convexity in
the regularizer r(x). To deal with this issue, [43, 29] use the the Moreau envelope of r to approximate
r, which is defined as rµ(x) = miny∈Rd

{
1

2µ‖y − x‖2 + r(y)
}

, where µ > 0 is an approximation
parameter. It is easy to see that the Moreau envelope of r(x) is a DC function:

rµ(x) =
1

2µ
‖x‖2 − max

y∈Rd
1

µ
y>x− 1

2µ
‖y‖2 − r(y)︸ ︷︷ ︸

Rµ(x)

,

3

where Rµ(x) is convex since it is the max of convex functions in terms of x [7]. Instead of solving
the problem (1) directly, their idea is to solve the following approximated problem:

min
x∈Rd

Fµ(x) := f(x) +
1

2µ
‖x‖2 −Rµ(x). (4)

However, this is a bad idea because it introduces the approximation error on one hand and slows
down the convergence on the other hand. For example, [29] considers algorithms that update the
solution based on a smooth function that is constructed by linearizing the term Rµ(x). As a result,
the smoothness constant of the resulting function is proportional to 1/µ. In order to maintain a small
approximation error, µ has to be a small value which amplifies the smoothness constant dramatically.

In this paper, we consider a direct approach that updates the solution simply by a stochastic proximal
gradient update, i.e., xt+1 ∈ proxηr[xt − ηgt], where gt is a stochastic gradient of ∇f(xt) with
well-controlled variance, and η is a step size.

2.1 Warm-up: Proximal Gradient Descent Method

As a warm-up, we first present the analysis of the deterministic proximal gradient descent (PGD)
method (also known as forward-backward splitting, FBS), which updates the solutions for t =
0, . . . , T − 1 iteratively given an initial solution x0:

xt+1 ∈proxηr[xt − η∇f(xt)] = arg min
x∈Rd

{
r(x) + 〈∇f(xt),x− xt〉+

1

2η
‖x− xt‖2

}
, (5)

where η is a step size. To our knowledge, non-asymptotic analysis of PGD for non-convex r(x) is not
available, though asymptotic analysis of PGD was provided in [3]. We summarize the non-asymptotic
convergence result of PGD in the following theorem, and provide a proof sketch to highlight the key
steps. The detailed proofs are provided in the supplement.

Theorem 1. Suppose Assumption 1 (ii) and (iii) hold, run (5) with η = c
L (0 < c < 1) and

T = 4(η2L2+1)
η(1−ηL)ε2 ∆ = O(1/ε2) iterations, with R being uniformly sampled from {1, . . . , T} we have

E[dist(0, ∂̂F (xR))] ≤ ε.
Remark: It is notable that this complexity result is optimal according to [11] for smooth non-convex
optimization, which is the same as that for solving problem (1) when r(x) is convex [30].

Proof Sketch. For the update (5), we can only leverage its optimality condition (e.g., by Exercise 8.8
and Theorem 10.1 of [39]):

−∇f(xt)−
1

η
(xt+1 − xt) ∈ ∂̂r(xt+1),

r(xt+1) + 〈∇f(xt),xt+1 − xt〉+
1

2η
‖xt+1 − xt‖2 ≤ r(xt),

where the first implies that ∇f(xt+1) − ∇f(xt) − 1
η (xt+1 − xt) ∈ ∂̂F (xt+1). Combining the

second inequality with the smoothness of f(x), i.e., f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉 +
L
2 ‖xt+1 − xt‖2, we get 1

2 (1/η − L)‖xt+1 − xt‖2 ≤ F (xt)− F (xt+1). By telescoping the above
inequality and connecting ∂̂F (xt+1) with ‖xt+1 − xt‖ we can finish the proof.

3 Mini-Batch Stochastic Proximal Gradient Methods

In this and next section, we analyze mini-batch stochastic proximal gradient methods that use a
stochastic gradient gt for updating the solution. The key idea of the two methods is to control the
variance of the stochastic gradient properly.

We present the detailed updates of the first algorithm (named MB-SPG) in Algorithm 1, which is to
update the solution based on a mini-batched stochastic gradient of f(x) at the t-th iteration and the
proximal mapping of r(x). We first present a general convergence result of Algorithm 1.

Theorem 2. Suppose Assumption 1 holds, run Algorithm 1 with η = c
L (0 < c < 1

2), then the output
xR of Algorithm 1 satisfies E[dist(0, ∂̂F (xR))2] ≤ c1

T

∑T−1
t=0 E[‖gt − ∇f(xt)‖2] + c2∆

ηT , where

c1 = 2c(1−2c)+2
c(1−2c) and c2 = 6−4c

1−2c are two positive constants.

4

Algorithm 1 Mini-Batch Stochastic Proximal Gradient: MB-SPG
1: Initialize: x0 ∈ Rd, η = c

L with 0 < c < 1
2 .

2: for t = 0, 1, . . . , T − 1 do
3: Draw samples St = {ξi, . . . , ξmt}, let gt = 1

mt

∑mt
it=1∇f(xt; ξit)

4: xt+1 ∈ proxηr[xt − ηgt]
5: end for
6: Output: xR, where R is uniformly sampled from {1, . . . , T}.

Algorithm 2 Stochastic Proximal Gradient using SPIDER/SARAH: SPGR
1: Initialize: x0 ∈ Rd, η = c

L with 0 < c < 1
3 .

2: for t = 0, 1, . . . , T − 1 do
3: if mod(t, q) == 0 then
4: Draw samples S1, let gt = ∇fS1(xt) // For finite-sum setting, |S1| = n
5: else
6: Draw samples S2, let gt = ∇fS2(xt)−∇fS2(xt−1) + gt−1

7: end if
8: xt+1 ∈ proxηr[xt − ηgt]
9: end for

10: Output: xR, where R is uniformly sampled from {1, . . . , T}.

Next, we present two corollaries by using a fixed mini-batch size and increasing mini-batch sizes.

Corollary 3 (Fixed mini-batch size). Suppose Assumption 1 holds, run MB-SPG (Algorithm 1)
with η = c

L (0 < c < 1
2), T = 2c2∆/(ηε2) and a fixed mini-batch size mt = 2c1σ

2/ε2 for
t = 0, . . . , T − 1, then the output xR of Algorithm 1 satisfies E[dist(0, ∂̂F (xR))2] ≤ ε2, where c1, c2
are two positive constants as in Theorem 2.

Corollary 4 (Increasing mini-batch sizes). Suppose Assumption 1 holds, run MB-SPG (Algorithm 1)
with η = c

L (0 < c < 1
2) and a sequence of mini-batch sizes mt = b(t + 1) for t = 0, . . . , T − 1,

where b > 0 is a constant, then the output xR of Algorithm 1 satisfies E[dist(0, ∂̂F (xR))2] ≤
c1σ

2(log(T)+1)
bT + c2∆

ηT , where c1, c2 are constants as in Theorem 2. In particular in order to have

E[dist(0, ∂̂F (xR))] ≤ ε, it suffices to set T = Õ(1/ε2). The total complexity is Õ(1/ε4).

Remark: Although using increasing mini-batch sizes has an additional logarithmic factor in the
complexity than that using a fixed mini-batch size, it would be more practical and user-friendly
because it does not require knowing the target accuracy ε to run the algorithm .

4 Stochastic Proximal Gradient Methods with Recursive Stochastic
Gradient Estimator

In this section, we levearage the novel recursive stochastic gradient estimator (SARAH/SPIDER) for
achieving a better complexity. We present the detailed updates of the proposed algorithm referred
to as SPGR in Algorithm 2, where the stochastic gradient estimate gt is periodically updated by
adding current stochastic gradient∇fS2(xt) and subtracting the past stochastic gradient∇fS2(xt−1)
from gt−1. To our knowledge, this framework was firstly introduced in SARAH [32, 31] for
solving convex/nonconvex smooth finite-sum problems with r(x) = 0. Another algorithm so-called
SPIDER with same recursive framework was proposed in [18] for solving non-convex smooth
problems with r(x) = 0 both in finite-sum and online settings. One difference is that SPIDER
uses normalized gradient update with step size η = O(ε/L). Recently, [41] and [35] respectively
extended SPIDER and SARAH to their proximal versions for solving non-convex smooth problems
with convex non-smooth regularizer r(x). By contrast, we consider more challenging problems in
this paper, i.e., non-convex non-smooth regularized non-convex minimization problems. In order to
use the SARAH/SPIDER technique to construct a variance-reduced stochastic gradient of f , we need
additional assumption, which is also used in previous studies [31, 18, 41, 35].

Assumption 2. Assume that every random function f(x; ξ) is smooth with a L-Lipchitz continuous
gradient, i.e., it is differentiable and there exists a constantL > 0 such that ‖∇f(x; ξ)−∇f(y; ξ)‖ ≤
L‖x− y‖,∀x,y.

5

Algorithm 3 SPGR with Increasing Mini-Batch sizes: SPGR-imb
1: Initialize: x0 ∈ Rd, η = c

L with 0 < c < 1
6 , b ≥ 1

2: Set: t = 0, x−1 = x0

3: for s = 1, . . . , S do
4: Draw samples S1,s, let gt = ∇fS1,s(xt) � |S1,s| = b2s2

5: xt+1 ∈ proxηr[xt − ηgt], t = t+ 1
6: for q = 1, . . . , bs do
7: Draw samples S2,s, let gt = ∇fS2,s(xt)−∇fS2,s(xt−1) + gt−1 � |S2,s| = bs
8: xt+1 ∈ proxηr[xt − ηgt], t = t+ 1
9: end for

10: end for
11: Output: xR, where R is uniformly sampled from {1, . . . , T}.

First, we present a general non-asymptotic convergence result of SPGR, which is summarized below.
Theorem 5. Suppose Assumptions 1 and 2 hold, run Algorithm 2 with η = c

L (0 < c < 1
3) and

q = |S2|, then the output xR of Algorithm 2 satisfies E[dist(0, ∂̂F (xR))2] ≤ 2θ∆+γη∆
ηθT + (γ+4θL)σ2

2θL|S1|

for online setting and E[dist(0, ∂̂F (xR))2] ≤ 2θ∆+γη∆
ηθT for finite-sum setting, where γ = 4L2 +

1
η2 + 2L

η and θ = 1−3ηL
2η are two positive constants.

Although the SARAH/SPIDER update used in Algorithm 2 is similar to that used in [41, 35] for
handling convex regularizers, our analysis has some key differences from that in [41, 35]. In particular,
the analysis in [41, 35] heavily relies on the convexity of the regularizer. In addition, they proved the
convergence of the proximal gradient defined as Gη(x) = 1

η (x− proxηr(x− η∇f(x))), while we

directly prove the convergence of the subgradient ∂̂F (x). The convergence of the proximal gradient
only implies a weak convergence of subgradient (i.e., a solution x which satisfies ‖Gη(x)‖ ≤ ε

indicates that it is close to a solution x+ = proxηr(x− η∇f(x)) such that ‖∂̂F (x+)‖ ≤ O(ε) when
η = Θ(1/L)). The following corollary summarizes results in the two settings.
Corollary 6. Under the same conditions and notations as in Theorem 5, in order to have
E[dist(0, ∂̂F (xR))] ≤ ε we can set:

• (Online setting) q = |S2| =
√
|S1|, |S1| = (γ+4θL)σ2

θLε2 , and T = 2(2θ+γη)∆
ηθε2 , giving a total

complexity of O(ε−3).
• (Finite-sum setting) q = |S2| =

√
n, |S1| = n, and T = (2θ+γη)∆

ηθε2 , leading to a total complexity
of O(

√
nε−2 + n).

Remark: It is notable that the above complexity result is near-optimal according to [18, 50] for the
finite-sum setting. For same special cases of r(x), similar complexities have been established when
r(x) = 0 [18, 51] or when r(x) is convex [41, 35].

4.1 SPGR with Increasing Mini-Batch Sizes
One limitation of SPGR for the online setting is that it requires knowing the target accuracy level
ε in order to set q and the sizes of S1 and S2, which makes it not practical. An user will need to
worry about what is the right value of ε for running the algorithm, as a small ε may waste at lot of
computations and a relatively large ε may not lead to an accurate solution. To address this issue, we
propose a practical variant of SPGR, namely SPGR-imb, which uses increasing mini-batch sizes. The
detailed updates are presented in Algorithm 3. The key idea is that we divide the whole progress into
S stages, and for each stage s ∈ [S], the mini-batch sizes |S1| and |S2| are set to be proportional s2

and s, respectively. The insight of this design is similar to Algorithm 1 with increasing mini-batch
sizes, i.e., at earlier stages when the solution is far from a stationary solution we can tolerate a large
variance in the stochastic gradient estimator and hence allow for a smaller mini-batch size. We
summarize the non-asymptotic convergence result of SPGR-imb in the following theorem.
Theorem 7. Suppose Assumptions 1 and 2 hold, run Algorithm 3 with η = c

L (0 < c < 1
3) and S

satisfying bS(S + 1)/2 = T , then the output xR of Algorithm 3 satisfies E[dist(0, ∂̂F (xR))2] ≤
(2θ+γη)∆

θηT + (4θL+γ)σ2(log(2T/b)+2)
4bθLT for online setting and E[dist(0, ∂̂F (xR))2] ≤ (2θ+γη)∆

θηT for

finite-sum setting, where γ = 4L2 + 1
η2 + 2L

η and θ = 1−3ηL
2η are two positive constants. In

6

particular in order to have E[dist(0, ∂̂F (xR))] ≤ ε, it suffices to set T = Õ(1/ε2). The total
complexity is Õ(1/ε3).

Remark: Compared to the result in Corollary 6, the complexity result of Theorem 7 is only worse
by a logarithmic factor.

5 Experiments

Regularized loss minimization. First, we compare MB-SPG, SPGR with MBSGA, VRSGA, SSDC-
SPG and SSDC-SVRG for solving the regularized non-linear least square (NLLS) classification
problems 1

n

∑n
i=1(bi−σ(x>ai))

2+r(x) with a sigmod function σ(s) = 1
1+e−s for classification, and

the regularized truncated least square (TLS) loss function 1
2n

∑n
i=1 α log(1+(yi−w>xi)2/α)+r(x)

for regression [44]. Two data sets (covtype and a9a) are used for classification, and two data sets
E2006 and triazines are used for regression. These data sets are downloaded from the libsvm website.
We use three different non-smooth non-convex regularizers, i.e., `0 regularizer r(x) = λ‖x‖0, `0.5
regularizer r(x) = λ‖x‖0.5, and indicator function of `0 constraint I{‖x‖0≤κ}(x). The truncation
value α is set to

√
10n following [44]. The value of regularization parameter λ is fixed as 10−4

and the value of κ is fixed as 0.2d where d is the dimension of data. For all algorithms, we use the
theoretical values of the parameters for the sake of fairness in comparison. All algorithms start with
the same initial solution with all zero entries. We implement the increasing mini-batch versions of
MB-SPG and SPGR (online setting) with b = 1. The unknown parameter σ in MBSGA is estimated
following [29]. The objective value (in log scale) versus the number of gradient computations for
different tasks are plotted in Figure 1. The solid lines correspond to algorithms running in the online
setting and the dashed lines correspond to algorithms running in the finite-sum setting. By comparing
algorithms running in the online setting including MB-SPG, SPGR, MBSGA and SSDC-SPG, we can
see that the proposed algorithms (MB-SPG and SPGR) are faster across different tasks. In addition,
SPGR is faster than MB-SPG. These results are consistent with our theory. By comparing algorithms
running in the finite-sum setting including VRSGA, SSDC-SVRG and SPGR, we can see that the
proposed SPGR is much faster, which also corroborates our theory.

Learning with Quantization. Second, we consider the problem of learning a quantized model
where the model parameter is represented by a small number of bits (e.g., 2 bits that can encode 1
or −1). It has received tremendous attention in deep learning for model compression [21, 42, 36].
An idea to formulate the problem is to consider a constrained optimization problem: minx∈Ω f(x)
where Ω denotes a discrete set including the values that can be represented by a small number of bits.
However, finding a stationary point for this problem is meaningless. This is because that for a discrete
set Ω, the subgradient of its indicator function IΩ(x) is the whole space [13, 22]. Hence, we have
0 ∈ ∂̂(f(x)+IΩ(x)) for any x ∈ Ω. To avoid this issue, we consider a different formulation by using
a penalization of the constraint: minx∈Rd f(x) + λ

2 ‖x− PΩ(x)‖2, where PΩ(x) is a projection onto
the set Ω and λ > 0 is a penalization parameter. This penalization-based approach is one standard
way to handle complicated constraints [4, 28]. It is notable that in general the penalization term is
a non-smooth non-convex function of x for a non-convex set Ω, though its local smoothness has
been proved under some regularity condition of Ω [37]. The proximal mapping of the penalization
term has a closed-form solution as long as PΩ(x) can be easily computed [24], which corresponds to
quantization for our considered problem.

In the experiment, we use the NLLS loss similar to regularized loss minimization for learning a
quantized non-linear model, and focus on comparison of algorithms running in the online setting
including MBSGA, SSDC-SPG, MB-SPG and SPGR. We also implement a popular heuristic SGD
approach in deep learning for learning a quantized model [36], which updates the solution simply by
xt+1 = xt − ηt∇f(x̂t; ξt) where x̂t = PΩ(xt) is the quantized model. We conduct the experiments
on four data sets mnist, news20, rcv1, w8a, where the last three data sets are downloaded from the
libsvm website. We compare the testing accuracy of learned quantized model versus the number of
iterations, and the results are plotted in Figure 2, where q denotes the number of bits for quantization.
We fix λ = 1, and decrease the step size by half every 100 iterations for heuristic SGD, MBSGA and
MB-SPG. This is helpful for generalization purpose. We can see that the proposed SPGR algorithm
has better testing accuracy in most cases, and the proposed MB-SPG has comparable performance if
not better results than other baselines.

7

gradient #106
0 2 4 6 8

lo
g 1

0
(o

b
je

ct
iv

e)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
NLLS + `0, covtype

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #105
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

0

0.05

0.1

0.15

0.2

0.25
NLLS + `0, a9a

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #104
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
TLS + `0, E2006

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #105
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6
TLS + `0, triazines

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #106
0 2 4 6 8

lo
g 1

0
(o

b
je

ct
iv

e)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
NLLS + `0:5, covtype

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #105
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

0

0.05

0.1

0.15

0.2

0.25
NLLS + `0:5, a9a

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #104
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
TLS + `0:5, E2006

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #105
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6
TLS + `0:5, triazines

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #106
0 2 4 6 8

lo
g 1

0
(o

b
je

ct
iv

e)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
NLLS + `0 constraint, covtype

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #105
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

0

0.05

0.1

0.15

0.2

0.25
NLLS + `0 constraint, a9a

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #104
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
TLS + `0 constraint, E2006

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

gradient #105
0 2 4 6 8 10

lo
g 1

0
(o

b
je

ct
iv

e)

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6
TLS + `0 constraint, triazines

MBSGA
VRSGA
SSDC-SPG
SSDC-SVRG
MB-SPG
SPGR(online)
SPGR(-nite-sum)

Figure 1: Comparisons of different algorithms for regularized loss minimization.

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
quantization (q = 2), mnist

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
quantization (q = 2), news20

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.955

0.96

0.965

0.97

0.975

0.98
quantization (q = 2), w8a

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
quantization (q = 2), rcv1.binary

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
quantization (q = 4), mnist

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
quantization (q = 4), news20

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.955

0.96

0.965

0.97

0.975

0.98
quantization (q = 4), w8a

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
quantization (q = 4), rcv1.binary

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
quantization (q = 8), mnist

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
quantization (q = 8), news20

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.955

0.96

0.965

0.97

0.975

0.98
quantization (q = 8), w8a

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

gradient #104
0 2 4 6 8 10

te
st

in
g

ac
cu

ra
cy

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
quantization (q = 8), rcv1.binary

SGD-heuristic
MBSGA
SSDC-SPG
MB-SPG
SPGR

Figure 2: Comparisons of different algorithms for learning with quantization.

6 Conclusions

In this paper, we have presented the first non-asymptotic convergence analysis of stochastic proximal
gradient methods for solving a non-convex optimization problem with a smooth loss function and
a non-smooth non-convex regularizer. The proposed algorithms enjoy improved complexities than
the state-of-the-art results for the same problems, and also match the existing complexity results for
solving non-convex minimization problems with a smooth loss and a non-smooth convex regularizer.

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments. Y. Xu and T. Yang are
partially supported by National Science Foundation (IIS-1545995).

8

References
[1] Z. Allen-Zhu. Natasha: Faster non-convex stochastic optimization via strongly non-convex

parameter. In International Conference on Machine Learning, pages 89–97, 2017.

[2] N. T. An and N. M. Nam. Convergence analysis of a proximal point algorithm for minimizing
differences of functions. Optimization, 66(1):129–147, 2017.

[3] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel
methods. Mathematical Programming, 137(1):91–129, Feb 2013.

[4] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

[5] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for noncon-
vex and nonsmooth problems. Mathematical Programming, 146(1-2):459–494, Aug. 2014.

[6] R. I. Bot, E. R. Csetnek, and S. C. László. An inertial forward–backward algorithm for the
minimization of the sum of two nonconvex functions. EURO Journal on Computational
Optimization, 4(1):3–25, Feb 2016.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[8] K. Bredies, D. A. Lorenz, and S. Reiterer. Minimization of non-smooth, non-convex functionals
by iterative thresholding. Journal of Optimization Theory and Applications, 165(1):78–112,
2015.

[9] E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted l1 minimization.
Journal of Fourier Analysis and Applications, 14(5):877–905, Dec 2008.

[10] W. Cao, J. Sun, and Z. Xu. Fast image deconvolution using closed-form thresholding formulas of
lq (q = 1/2, 2/3) regularization. Journal of Visual Communication and Image Representation,
24(1):31–41, 2013.

[11] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points
i. arXiv preprint arXiv:abs/1710.11606, 2017.

[12] Z. Chen and T. Yang. A variance reduction method for non-convex optimization with improved
convergence under large condition number. arXiv preprint arXiv:1809.06754, 2018.

[13] F. H. Clarke. Optimization and nonsmooth analysis, volume 5. SIAM, 1990.

[14] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
SIAM Journal on Optimization, 29(1):207–239, 2019.

[15] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee. Stochastic subgradient method converges
on tame functions. Foundations of Computational Mathematics, pages 1–36, 2018.

[16] A. Defazio, F. R. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pages 1646–1654, 2014.

[17] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[18] C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via
stochastic path-integrated differential estimator. In Advances in Neural Information Processing
Systems, pages 687–697, 2018.

[19] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for nonconvex
stochastic composite optimization. Mathematical Programming, 155(1-2):267–305, 2016.

[20] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press.

9

[21] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[22] A. Y. Kruger. On fréchet subdifferentials. Journal of Mathematical Sciences, 116(3):3325–3358,
2003.

[23] G. Li and T. K. Pong. Global convergence of splitting methods for nonconvex composite
optimization. SIAM Journal on Optimization, 25(4):2434–2460, 2015.

[24] G. Li and T. K. Pong. Douglas-rachford splitting for nonconvex optimization with application
to nonconvex feasibility problems. Mathematical Programming, 159(1-2):371–401, 2016.

[25] H. Li and Z. Lin. Accelerated proximal gradient methods for nonconvex programming. In
Advances in Neural Information Processing Systems, pages 379–387, Cambridge, MA, USA,
2015. MIT Press.

[26] Z. Li and J. Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 5569–5579, 2018.

[27] T. Liu, T. K. Pong, and A. Takeda. A successive difference-of-convex approximation method
for a class of nonconvex nonsmooth optimization problems. Mathematical Programming, pages
1–29, 2017.

[28] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming, volume 228. Springer, 2015.

[29] M. R. Metel and A. Takeda. Stochastic gradient methods for non-smooth non-convex regularized
optimization. arXiv preprint arXiv:1901.08369, 2019.

[30] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013.

[31] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takác. Stochastic recursive gradient algorithm for
nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017.

[32] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takác. SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine
Learning, pages 2613–2621, 2017.

[33] A. Nitanda and T. Suzuki. Stochastic Difference of Convex Algorithm and its Application to
Training Deep Boltzmann Machines. In International Conference on Artificial Intelligence and
Statistics, pages 470–478, 2017.

[34] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst for gradient-based
nonconvex optimization. In International Conference on Artificial Intelligence and Statistics,
pages 1–10, 2018.

[35] N. H. Pham, L. M. Nguyen, D. T. Phan, and Q. Tran-Dinh. ProxSARAH: An efficient
algorithmic framework for stochastic composite nonconvex optimization. arXiv preprint
arXiv:1902.05679, 2019.

[36] A. Polino, R. Pascanu, and D. Alistarh. Model compression via distillation and quantization. In
International Conference on Learning Representations, 2018.

[37] R. Poliquin, R. R. T., and T. L. Local differentiability of distance functions. Transactions of the
American Mathematical Society, 352:5231–5249, 01 2000.

[38] S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Proximal stochastic methods for nonsmooth
nonconvex finite-sum optimization. In Advances in Neural Information Processing Systems,
pages 1145–1153, 2016.

[39] R. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg, Berlin,
New York, 1998.

10

[40] H. A. L. Thi, H. M. Le, D. N. Phan, and B. Tran. Stochastic DCA for the large-sum of non-
convex functions problem and its application to group variable selection in classification. In
International Conference on Machine Learning, pages 3394–3403, 2017.

[41] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. SpiderBoost: A class of faster variance-
reduced algorithms for nonconvex optimization. arXiv preprint arXiv:1810.10690, 2018.

[42] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional neural networks
for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4820–4828, 2016.

[43] Y. Xu, Q. Qi, Q. Lin, R. Jin, and T. Yang. Stochastic optimization for dc functions
and non-smooth non-convex regularizers with non-asymptotic convergence. arXiv preprint
arXiv:1811.11829, 2018.

[44] Y. Xu, S. Zhu, S. Yang, C. Zhang, R. Jin, and T. Yang. Learning with non-convex truncated
losses by SGD. arXiv preprint arXiv:1805.07880, 2018.

[45] Z. Xu, X. Chang, F. Xu, and H. Zhang. l1/2 regularization: A thresholding representation theory
and a fast solver. IEEE Transactions on neural networks and learning systems, 23(7):1013–1027,
2012.

[46] L. Yang. Proximal gradient method with extrapolation and line search for a class of nonconvex
and nonsmooth problems. arXiv preprint arXiv:1711.06831, 2018.

[47] Y. Yu, X. Zheng, M. Marchetti-Bowick, and E. P. Xing. Minimizing nonconvex non-separable
functions. In International Conference on Artificial Intelligence and Statistics, pages 1107–1115,
2015.

[48] C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals
of Statistics, 38:894 – 942, 2010.

[49] W. Zhong and J. T. Kwok. Gradient descent with proximal average for nonconvex and composite
regularization. In AAAI Conference on Artificial Intelligence, pages 2206–2212, 2014.

[50] D. Zhou and Q. Gu. Lower bounds for smooth nonconvex finite-sum optimization. arXiv
preprint arXiv:1901.11224, 2019.

[51] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduced gradient descent for nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 3925–3936, 2018.

11

A Proof of Theorem 1

Before starting the proof, we give the detailed updates of PGD in Algorithm 4.

Algorithm 4 Proximal Gradient Descent: PGD(x0, T , L, c)
1: Input: x0 ∈ Rd, the number of iterations T , η = c

L with 0 < c < 1.
2: for t = 0, 1, . . . , T − 1 do
3: xt+1 ∈ proxηr[xt − η∇f(xt)]
4: end for
5: Output: xR, where R is uniformly sampled from {1, . . . , T}.

Proof. Based on the update of Algorithm 4, by Exercise 8.8 and Theorem 10.1 of [39] we know

−∇f(xt)−
1

η
(xt+1 − xt) ∈ ∂̂r(xt+1),

which implies that

∇f(xt+1)−∇f(xt)−
1

η
(xt+1 − xt) ∈ ∇f(xt+1) + ∂̂r(xt+1) = ∂̂F (xt+1). (6)

By the update of (5), we also have

r(xt+1) + 〈∇f(xt),xt+1 − xt〉+
1

2η
‖xt+1 − xt‖2 ≤ r(xt). (7)

Since f(x) is smooth with parameter L, then

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2. (8)

Combining these two inequalities (7) and (8) and using the fact that F (x) = f(x) + r(x), we get
1

2
(1/η − L)‖xt+1 − xt‖2 ≤ F (xt)− F (xt+1). (9)

By summing the above inequalities across t = 0, . . . , T −1 and using F (x∗) ≤ F (x) for any x ∈ Rd
and the Assumption 1 (iii), we know

1

2
(1/η − L)

T−1∑
t=0

‖xt+1 − xt‖2 ≤ F (x0)− F (xT) ≤ F (x0)− F (x∗) ≤ ∆. (10)

On the other hand, by Young’s inequality ‖a± b‖2 ≤ 2‖a‖2 + 2‖b‖2 and the smoothness of f(x),

‖∇f(xt+1)−∇f(xt)−
1

η
(xt+1 − xt)‖2

≤2‖∇f(xt+1)−∇f(xt)‖2 +
2

η2
‖xt+1 − xt‖2

≤2(L2 +
1

η2
)‖xt+1 − xt‖2.

Therefore, summing the above inequalities across t = 0, . . . , T − 1 and using the inequality (10)
with 1/η − L > 0,

1

T

T−1∑
t=0

‖∇f(xt+1)−∇f(xt)−
1

η
(xt+1 − xt)‖2

≤2(L2 +
1

η2
)

1

T

T−1∑
t=0

‖xt+1 − xt‖2

≤
2(L2 + 1

η2)
1
2 (1/η − L)T

∆ =
4(η2L2 + 1)

η(1− ηL)T
∆.

By (6) we know

dist(0, ∂̂F (xt+1))2 ≤ ‖∇f(xt+1)−∇f(xt)−
1

η
(xt+1 − xt)‖2,

12

then by the fact that R is uniformly sampled from {1, . . . , T},

E[dist(0, ∂̂F (xR))2] =
1

T

T−1∑
t=0

dist(0, ∂̂F (xt+1))2 ≤ 4(η2L2 + 1)

η(1− ηL)T
∆.

By the setting of η = c
L <

1
L , and let T = 4(η2L2+1)

η(1−ηL)ε2 ∆ = O(1/ε2), we get

E[dist(0, ∂̂F (xR))2] ≤ ε2.
By using the fact that (E[dist(0, ∂̂F (xR))])2 ≤ E[dist(0, ∂̂F (xR))2], we have

E[dist(0, ∂̂F (xR))] ≤ ε.

B Proof of Theorem 2

Proof. Recall that the update of xt+1 is

xt+1 ∈ arg min
x∈Rd

{
r(x) +

1

2η
‖x− (xt − ηgt)‖2

}
= arg min

x∈Rd

{
r(x) + 〈gt,x− xt〉+

1

2η
‖x− xt‖2

}
,

then by Exercise 8.8 and Theorem 10.1 of [39] we know

−gt −
1

η
(xt+1 − xt) ∈ ∂̂r(xt+1),

which implies that

∇f(xt+1)− gt −
1

η
(xt+1 − xt) ∈ ∇f(xt+1) + ∂̂r(xt+1) = ∂̂F (xt+1). (11)

By the update of xt+1 in Algorithm 1, we also have

r(xt+1) + 〈gt,xt+1 − xt〉+
1

2η
‖xt+1 − xt‖2 ≤ r(xt). (12)

Since f(x) is smooth with parameter L, then

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2. (13)

Combining these two inequalities (12) and (13) we get

〈gt −∇f(xt),xt+1 − xt〉+
1

2
(1/η − L)‖xt+1 − xt‖2 ≤ F (xt)− F (xt+1). (14)

That is
1

2
(1/η − L)‖xt+1 − xt‖2 ≤F (xt)− F (xt+1)− 〈gt −∇f(xt),xt+1 − xt〉

≤F (xt)− F (xt+1) +
1

2L
‖gt −∇f(xt)‖2 +

L

2
‖xt+1 − xt‖2,

where the last inequality uses Young’s inequality 〈a,b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2. Then by rearranging
above inequality and summing it across t = 0, . . . , T − 1, we have

1− 2ηL

2η

T−1∑
t=0

‖xt+1 − xt‖2 ≤F (x0)− F (xT) +
1

2L

T−1∑
t=0

‖gt −∇f(xt)‖2

≤F (x0)− F (x∗) +
1

2L

T−1∑
t=0

‖gt −∇f(xt)‖2

≤∆ +
1

2L

T−1∑
t=0

‖gt −∇f(xt)‖2, (15)

where the second inequality uses the fact that F (x∗) ≤ F (x) for any x ∈ Rd and the last inequality
uses the Assumption 1 (iii).

13

On the other hand, by (14) we get

〈gt −∇f(xt+1),xt+1 − xt〉+
1

2
(1/η − L)‖xt+1 − xt‖2

≤F (xt)− F (xt+1)− 〈∇f(xt+1)−∇f(xt),xt+1 − xt〉
i.e.,

2

η
〈gt −∇f(xt+1),xt+1 − xt〉+

1− ηL
η2

‖xt+1 − xt‖2

≤2(F (xt)− F (xt+1))

η
− 2

η
〈∇f(xt+1)−∇f(xt),xt+1 − xt〉. (16)

Since 2〈gt−∇f(xt+1), 1
η (xt+1−xt)〉 = ‖gt−∇f(xt+1)+ 1

η (xt+1−xt)‖2−‖gt−∇f(xt+1)‖2−
1
η2 ‖xt+1 − xt‖2, then plugging above inequality into (16) and rearranging it we have

‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2

≤‖gt −∇f(xt+1)‖2 +
1

η2
‖xt+1 − xt‖2 −

1− ηL
η2

‖xt+1 − xt‖2

+
2(F (xt)− F (xt+1))

η
− 2

η
〈∇f(xt+1)−∇f(xt),xt+1 − xt〉

≤2‖gt −∇f(xt)‖2 + 2‖∇f(xt)−∇f(xt+1)‖2 +
1

η2
‖xt+1 − xt‖2

− 1− ηL
η2

‖xt+1 − xt‖2 +
2(F (xt)− F (xt+1))

η
− 2

η
〈∇f(xt+1)−∇f(xt),xt+1 − xt〉

≤2‖gt −∇f(xt)‖2 + 2L2‖xt − xt+1‖2 +
1

η2
‖xt+1 − xt‖2

− 1− ηL
η2

‖xt+1 − xt‖2 +
2(F (xt)− F (xt+1))

η
+

2L

η
‖xt+1 − xt‖2

=2‖gt −∇f(xt)‖2 +
2(F (xt)− F (xt+1))

η
+ (2L2 +

3L

η
)‖xt+1 − xt‖2,

where the second inequality is due to Young’s inequality ‖a ± b‖2 ≤ 2‖a‖2 + 2‖b‖2; the last
inequality is due to the Assumption 1 (iv) of ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for any x,y ∈ Rd and
Cauchy-Schwartz inequality. By summing up t = 0, 1, . . . , T − 1, we have

T−1∑
t=0

‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2

≤2

T−1∑
t=0

‖gt −∇f(xt)‖2 +
2(F (x0)− F (xT))

η
+ (2L2 +

3L

η
)

T−1∑
t=0

‖xt − xt+1‖2

≤2

T−1∑
t=0

‖gt −∇f(xt)‖2 +
2(F (x0)− F (x∗))

η
+ (2L2 +

3L

η
)

T−1∑
t=0

‖xt − xt+1‖2

≤2

T−1∑
t=0

‖gt −∇f(xt)‖2 +
2∆

η
+

2

η2

T−1∑
t=0

‖xt − xt+1‖2,

where the second inequality is due to F (x∗) ≤ F (xT); the last inequality holds by setting η = c
L <

1
2L and Assumption 1(iii) of F (x0)− F (x∗) ≤ ∆. Combining above inequality with (11) and (15)

14

and taking the expectation, we have

ER[dist(0, ∂̂F (xR))2]

≤ 1

T

T−1∑
t=0

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤ 2

T

T−1∑
t=0

E[‖gt −∇f(xt)‖2] +
2∆

ηT
+

2

η2T

(
2

1/η − 2L
∆ +

1

L/η − 2L2

T−1∑
t=0

E[‖gt −∇f(xt)‖2]

)

=
2c(1− 2c) + 2

c(1− 2c)

1

T

T−1∑
t=0

E[‖gt −∇f(xt)‖2] +
6− 4c

1− 2c

∆

ηT
,

where 0 < c < 1
2 .

C Proof of Theorem 5

Before starting the proof, we present the error bound of the SARAH/SPIDER estimator in the
following lemma from [18] that will be used in the proof.
Lemma 1 (Lemma 1 [18]). Suppose that Assumptions 1 and 2 hold, then for any t such that
(nt − 1)q ≤ t ≤ ntq − 1 with nt = dt/qe in Algorithm 2, we have

E[‖gt −∇f(xt)‖2] ≤ L2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] + E[‖g(nt−1)q −∇f(x(nt−1)q)‖2].

Proof of Theorem 5. We first focus on the online setting. Similar to the proof of Theorem 2 we have

∇f(xt+1)− gt −
1

η
(xt+1 − xt) ∈ ∇f(xt+1) + ∂̂r(xt+1) = ∂̂F (xt+1). (17)

And we also have

F (xt+1)− F (xt) ≤− 〈gt −∇f(xt),xt+1 − xt〉 −
1

2
(1/η − L)‖xt+1 − xt‖2

≤ 1

2L
‖gt −∇f(xt)‖2 +

L

2
‖xt+1 − xt‖2 −

1

2
(1/η − L)‖xt+1 − xt‖2

=
1

2L
‖gt −∇f(xt)‖2 −

1

2
(1/η − 2L)‖xt+1 − xt‖2, (18)

where the second inequality uses Young’s inequality 〈a,b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2. By taking the
expectation on both sides of above inequality, we get

E[F (xt+1)]− E[F (xt)] ≤
1

2L
E[‖gt −∇f(xt)‖2]− 1− 2ηL

2η
E[‖xt+1 − xt‖2]. (19)

Next, we want to upper bound the variance term E[‖gt −∇f(xt)‖2] by using Lemma 1 of [18]. In
particular, by Lemma 1, for any t such that (nt− 1)q ≤ t ≤ ntq− 1 with nt = dt/qe in Algorithm 2,
we have

E[‖gt −∇f(xt)‖2] ≤ L2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] + E[‖g(nt−1)q −∇f(x(nt−1)q)‖2]. (20)

Plugging inequality (20) into inequality (19),

E[F (xt+1)]− E[F (xt)] ≤ −
1− 2ηL

2η
E[‖xt+1 − xt‖2]

+
1

2L

 L2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] + E[‖g(nt−1)q −∇f(x(nt−1)q)‖2]

 . (21)

By the updates of Algorithm 2, under Assumption 1 (ii) we have

E[‖g(nt−1)q −∇f(x(nt−1)q)‖2] ≤ σ2

|S1|
. (22)

15

Then inequality (21) implies that
E[F (xt+1)]− E[F (xt)]

≤ L

2|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] +
σ2

2L|S1|
− 1− 2ηL

2η
E[‖xt+1 − xt‖2]. (23)

For any t such that (nt − 1)q ≤ t ≤ ntq − 1, we take the telescoping sum of (23) over t from
(nt − 1)q to t.

E[F (xt+1)]− E[F (x(nt−1)q]

≤ L

2|S2|

t∑
j=(nt−1)q

j∑
i=(nt−1)q

E[‖xi+1 − xi‖2] +

t∑
j=(nt−1)q

σ2

2L|S1|
− 1− 2ηL

2η

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2]

≤ L

2|S2|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] +

t∑
j=(nt−1)q

σ2

2L|S1|
− 1− 2ηL

2η

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2]

≤ Lq

2|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] +

t∑
j=(nt−1)q

σ2

2L|S1|
− 1− 2ηL

2η

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2]

=

t∑
j=(nt−1)q

σ2

2L|S1|
− θ

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2],

where the second inequality is due to j ≤ t; the third inequality is due to (nt − 1)q ≤ t ≤ ntq − 1;
θ := 1−2ηL

2η − Lq
2|S2| . Therefore we have

E[F (xt+1)]− E[F (x(nt−1)q] ≤
t∑

j=(nt−1)q

σ2

2L|S1|
− θ

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2].

Then
E[F (xT)]− E[F (x0)]

=E[F (xT)]− E[F (x(nT−1)q)] + · · ·+ E[F (x2q)]− E[F (xq)] + E[F (xq)]− E[F (x0]

≤
T−1∑
j=0

σ2

2L|S1|
− θ

T−1∑
j=0

E[‖xj+1 − xj‖2]

=
σ2T

2L|S1|
− θ

T−1∑
t=0

E[‖xt+1 − xt‖2].

By the setting of η such that θ > 0, therefore above inequality becomes

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2] ≤ σ2

2θL|S1|
+

E[F (x0)]− E[F (xT)]

θT

≤ σ2

2θL|S1|
+

E[F (x0)]− E[F (x∗)]

θT

≤ σ2

2θL|S1|
+

∆

θT
, (24)

where the second inequality is due to F (x∗) = minx∈Rd F (x); the last inequality is due to Assump-
tion 1 (iii).

On the other hand, similar to the proof of Theorem 2 we also have

‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2

≤2‖gt −∇f(xt)‖2 +
2(F (xt)− F (xt+1))

η
+ (2L2 +

1

η2
+

2L

η
)‖xt+1 − xt‖2,

16

By taking the expectation on both sides of above inequality, we get

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤2E[‖gt −∇f(xt)‖2] +
2(E[F (xt)]− E[F (xt+1)])

η
+ (2L2 +

1

η2
+

2L

η
)E[‖xt+1 − xt‖2],

(25)
Plugging inequality (20) into inequality (25),

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤2(E[F (xt)]− E[F (xt+1)])

η
+ (2L2 +

1

η2
+

2L

η
)E[‖xt+1 − xt‖2]

+ 2

 L2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] + E[‖g(nt−1)q −∇f(x(nt−1)q)‖2]

 .

Therefore, we have
2(E[F (xt+1)]− E[F (xt)])

η
+ E[‖gt −∇f(xt+1) +

1

η
(xt+1 − xt)‖2]

≤(2L2 +
1

η2
+

2L

η
)E[‖xt+1 − xt‖2] +

2L2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2] +
2σ2

|S1|
. (26)

For any t such that (nt − 1)q ≤ t ≤ ntq − 1, we take the telescoping sum of (26) over t from
(nt − 1)q to t.

2(E[F (xt+1)]− E[F (x(nt−1)q)])

η
+

t∑
j=(nt−1)q

E[‖gj −∇f(xj+1) +
1

η
(xj+1 − xj)‖2]

≤(2L2 +
1

η2
+

2L

η
)

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2] +

t∑
j=(nt−1)q

2σ2

|S1|

+
2L2

|S2|

t∑
j=(nt−1)q

j∑
i=(nt−1)q

E[‖xi+1 − xi‖2]

≤(2L2 +
1

η2
+

2L

η
)

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2] +

t∑
j=(nt−1)q

2σ2

|S1|

+
2L2

|S2|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2]

≤(2L2 +
1

η2
+

2L

η
)

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2] +

t∑
j=(nt−1)q

2σ2

|S1|

+
2qL2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2]

=γ

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2] +

t∑
j=(nt−1)q

2σ2

|S1|
.

17

where the second inequality is due to j ≤ t; the third inequality is due to (nt − 1)q ≤ t ≤ ntq − 1;
γ = 2L2 + 1

η2 + 2L
η + 2L2q

|S2| . Therefore we have

2(E[F (xt+1)]− E[F (x(nt−1)q)])

η
≤γ

t∑
j=(nt−1)q

E[‖xj+1 − xj‖2] +

t∑
j=(nt−1)q

2σ2

|S1|

−
t∑

j=(nt−1)q

E[‖gj −∇f(xj+1) +
1

η
(xj+1 − xj)‖2].

Then
2

η
(E[F (xT)]− E[F (x0)])

=
2

η
(E[F (xT)]− E[F (x(nT−1)q)] + · · ·+ E[F (x2q)]− E[F (xq)] + E[F (xq)]− E[F (x0])

≤γ
T−1∑
j=0

E[‖xj+1 − xj‖2] +

T−1∑
j=0

2σ2

|S1|
−
T−1∑
j=0

E[‖gj −∇f(xj+1) +
1

η
(xj+1 − xj)‖2].

Dividing by T on both sides of above inequality and rearranging it we have

1

T

T−1∑
t=0

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤2(E[F (x0)]− E[F (xT)])

ηT
+ γ

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2] +
2σ2

|S1|

≤2∆

ηT
+ γ

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2] +
2σ2

|S1|
. (27)

Combining above inequality with (17) and (24) and taking the expectation, we have

ER[dist(0, ∂̂F (xR))2]

=
1

T

T−1∑
t=0

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤2∆

ηT
+ γ

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2] +
2σ2

|S1|

≤2∆

ηT
+ γ

(
σ2

2θL|S1|
+

∆

θT

)
+

2σ2

|S1|

=
2θ∆ + γη∆

ηθT
+

(γ + 4θL)σ2

2θL|S1|
,

where γ = 2L2 + 1
η2 + 2L

η + 2L2q
|S2| , and θ = 1−2ηL

2η − Lq
2|S2| . Since q = |S2| and η = c

L with

0 < c < 1
3 , then θ = 1−3ηL

2η > 0 and γ = 4L2 + 1
η2 + 2L

η .

For the finite-sum setting, the proof can be obtained by a slight change in above analysis using the
fact that

E[‖g(nt−1)q −∇f(x(nt−1)q)‖2] = 0.

Then Lemma 1 will give us

E[‖gt −∇f(xt)‖2] ≤ L2

|S2|

t∑
i=(nt−1)q

E[‖xi+1 − xi‖2].

18

Following the similar analysis, we will have

ER[dist(0, ∂̂F (xR))2] ≤ 2θ∆ + γη∆

ηθT
.

D Proof of Corollary 6

Proof. The proof uses the results in Theorem 5.

Online setting: The total complexity is

|S2|T + |S1|
⌈
T

q

⌉
≤ |S2|T + |S1|

T

q
+ |S1|

=

√
4(γ + θL)σ2

θLε2
· 2(2θ + γη)∆

ηθε2

+
(γ + 4θL)σ2

θLε2
· 2(2θ + γη)∆

ηθε2
·

√
θLε2

4(γ + θL)σ2
+

(γ + 4θL)σ2

θLε2

=O(ε−3).

Finite-sum setting: The proof can be obtained by a slight change in the proof of Theorem 5 using
the fact that

E[‖g(nt−1)q −∇f(x(nt−1)q)‖2] = 0.

Then the total complexity is

|S2|T + |S1|
⌈
T

q

⌉
≤|S2|T + |S1|

T

q
+ |S1|

=
√
n · (2θ + γη)∆

ηθε2
+ n · (2θ + γη)∆

ηθε2
·
√

1

n
+ n

=O(
√
nε−2 + n).

E Proof of Theorem 7

Proof. We first focus on the online setting. Following the similar analysis of Theorem 5 we have

1

T

T−1∑
t=0

E[F (xt+1)]− E[F (xt)]

≤ 1

2LT

T−1∑
t=0

E[‖gt −∇f(xt)‖2]− 1− 2ηL

2ηT

T−1∑
t=0

E[‖xt+1 − xt‖2]. (28)

We want to upper bound the variance term
∑T−1
t=0 E[‖gt −∇f(xt)‖2] by using Lemma 1 of [18]. By

the updates of Algorithm 3 we know it can be written as
T−1∑
t=0

E[‖gt −∇f(xt)‖2]

=

b−1∑
j=0

E[‖gj −∇f(xj)‖2] +

3b−1∑
j=b

E[‖gj −∇f(xj)‖2] +

6b−1∑
j=3b

E[‖gj −∇f(xj)‖2]

+ · · ·+
s(s+1)b/2−1∑
j=s(s−1)b/2

E[‖gj −∇f(xj)‖2] + · · ·+
T−1∑

j=S(S−1)b/2

E[‖gj −∇f(xj)‖2] (29)

19

In particular, by Lemma 1, for any t such that s(s− 1)b/2 ≤ t ≤ s(s+ 1)b/2− 1 in Algorithm 3,
we have

E[‖gt −∇f(xt)‖2] ≤ L2

|S2,s|

t∑
i=s(s−1)b/2

E[‖xi+1 − xi‖2] + E[‖gs(s−1)b/2 −∇f(xs(s−1)b/2)‖2]

≤ L2

|S2,s|

t∑
i=s(s−1)b/2

E[‖xi+1 − xi‖2] +
σ2

|S1,s|
, (30)

where the second inequality is due to Assumption 1 (ii). For any t such that s(s − 1)b/2 ≤ t ≤
s(s+ 1)b/2− 1, we take the telescoping sum of (30) over t from s(s− 1)b/2 to t.

t∑
j=s(s−1)b/2

E[‖gj −∇f(xj)‖2]

≤ L2

|S2,s|

t∑
j=s(s−1)b/2

j∑
i=s(s−1)b/2

E[‖xi+1 − xi‖2] +

t∑
j=s(s−1)b/2

σ2

|S1,s|

≤ L2

|S2,s|

t∑
j=s(s−1)b/2

t∑
i=s(s−1)b/2

E[‖xi+1 − xi‖2] +

t∑
j=s(s−1)b/2

σ2

|S1,s|

≤ L
2bs

|S2,s|

t∑
i=s(s−1)b/2

E[‖xi+1 − xi‖2] +

t∑
j=s(s−1)b/2

σ2

|S1,s|

=L2
t∑

j=s(s−1)b/2

E[‖xj+1 − xj‖2] +

t∑
j=s(s−1)b/2

σ2

b2s2
, (31)

where the second inequality is due to j ≤ t; the third inequality is due to s(s − 1)b/2 ≤ t ≤
s(s+ 1)b/2− 1; the last equality is due to |S1,s| = b2s2 and |S2,s| = bs. Plugging inequality (31)
into equality (29), we get

T−1∑
t=0

E[‖gt −∇f(xt)‖2]

≤
b−1∑
j=0

(
L2E[‖xj+1 − xj‖2] +

σ2

b212

)
+

3b−1∑
j=b

(
L2E[‖xj+1 − xj‖2] +

σ2

b222

)

+ · · ·+
s(s+1)b/2−1∑
j=s(s−1)b/2

(
L2E[‖xj+1 − xj‖2] +

σ2

b2s2

)
+ . . .

+

T−1∑
j=S(S−1)b/2

(
L2E[‖xj+1 − xj‖2] +

σ2

b2S2

)

=L2
T−1∑
t=0

E[‖‖xt+1 − xt‖2] +

b−1∑
j=0

σ2

b212
+

3b−1∑
j=b

σ2

b222
+ · · ·+

s(s+1)b/2−1∑
j=s(s−1)b/2

σ2

b2s2
+ . . .

+

T−1∑
j=S(S−1)b/2

σ2

b2S2

=L2
T−1∑
t=0

E[‖‖xt+1 − xt‖2] +

S∑
s=1

σ2

bs
. (32)

20

Plugging above inequality (32) into inequality (28) we then have

1

T

T−1∑
t=0

E[F (xt+1)]− E[F (xt)]

≤ 1

2L

1

T

(
L2

T−1∑
t=0

E[‖‖xt+1 − xt‖2] +

S∑
s=1

σ2

bs

)
− 1− 2ηL

2η

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2]. (33)

Rearranging the inequality (33), we know

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2] ≤E[F (x0)]− E[F (xT)]

θT
+

1

2θLT

S∑
s=1

σ2

bs
≤ ∆

θT
+

1

2θLT

S∑
s=1

σ2

bs
,

(34)

where θ := 1−3ηL
2η > 0.

On the other hand, similar to the proof of Theorem 5 by (25) we also have

1

T

T−1∑
t=0

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤2
1

T

T−1∑
t=0

E[‖gt −∇f(xt)‖2] +
1

T

T−1∑
t=0

2(E[F (xt)]− E[F (xt+1)])

η

+ (2L2 +
1

η2
+

2L

η
)

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2]

≤2
1

T

T−1∑
t=0

E[‖gt −∇f(xt)‖2] +
2∆

ηT
+ (2L2 +

1

η2
+

2L

η
)

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2]. (35)

Plugging inequality (32) into inequality (35),

1

T

T−1∑
t=0

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤2
L2
∑T−1
t=0 E[‖‖xt+1 − xt‖2] +

∑S
s=1

σ2

bs

T
+

2∆

ηT
+ (2L2 +

1

η2
+

2L

η
)

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2]

=
2

T

S∑
s=1

σ2

bs
+

2∆

ηT
+ (4L2 +

1

η2
+

2L

η
)

1

T

T−1∑
t=0

E[‖xt+1 − xt‖2]

≤ 2

T

S∑
s=1

σ2

bs
+

2∆

ηT
+ (4L2 +

1

η2
+

2L

η
)

(
∆

θT
+

1

2θLT

S∑
s=1

σ2

bs

)

=
(2θ + γη)∆

θηT
+

4θL+ γ

2θLT

S∑
s=1

σ2

bs
, (36)

where γ = 4L2 + 1
η2 + 2L

η , the last inequality is due to (34). Combining above inequality with

the fact that∇f(xt+1)− gt − 1
η (xt+1 − xt) ∈ ∇f(xt+1) + ∂̂r(xt+1) = ∂̂F (xt+1) and taking the

21

expectation, we have

ER[dist(0, ∂̂F (xR))2]

≤ 1

T

T−1∑
t=0

E[‖gt −∇f(xt+1) +
1

η
(xt+1 − xt)‖2]

≤ (2θ + γη)∆

θηT
+

4θL+ γ

2θLT

S∑
s=1

σ2

bs

≤ (2θ + γη)∆

θηT
+

(4θL+ γ)σ2(log(S) + 1)

2bθLT

≤ (2θ + γη)∆

θηT
+

(4θL+ γ)σ2(1
2 log(2T/b) + 1)

2bθLT
,

where the last second inequality is due to
∑S
s=1

1
s ≤ log(S) + 1; the last inequality is due to

S ≤
√
S(S + 1) =

√
2T
b . Since η = c

L with 0 < c < 1
3 , then θ = 1−3ηL

2η > 0.

Similarly, the proof for the finite-sum setting can be obtained by a slight change in above analysis
using the fact that

E[‖g(nt−1)q −∇f(x(nt−1)q)‖2] = 0.

in Lemma 1. Following the similar analysis, we will have

ER[dist(0, ∂̂F (xR))2] ≤ 2θ∆ + γη∆

ηθT
.

F Heuristic SGD for learning a quantized model

We present a popular heuristic SGD approach in deep learning for learning a quantized model [36] in
the following algorithm. The step size is reduced by half at each epoch in the experiments.

Algorithm 5 Heuristic SGD for learning a quantized model [36]
1: Initialize: x0 ∈ Rd, η0 = η and x̂0 = PΩ(x0) is the quantized model
2: for t = 0, 1, . . . , T − 1 do
3: xt+1 = xt − η∇f(x̂t; ξt), where x̂t = PΩ(xt) is the quantized model
4: if mod(t, n) == 0 then
5: η = η/2
6: end if
7: end for
8: Output: xR, where R is uniformly sampled from {1, . . . , T}.

22

	Introduction
	Preliminaries
	Warm-up: Proximal Gradient Descent Method

	Mini-Batch Stochastic Proximal Gradient Methods
	Stochastic Proximal Gradient Methods with Recursive Stochastic Gradient Estimator
	SPGR with Increasing Mini-Batch Sizes

	Experiments
	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 5
	Proof of Corollary 6
	Proof of Theorem 7
	Heuristic SGD for learning a quantized model

