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A Appendix

A.1 Proof of Theorem 1

Theorem 1. For any sample S = (x1, . .., ), the empirical Rademacher complexity of a hypothesis
set H is defined by Rg(H) = Eq [supyey doinyq 0ih(z;)], where, o;s, i € [m], are independent
uniformly distributed random variables taking values in {—1,1}. The following upper bound holds
for the empirical Rademacher complexity of Hy, » 4

h a m

Y

where d is input data dimension.

Proof. For the purpose of this proof, let H,, be the family of binary decision trees with leaf values
w; € {—1,+1}. We use the regularization in the family H, » , and the connection to the family
‘H., in the proof below. Additionally, let » > 1 such that % + % = 1, meaning that the r—norm is
the dual to the g—norm. To aid the presentation in the proof, we are going to define a vector & s.t.
[0]; = >4, clear, Ti» the j-th coordinate of which contains the sum of the Rademacher variables that
correspond to the sample points that fall within j-th leaf of a tree h.

R 1 _ m
RS Hiurg) = —E sup [ onh(xn ]] (12
( ’ ’q) m o LhEHn 2, q 712::1 ( )

1 I ~

=—FE sup [a : w” (13)
m o _hEHn,A,q
1 [ ~

<—E| sup [&./w], (o
m o LhEHn A, q
AT ~

< 2&[ sup 151, (4
m o | het,
by [ ~

< 2&[ sup 150 (1o
m o | heH.,

gl sp zn:H&H] (17)
m o | heM, '
)\ _ m

= EIE: sup Z ’Zml{mel}@ (18)

L heHn I€leaves(h) i=1

A m

< E sup S Uil{zid}} (19)
me -heHmsle{"'L_l}lEl;;S(h) ;
A _ m

AN 1) sup g; Sl]. - €L :| (20)
mo _hEHn,Sle{'i'l!_l}; Z o

L Eleaves(h)

- )\\/(4n+2)1og2(d+2)log(m+ 1) e

m

Where n is the number of internal nodes, and d is the input data dimension. The inequality (14) is a
direct application of the Holder’s inequality for dual norms. The inequality (16) uses || - || < || - |1
The equality (18) directly follows from the definition of . The last inequality (21) follows from the
fact that the VC-dimension of binary classification trees can be bounded by (2n + 1) log,(d + 2)
Mohri et al. [2012] and a direct application of Massart’s lemma Massart and Picard [2007]. O
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A.2 Proof of Theorem 2

Theorem 2. Fix p > 0. Let Hy, = Hn, 1, ,q.- Where (ng), (Ag) are sequences of constraints on
the number of internal nodes n and the leaf vector norm ||w||,. Define F = conv(UX_| Hy). Then,
for any 0 > 0, with probability at least 1 — § over the draw of a sample S of size m, the following

inequality holds for all f = Z;le athy € F:

T
R(f) < Egp(f) + izat)\lt\/(ﬁlnzt +2) logg(f’:- 2)log(m + 1) - C(m, K),
t=1

where I; is the index of the subclass selected at time ¢ and C'(m, K) = O (\/h’;ﬁ(mm log [lo’:%} )

Proof. For this proof we are going to make use of the generalization bounds for broad families of
real-valued functions given in Theorem 1 of [Cortes et al., 2014]. Adapted to our notation, it states
that for any f from a family of real-valued functions F that is equal to the convex hull of UL H,,,
for any 6 > 0 with probability at least 1 — § over the choice of sample S ~ D™, the following
generalization bound holds:

T 2

~ 4 2 [logK 4 pm? \log K = log(5)

< =S Y S 2 .
R(7) < Rso(F) + pi= e m (o) + pV m * \/[P2 o8 (logK m T om

where « is are the weights that represent f in the convex hull of Uf:ﬂ{k, thatis f = ZZ;I aphy
s.t. @ = [ag,...,ar] is in the simplex A. This bound is directly applicable to the Regularized
Gradient Boosting that we define, since at each boosting round, the algorithm selects a base predictor
h: € H;, and multiplies it by a coefficient a;. Thus, after 7" boosting rounds, we will have obtained

an ensemble f such that f = ZtT:l azhy € conv(UE_ H;,) and « directly in the simplex A.

Applying the Rademacher complexity bound on the regularized families of regression trees H,, » 4
that we derived in Theorem 1 and noting that

2 [log K 4 pm?2 log K log(%) - log(K) o2m
"\/Tﬂ/[fbg(logffﬂ m " om _O( pm IOg[log(K)]) 22

We obtain the expression for the bound in Theorem 2. O

A.3 Proof of Lemma 3

Lemma 3. Assume that ®(y, h) is differentiable with respect to the second argument, and that g—‘z
Cg (y)-Lipschitz with respect to the second argument, for any fixed value y of the first argument. for

all k € [0, K, define L} (o) = (%Lk. Then, L) («) is Lipschitz-continuous with the corresponding
Lipschitz constants C', bounded as follows:

1
Crp < — > hi(xi)Cal(ys). (23)

Proof. The k-th derivative of L(cx) is equal to (except c, = 0):

1 00
Li(a) = mz%(yi7zatht($i)>hk($i) + e, (24)
=1 t=1

m

where ¢, = ﬁ/\k\/ (4ny+2) log,(d+2) log(m+1) | ot e, be the k-th standard basis vector, then

12



420
421

422

423

424

425

426
427

428
429

430

431

Ly, () — Ly(x + dey)

1 oD L oD r
39 |hk<xz>‘ i <y;ah<z)> i (yq,;athf(m + oh
1 & ob b
= o el (w7 = G (v + )
1 m
< > (@) | Ca ()| (1) |16
=1
ISy .
= o K Calul

Thus, L} (c) is Lipschitz-continuous with the corresponding Lipschitz constant bounded by
iy hi (i) Ca (yi).
O

A.4 Proof of Lemma 4

Lemma 4. . For each k € [0, K] let H,, », 2 be the family of regularized regression trees with
lwl|l2 < Ax and the number of internal nodes bounded by ny. The regularized objective L(cx) as
in Equation 7 has Lipschitz-continuous derivatives with the coordinate-wise Lipschitz constants CY,
bounded as follows:

Cr < Mg L?@n Cq»(yi)} (25)

Proof. For a sample S and a fixed tree h let 7); be the number of sample points falling within the leaf
l.

1T 4 m
Cr= lglggnCé(yi) z;hi(xi)
L 1=
< 1] max C. (y) Z mw?
= m | 1<i<m D\Yi [y
- = l€leaves(hy)
< 1 max Coy)|Iwl
— | max O ||w max
T om | 1<i<m oY ] 2l€leaves(hk)m
< .
< Iwlle | s Coto)|
< .
< Ak lrgnfgn C@(yz)_

This results in the coordinate sampling distribution for the Randomized Coordinate Descent.

PE= = (26)

Zj:l Aj
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Table 2: Dataset statistics

sonar cancer diabetes ocrl7 ocr49 mnistl7 mnist49
Examples 208 699 768 2000 2000 15170 13782
Features 60 9 8 196 196 400 400

A.5 Descriptive statistics of the UCI datasets
Note that mnistl7 and mnist49 refer to the original 20-by-20 pixel datasets, where only two digits

(1,7 and 4,9 respectively) were sampled. The cancer dataset refers to the breastcancer dataset in the
UCI repository.
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