General E(2) - Equivariant Steerable CNNs
Appendix

A Local gauge equivariance of E(2)-steerable CNNs
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Figure 3: Different viewpoints on transformations of signals on R?
Top Left: In our work we considered active rotations of the sig-
nal while keeping the coordinate frames fixed. Bottom Left: The
equivalent, passive interpretation views the transformation as a
global rotation of reference frames (a global gauge transformation).
Right: Local gauge transformations rotate reference frames inde-
pendently from each other. E(2)-steerable CNNs are equivariant
w.r.t. both global and local gauge transformations.

The E(2)-equivariant steerable CNNs considered in this work were derived in the classical framework

of steerable CNNs on Euclidean spaces R (or more general homogeneous spaces) [} 12, 13| 14].
This formulation considers active transformations of signals, in our case translations, rotations and
reflections of images. Specifically, an active transformation by a group element tg € (]RZ, +)xG
moves signal values from x to g~ (z — t); see Eq. (T) and Figure top left. The proven equivariance
properties of the proposed E(2)-equivariant steerable CNNs guarantee the specified transformation
behavior of the feature spaces under such active transformations. However, our derivations so far
don’t prove any equivariance guarantees for local, independent rotations or reflections of small
patches in an image.

The appropriate framework for analyzing local transformations is given by Gauge Equivariant
Steerable CNNs [5]. In contrast to active transformations, Gauge Equivariant CNNs consider
passive gauge transformations; see Figure [3] right. Adapted to our specific setting, each feature
vector f(x) is being expressed relative to a local reference frame (or gauge) (e1(x), ez(x)) at

x € R, A gauge transformation formalizes a change of local reference frames by the action of
position dependent elements g(z) of the gauge group (or structure group), in our case rotations and
reflections in G < O(2). Since gauge transformations act independently on each position, they model
independent transformation of local patches in an image. As derived in [5], the demand for local
gauge equivariance results in the same kernel constraint as in Eq. (2). This implies that our models
are automatically locally gauge equivarian

More generally, the kernel constraint (2) applies to arbitrary 2-dimensional Riemannian manifolds
M with structure groups G < O(2). The presented solutions of the kernel space constraint therefore
describe spherical CNNs [[14} 15 [15 16, [17, [18] or convolutional networks on triangulated meshes
(19} 20} 21} 22] for different choices of structure groups and group representations.

* Conversely, the equivariance under local gauge transformations g(z) € O(2) implies the equivariance under
active isometries. In the case of the Euclidean space R? these isometries are given by the Euclidean group E(2).



B Overview over subgroups of E(2) and O(2)

The subgroups of E(2) = (R?, +) x O(2) considered in this work are of the form (R?, 4) x G with
G < O(2). An overview over all possible choices is given in the following table.

order |G| G <0(2) (R%,+)x G
orthogonal - 0(2) E(2) = (R% +) x O(2)
special orthogonal - SO(2) SE(2) = (R2,+) x SO(2)
cyclic N Cy (R?,+) x Cy
reflection 2 ({£1},%) 2 Dy (R%,+) x ({£1}, %)
dihedral 2N Dy = Cy x({%1},%) (R?,+) x Dy

Table 6: Overview over the different groups covered in our framework.

C Implementation details

E(2)-steerable CNNs rely on convolutions with O(2)-steerable kernels. Our implementation therefore
involves 1) computing a basis of steerable kernels, 2) the expansion of a steerable kernel in terms of
this basis with learned expansion coefficients and 3) running the actual convolution routine. Since the
kernel basis depends only on the chosen representations it is precomputed before training.

Given an input and output representation pi, and poy of G < O(2), we first precompute a ba-
sis {k1,...kq} of G-steerable kernels satisfying Eq. (2). In order to solve the kernel constraint
we compute the types and multiplicities of irreps in the input and output representations using
character theory [23]. The change of basis can be obtained by solving the linear system of
equations p(g) = Q' [, ¥i(9)]Q Vg € G. For each pair 1), 1; of irreps occurring in pey and
pin We retrieve the analytical solutions {x7’,... k7 ,} listed in Appendix Together with the

change of basis matrices @i, and Q oy, they fully determine the angular parts of the basis {k1, ..., kq}
of G-steerable kernels via Eq. (@). Since the kernel space constraint affects only the angular behavior
of the kernels we are free to choose any radial profile. Following [[7] and [2], we choose Gaussian
radial profiles exp (52 (r - R)?) of width o, centered at radii R = 1,.. ., [s/2].

In practice, we consider digitized signals on a pixel gri 72 Correspondingly, we sample the
analytically found kernel basis {k1, ..., kq} on a square grid of size s x s to obtain their numerical
representation of shape (d, cou, Cin, S, $). In this process it is important to prevent aliasing effects.
Specifically, each basis kernel corresponds to one particular angular harmonic; see Table[I] When
being sampled with a too low rate, a basis kernel can appear as a lower harmonic and might therefore
introduce non-equivariant kernels to the sampled basis. For this reason, preventing aliasing is
necessary to guarantee (approximate) equivariance. In order to ensure a faithful discretization, note
that each Gaussian radial profile defines a ring whose circumference, and thus angular sampling
rate, is proportional to its radius. It is therefore appropriate to bandlimit the kernel basis by a cutoff
frequency which is chosen in proportion to the rings’ radii. Since the basis kernels are harmonics of
specific angular frequencies this is easily implemented by discarding high frequency solutions.

In typical applications the feature spaces are defined to be composed of multiple independent
feature fields. Since the corresponding representations are block diagonal, this implies that the actual
constraint (Z)) decomposes into multiple simpler constraintsE] which we leverage in our implementation
to improve its computational efficiency. Assuming the output and input representations of a layer to
be given by pour = P  Pout,y and pi, = P s Pin,s respectively, the constraint on the full kernel space

is equivalent to constraints on its blocks k?® which map between the independent fields transforming

3 Note that this prevents equivariance from being exact for groups which are not symmetries of the grid.
Specifically, for Z?2 only subgroups of Dy are exact symmetries which motivated their use in [6] 10} [T]].
® The same decomposition was used in a different context in Section
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under piy, 5 and poy;,- Our implementation therefore computes a sampled basis {k?‘s, el sz s } of
k7% for each pair ( Pin,5, Pout,~) Of input and output representations individually.

At runtime, the convolution kernels are expanded by contracting the sampled kernel bases with learned
weights. Specifically, each basis {k?‘s, el kgf s |, realized by a tensor of shape (d°, cou,: Cin,s5 , ),
is expanded into the corresponding block k£ of the kernel by contracting it with a tensor of learned
parameters of shape (d??). This process is sped up further by batching together multiple occurrences
of the same pair of representations and thus block bases.

The resulting kernels are then used in a standard convolution routine. In practice we find that the
time spent on the actual convolution of reasonably sized images outweighs the cost of the kernel
expansion. In evaluation mode the parameters are not updated such that the kernel needs to be
expanded only once and can then be reused. E(2)-steerable CNNs thus have no computational
overhead over conventional CNNs at test time.

Our implementation is provided as a PyTorch extension which is available at https://github. com/
QUVA-Lab/e2cnn. The library provides equivariant versions of many neural network operations,
including G-steerable convolutions, nonlinearities, mappings to produce invariant features, spatial
pooling, batch normalization and dropout. Feature fields are represented by geometric tensors, which
are wrapping a torch.Tensor object and augment it, among other things, with their transformation
law under the action of a symmetry group. This allows for a dynamic type-checking which prevents
the user from applying operations to geometric tensors whose transformation law does not match
the transformation law expected by the operation. The user interface hides most complications on
group theory and solutions of the kernel space constraint and requires the user only to specify the
transformation laws of feature spaces. For instance, a Cg-equivariant convolution operation, mapping
a RGB image, identified as three scalar fields, to ten regular feature fields, would be instantiated by:

| r2_act = Rot2dOnR2(N=8)

\feat,type,in = FieldType(r2_act, 3x[r2_act.trivial_repr])
| feat_type_out = FieldType(r2_act, 10*[r2_act.regular_repr])
\conv,op = R2Conv(feat_type_in, feat_type_ out, kernel_size=5)

AW =

Everything the user has to do is to specify that the group Cg acts on R? by rotating it (line 1)

and to define the types pi, = @?:1 1 and poy = @321 pgg of the input and output feature fields

(lines 2 and 3), which are subsequently passed to the constructor of the steerable convolution (line 4).

D Further analysis of experimental results
D.1 Model benchmarking on transformed MNIST datasets

In this section we analyze the benchmarking results of the 57 models in Table[/|in depth. All models
in these experiments are derived from the base architecture described in Table[I3]in Appendix [K] The
actual width of each model is adapted such that the number of parameters is approximately preserved.
Note that this results in different numbers of channels, depending on the parameter efficiency of the
corresponding models. All models apply some form of invariant mapping to scalar fields followed by
spatial pooling after the last convolutional layer such that the predictions are guaranteed to be invariant
under the equivariance group of the model. The number of invariant features passed to the fully
connected classifier is approximately kept constant by adapting the width of the last convolutional
layer to the invariant mapping used. The statistics of each experiment are averaged over (at least) 6
samples. In the remainder of this subsection we will guide through the results presented in Table[7]
For more information on the training setup, see Appendix

Regular steerable CNNs: Due to their popularity we first cover steerable CNNs whose features
transform under regular representations of Cy and Dy for varying orders N. Note that these models
correspond to group convolutional CNNs [6l [7]. For the dihedral models we choose a vertical
reflection axis. We use ELUs [34] as pointwise nonlinearities and perform group pooling (see
Section as invariant map after the final convolution. Overall, regular steerable CNNs perform
very well. The reason for this is that feature vectors, transforming under regular representations, can
encode any function on the group.
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Figure [2] summarizes the results for all regular steerable CNNs on all variants of MNIST (rows 2-10
and 19-27 in Table . For MNIST O(2) and MNIST rot the prediction accuracies improve with N
but start to saturate at approximately 8 to 12 rotations. On MNIST O(2) the Dy models perform
consistently better than the Cn models of the same order N. This is the case since the dihedral
models are guaranteed to generalize over reflections which are present in the dataset. All equivariant
models outperform the non-equivariant CNN baseline.

On MNIST rot, the accuracy of the Cy-equivariant models improve significantly in comparison to
their results on MNIST O(2) since the intra-class variability is reduced. In contrast, the test errors of
the Dy -equivariant models is the same on both datasets. The reason for this result is the reflection
invariance of the Dy models which implies that they can’t distinguish between reflected digits. For
N =1 the dihedral model is purely reflection- but not rotation invariant and therefore performs even
worse than the CNN baseline. This issue is resolved by restricting the dihedral models after the
penultimate convolution to Cy < Dy, such that the group pooling after the final convolution results
in only Cp-invariant features. This model, denoted in the figure by Dy |5Cy, achieves a slightly better
accuracy than the pure Cy-equivariant model since it can leverage local reflectional symmetries.

For MNIST 12k the non-restricted Dy models perform again worse than the Cy models since they
are insensitive to the chirality of the digits. In order to explain the non-monotonic trend of the curves
of the Cy and Dy models, notice that some of the digits are approximately related by symmetry
transformationg®| If these transformations happen to be part of the equivariance group w.r.t. which
the model is invariant the predictions are more likely to be confused. This is mostly the case for N
being a multiple of 2 or 4 or for large orders N, which include almost all orientations. Once again,
the restricted models, here Dy|s{e} and Cy|5{e}, show the best results since they exploit local
symmetries but preserve information on the global orientation. Since the restricted dihedral model
generalizes over local reflections, its performance is consistently better than that of the restricted
cyclic model.

Quotient representations: As an alternative to regular representations we experiment with some
mixtures of quotient representations of Cy (rows 11-15). These models differ from the regular models
by enforcing more symmetries in the feature fields and thus kernels. The individual feature fields are
lower dimensional; however, by fixing the number of parameters, the models use more different fields
which in this specific case leads to approximately the same number of channels and therefore compute
and memory requirements. We do not observe any significant difference in performance between
regular and quotient representations. Appendix [F] gives more intuition on our specific choices of
quotient representations and which symmetries they enforce. Note that the space of possible quotient
representations and their multiplicities is very large and still needs to be investigated more thoroughly.

Group pooling and vector field nonlinearities: For C;4 we implement a group pooling network
(row 16) and a vector field network (row 17). These models map regular feature fields, produced by
each convolutional layer, to scalar fields and vector fields, respectively; see Section[2.6] These pooling
operations compress the features in the regular fields, which can lead to lower memory and compute
requirements. However, since we fix the number of parameters, the resulting models are ultimately
much wider than the corresponding regular steerable CNNs. Since the pooling operations lead to a
loss of information, both models perform worse than their purely regular counterpart on MNIST O(2)
and MNIST rot. Surprisingly, the group pooling network, whose features are orientation unaware,
performs better than the vector field network. On MNIST 12k the group pooling network closes up
with the regular steerable CNN while the vector field network achieves an even better result. We
further experiment with a model which applies vector field nonlinearities to only half of the regular
fields and preserves the other half (row 18). This model is on par with the regular model on both
transformed MNIST versions but achieves the overall best result on MNIST 12k. Similar to the case
of Cj¢, the group pooling network for D¢ (row 28) performs worse than the corresponding regular
model, this time also on MNIST 12k.

7 The group restricted models are not listed in Table but in Table

8E.g. 6and 9 (6 and 9) or 2 and 3 (2 and 5) are related by a rotations by 7 and might therefore be confused
by all models Cay, and Doy, for k € N. Similarly, - and 3 (4 and 7) are related by a reflection and a rotation by
/2 and might be confused by all models D.y.
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group representation nonlinearity invariant map  citation MNISTO(2) MNISTrot MNIST 12k

1 {e}  (conventional CNN) ELU - - 5.53+020 2.87x009 0.91x0.06
> Oy [719] 5.19+0.08 2.48+013 0.82+0.01
Cs [7109] 3.29+0.07 1.32+002 0.87+0.04

+ C3 = 2.87+0.04 1.19+006 0.80+0.03
s Cy 16/1If71191110] 2.40+0.05 1.02+0.03 0.99+0.03
o Cg  regular Preg ELU G-pooling [8] 2.08+0.03 0.89+003 0.84+0.02
Cg [719] 1.96+0.04 0.84+0.02 0.89+0.03

s Cyo 7] 1.95+0.07 0.80+0.03 0.89+0.03
» Cig [7119] 1.93+0.04 0.82+0.02 0.95+0.04
10 Cog 7] 1.95+0.05 0.83+0.05 0.94+0.06
o Cy 5preg@2p§$({f'2€92wo M 2.43+005 1.03+005 1.01+0.03
n Cs 5 Preg B 20k D20t 240 ; 2.0340.05 0844005 0.9140.02
5 Ci2  quotient Sp,-egEBQ,o;:;/% ®2p§l}§‘/c463w0 - 2.04+004 0.81+002 0.95+0.02
14 Cig 5010 ®2quet 2 B2 quel 4 B43bo : 2.004001 0.86+004 0.9840.04
15 Cao 5p,eg@2p§j;/c2@2,7555/“@51&0 - 2.01+0.05 0.83+0.03 0.96+0.04
16 regular/scalar 1) SLVA Preg ﬂ o ELU, G-pooling [6:138] 2.02+0.02 0.90+0.03 0.93+0.04
17 Cyg  regular/vector Lo, Preg vector pol U1 vector field [13!39] 2.12+0.02 1.07+0.03 0.78+0.03
18 mixed vector  preg b1 EOA 2preg % Preg®tP1  ELU, vector field - 1.87+0.03 0.83+0.02 0.63+0.02
19 Dy - 3.40+0.07 3.44+010 0.98+0.03
0 Do - 2.42+007 2.39+004 1.05+0.03
1 Ds - 2.17+0.06  2.15+005 0.9440.02
2 Dy [6/111140] 1.88+0.04 1.87+0.04 1.69+0.03
2 Dg regular Preg ELU G-pooling (8] 1.77+0.06 1.77+0.04 1.00+0.03
2 Dg = 1.68+0.06 1.73+0.03 1.64+0.02
Do - 1.66 +0.05 1.65+0.05 1.67+0.01

6 Dig - 1.62+0.04 1.65+0.02 1.6840.04
7 Dag - 1.64+0.06 1.62+0.05 1.6940.03
s Dig regular/scalar g o Preg i 0,0 ELU, G-pooling - 1.92+0.03 1.88+0.07 1.74+0.04
29 irreps < 1 @}:U i - 2.98+0.04 1.38+0.090 1.29+0.05
) irreps < 3 @, i - 3.02+0.18  1.38+0.09 1.27+0.03
31 irreps < 5 GB?:U i - 3.24+005 1.44+010 1.36+0.04
> irreps < 7 @{ZO ¥ ELU. norm-ReLU com2triv - 3.30+011 1.51+010 1.40+0.07
Ceirreps <1 @P;_o ¥F [12] 3.39+010 1.47+006 1.42+0.04

34 C-irreps < 3 @?:o »E [12] 3.48+016 1.51+005 1.53+0.07
Ceitreps <5 >, ¥¢ - 3.59+008 1.59+005 1.55+0.06

6 S0(2) C-irreps < 7 @3:0 [ - 3.64+012 1.61+0.06 1.62+0.03
7 ELU, squash - 3.10 +0.09 1.41+0.04 1.46+0.05
38 ELU, norm-ReLU - 3.23 £0.08 1.38+0.08 1.33+0.03
39 ELU, shared norm-ReLU norm - 2.88+0.11 1.15+0.06 1.1840.03
10 irreps < 3 @3 " shared norm-ReLU - 3.61+009 1.57+0.05 1.88+0.05
" - =071 ELU, gate N - 2.37+006 1.09+003 1.10+0.02
2 ELU, shared gate - 2.33+0.06 1.11+0.03 1.12+0.04
43 ELU, gate Horm - 2.23+009 1.04+0.04 1.05+0.06
4 ELU, shared gate - 2.20+0.06 1.01+0.03 1.03+0.03
45 irreps = 0 0,0 ELU - - 5.46+046 5.21+020 3.98+0.04
16 irreps < 1 Yo,0 D Y10 D 21,1 - 3.31+0.17 3.37+0.18 3.05+0.09
s %rreps <3 0.0 ® Y10 ®Z:1 214 —_ 0(2)-comv2uriy 3.42+003 3.41+010 3.86+0.00
a8 irreps < 5 0,0 B V1,0 D 2t 3.59+013 3.78+031 4.17+0.15
2 irreps < 7 0.0 B 10Dy 2014 - 3.84+025 3.90+018 4.5740.27
50 Ind-irreps <1 Ind wSO(z) @ Ind w§0(2) - 2.72+0.05 2.70+0.11 2.39+0.07
51 0(2 Ind-irreps < 3 Ind 50 @?_, Ind 79 2.66+0.07 2.65+0.12 2.25+0.06
o Ind—irregs <5 Ind ZEO(Z) g"’: Ind Z;so(?) BAASpIEIR NIRRT SRR ; 2714011  2.844010 2.39+0.00
53 Ind-irreps <7 Ind /;/150(2) @::1 Ind w;so(z) - 2.80+012  2.85+006 2.25+0.08
54 . O(2)-conv2triv - 2.39+0.05 2.38+0.07 2.28+0.07
55 irreps < 3 Vo0 & Y10 69?:1 Wi ELU. gate no(rrr)l - 2214009 2.24+006 2.15+0.03
56 . Ind-conv2triv - 2.13+0.04  2.09+0.05 2.05+0.05
5 Ind-irreps <3 Ind wa)O(Z) @?:1 Ind 1/’;:50(2) ELU, Ind gate Ind-norm - 1.96+0.06 1.95+005 1.85+0.07

Table 7: Extensive comparison of G-steerable CNNs for different choices of groups G, representations, nonlinearities and final G-invariant
maps on three transformed MNIST datasets. Multiplicities of representations are reported in relative terms; the actual multiplicities are
integer multiples with a depth dependent factor. All models apply a G-invariant map after the convolutions to guarantee an invariant
prediction. Citations give credit to the works which proposed the corresponding model design. For reference see Sections @ @ EandE



SO(2) irrep models: The feature fields of all SO(2)-equivariant models which we consider are
defined to transform under irreducible representations; see Appendix [E|and[[.2] Note that this covers

scalar fields and vector fields which transform under ’(/J(S) 9 and 1/}?0(2), respectively. Overall these
models are not competitive compared to the regular steerable CNNs. This result is particularly impor-
tant for SE(3) = (R®,4) x SO(3)-equivariant CNNs whose feature fields are often transforming
under the irreps of SO(3) [35] 2L 36} 151 37].

The models in rows 29-32 are inspired by Harmonic Networks [[12] and consist of irrep fields with the
same multiplicity up to a certain threshold. All models apply ELUs on scalar fields and norm-ReL.Us
(see Section [2.6) on higher order fields. The projection to invariant features is done via a convolution
to scalar features (conv2triv) in the last convolutional layer. We find that irrep fields up to order 1
and 3 perform equally well while higher thresholds yield worse results. The original implementation
of Harmonic Networks considered complex irreps of SO(2) which results in a lower dimensional
steerable kernel basis as discussed in Appendix [[.5] We reimplemented these models and found that
their reduced kernel space leads to consistently worse results (rows 33-36).

For the model containing irreps up to order 3 we implemented some alternative variants. For instance,
the model in row 38 does not convolve to trivial features in the last layer but computes these by taking
the norms of all non-scalar fields. This does not lead to significantly different results. Appendix [[]
discusses all variations in detail.

By far the best results are achieved by the models in rows 41-44, which replace the norm-ReLUs
with gated nonlinearities, see Section@ This observation is in line with the results presented in [2],
where gated nonlinearities were proposed.

O(2) models: As for SO(2), we are investigating O(2)-equivariant models whose features trans-
form under irreps up to a certain order and apply norm-ReL.Us (rows 46-49). In this case we choose
twice the multiplicity of 2-dimensional fields than scalar fields, which reflects the multiplicity of irreps
contained in the regular representation of O(2). Invariant predictions are computed by convolving in
equal proportion to fields which transform under trivial irreps ¢8 (()2) and sign-flip irreps w%z) (see
Appendix , followed by taking the absolute value of the latter (O(2)-conv2triv). We again find
that higher irrep thresholds yield worse results, this time already starting from order 1. In particular,
these models perform worse than their SO(2)-equivariant counterparts even on MNIST O(2). This
suggests that the kernel constraint for this particular choice of representations is too restrictive.

If only scalar fields, corresponding to the trivial irrep 1/)8 (()2), are chosen, the kernel constraint becomes
k(gx) = k(z) Vg € O(2) and therefore allows for isotropic kernels only. This limits the expressivity
of the model so severely that it performs even worse than a conventional CNN on MNIST rot and
MNIST 12k while being on par for MNIST O(2), see row 45. Note that isotropic kernels correspond
to vanilla graph convolutional networks (cf. the results and discussion in [3]]).

In order to improve the performance of O(2)-steerable CNNs, we propose to use representations

Indg)éz(é) 20(2), which are induced from the irreps of SO(2) (see Appendix @for more details on

induction). By the definition of induction, this leads to pairs of fields which transform according

to 1/}20(2) under rotations but permute under reflections. The multiplicity of the irreps of O(2)
contained in this induced representation coincides with the multiplicities chosen in the pure O(2)
irrep models. However, the change of basis, relating both representations, does not commute with the
nonlinearities, such that the networks behave differently. We apply Ind norm-ReLU nonlinearities to
the induced O(2) models which compute the norm of each of the permuting subfields individually
but share the norm-ReLLU parameters (the bias) to guarantee equivariance. In order to project to final,

invariant features, we first apply a convolution producing Ind(s)(()%) wSO@) fields (Ind-conv2triv).

Since these transform like the regular representation of ({1}, x) = O(2)/SO(2), we can simply
apply G-pooling over the two reflections. The results, given in rows 50-53, show that these models
perform significantly better than the O(2) irreps models and outperform the SO(2) irrep models on
MNIST O(2). More specific details on all induced O(2) model operations are given in Appendix [L]

We again build models which apply gated nonlinearities. As for SO(2), this leads to a greatly
improved performance of the pure irrep models, see rows 54-55. In addition we adapt the gated
nonlinearity to the induced irrep models (rows 56-57). Here we apply an independent gate to each of
the two permuting sub-fields (Ind gate). In order to be equivariant, the gates need to permute under
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reflections as well, which is easily achieved by deriving them from Indgc()z(;) § ©®) fields instead

of scalar fields. The gated induced irrep model achieves the best results among all O(2)-steerable
networks, however, it is still not competitive compared to the Dy models with large N.

D.2 On the convergence of Steerable CNNs

102

101 4

validation error (%)
validation loss

10°4

0 1000 2000 3000 4000 0 1000 2000 3000 4000
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Figure 4: Validation errors and losses during the training of a conventional CNN and Cy-equivariant
models on MNIST rot. Networks with higher levels of equivariance converge significantly faster.

As shown in Figure[d] steerable CNNs converge significantly faster than non-equivariant CNNs. This
faster convergence rate is explained by the fact that equivariant models generalize over transformed
samples by design. Mathematically, G-steerable CNNs classify equivalence classes of images defined
by the equivalence relation f ~ f' < Jtg € (R*,+) x G st. f(z) = f(g7 (z —t)). Instead,
MLPs learn to classify each image individually and conventional CNNs classify equivalence classes

defined by translations, i.e. above equivalence classes for G = {e}. For more details see Section 2
of [7].

D.3 STL-10 data ablation study

Figure 5| reports the results of a data ablation study 60
which investigates the performance of the Dg D4 D1
models for smaller training set sizes. We use the 50
same models and training procedure as in the main
experiment on the full STL-10 dataset. For every
single run, we generate new datasets by mixing the
original training, validation and test set and sample
reduced datasets such that all classes are balanced.
The results are averaged over 4 runs on each of the
considered training set sizes of 250, 500, 1000, 2000
or 4000. The validation and test sets contain 1000 and

X . . 10+
8000 images, which are resampled in each run as well. 250 500 1000 2000 2000
The results validate that the gains from incorporating training set size
equivariance are consistent over all training sets. Figure 5: Data ablation study on STL-10.
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E A short primer on group representation theory

Linear group representations model abstract algebraic group elements via their action on some vector
space, that is, by representing them as linear transformations (matrices) on that space. Representation
theory forms the backbone of Steerable CNNs since it describes the transformation law of their
feature spaces. It is furthermore widely used to describe fields and their transformation behavior in
physics.

Formally, a linear representation p of a group G on a vector space (representation space) R” is a
group homomorphism from G to the general linear group GL(R™) (the group of invertible n x n
matrices), i.e. it is a map

p: G — GL(R"™) suchthat p(g192) = p(g1)p(g2) V91,92 €G.
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The requirement to be a homomorphism, i.e. to satisfy p(g192) = p(g1)p(g2), ensures the compati-
bility of the matrix multiplication p(g;)p(g2) with the group composition g1 g which is necessary for
a well defined group action. Note that group representations do not need to model the group faithfully
(which would be the case for an isomorphism instead of a homomorphism).

A simple example is the trivial representation p : G — GL(R) which maps any group element to the
identity, i.e. Vg € G p(g) = 1. The 2-dimensional rotation matrices () = (s?r? ((z)) 723; ((Z%]

are an example of a representation of SO(2) (whose elements are identified by a rotation angle 6).

Equivalent representations Two representations p and p’ on R"™ are called equivalent iff they
are related by a change of basis Q € GL(R"), i.e. p'(g) = Qp(9)Q~*! for each g € G. Equiv-
alent representations behave similarly since their composition is basis independent as seen by

P'(91)0' (92) = Qp(91)Q ' Qp(g2)Q~" = Qp(g1)p(92)Q~".

Direct sums Two representations can be combined by taking their direct sum. Given representations
p1: G — GL(R™) and py : G — GL(R™), their direct sum p; @ po : G — GL(R™ ™) is defined as

(p1 @ p2)(9) = [m(()g) ,02(29)} ’

i.e. as the direct sum of the corresponding matrices. Its action is therefore given by the independent
actions of p; and p, on the orthogonal subspaces R™ and R” in R" ™. The direct sum admits an
obvious generalization to an arbitrary number of representations p;:

@i pi(g) = p1(g) ®p2(9) @ ...

Irreducible representations The action of a representation might leave a subspace of the represen-
tation space invariant. If this is the case there exists a change of basis to an equivalent representation
which is decomposed into the direct sum of two independent representations on the invariant subspace
and its orthogonal complement. A representation is called irreducible if no non-trivial invariant
subspace exists.

Any representation p : G — R" of a compact group G can therefore be decomposed as

o) =Q [P, vilo] Q!

where [ is an index set specifying the irreducible representations 1; contained in p and () is a change
of basis. In proofs it is therefore often sufficient to consider irreducible representations which we use
in Section 2.4 to solve the kernel constraint.

Regular and quotient representations A commonly used representation in equivariant deep
learning is the regular representation. The regular representation of a finite group G acts on a vector
space RI€! by permuting its axes. Specifically, associating each axis e, of R/l to an element g € G,
the representation of an element § € G is a permutation matrix which maps e, to e;,. For instance,

the regular representation of the group C, with elements {pZ|p = 0,..., 3} is instantiated by:
s 3
¢ 0 z ™ i
1 0 0 0 0 0 01 0 010 01 00
Ci () 01 00 1 0 0 0 0 0 01 00 10
Pres 0010 o100 1000 |0001
00 01 0 010 01 0 0 1 0 0 0

A vector v = ) vgeq in RI! can be interpreted as a scalar function v : G — R, g — vg on G.
Since p(h)v = g Vg€hg = > 5 Un—15€g the regular representation corresponds to a left translation
[p(h)v](g9) = vp-14 of such functions.
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Very similarly, the quotient representation pgf,{f of G w.r.t. a subgroup H acts on RIGI/IH] by

permuting its axes. Labeling the axes by the cosets g H in the quotient space G/H, it can be defined
via its action p(i()tH (9)egrr = eggm. An intuitive explanation of quotient representations is given in
Appendix [

Regular and trivial representations are two specific cases of quotient representations obtained by

choosing H = {e} or H = G, respectively. Vectors in the representation space RIC/1H can be
viewed as scalar functions on the quotient space G/ H. The action of the quotient representations on
v then corresponds to a left translation of these functions on G/ H.

Restricted representations Any representation p : G — GL(R"™) can be uniquely restricted to a
representation of a subgroup H of G by restricting its domain of definition:

Res(p) : H — GL(R"), h— p|H(h)

Induced Representations Instead of restricting a representation from a group G to a subgroup
H < @, itis also possible to induce a representation of H to a representation of G. In order to keep
the presentation accessible we will first only consider the case of finite groups G and H.

Let p : H — GL(R") be any representation of a subgroup H of G. The induced representation

Indg(p) is then defined on the representation space R™CI/IH] which can be seen as one copy of
R™ for each of the |G|/|H| cosets gH in the quotient set G/H. For the definition of the induced

representation it is customary to view this space as the tensor product RICI/IH @ R™ and to write
vectors in this space a

1G]
w:}j%H®%HeRWM, (6)
gH

where e, 7 is a basis vector of R‘GVlH‘, associated to the coset gH, and wg g is some vector in the
representation space R™ of p. Intuitively, Ind$ (p) acts on R™¢I/1H| by §) permuting the |G|/|H|
subspaces associated to the cosets g H and 7i) acting on each of these subspaces via p.

To formalize this intuition, note that any element g € G can be identified by the coset gH to
which it belongs and an element h(g) € H which specifies its position within this coset. Hereby
h : G — H expresses g relative to an arbitrary representativﬂ R(gH) € G of gH and is defined as
h(g) := R(gH)'g from which it immediately follows that g is decomposed relative to R as

g =R(gH)h(g). (7

The action of an element § € G onacoset gH € G/H is naturally given by ggH € G/H. This action

defines the aforementioned permutation of the n-dimensional subspaces in RPICGI/IH] by sending e, 5
in Eq. (6) to 54 . Each of the n-dimensional, translated subspaces ggH, is in addition transformed
by the action of p(h(¢R(gH))). This H-component h(GR(9H)) = R(ggH) 'gR(gH) of the
g action within the cosets accounts for the relative choice of representatives R(ggH) and R(gH ).
Overall, the action of Ind% (p(§)) is given by

[Indg p](g) N e ©wgr =Y eger @ p(WFR(GH))) wyrr ®)
gH gH

°The vector can equivalently be expressed as w = @ o1 WoH, however, we want to make the tensor product
basis explicit.
10 Formally, a representative for each coset is chosen by a map R : G/H — G such that it projects back to

the same coset, i.e. R(gH)H = gH. This map is therefore a section of the principal bundle G = G /H with
fibers isomorphic to H and the projection given by 7(g) := gH.
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which can be visualized as:

Wyl }QH
Indf p(g) - | =

p(h(gR(gH)))wgn }égH = GR(gH)H

Both quotient representations and regular representations can be viewed as being induced from
trivial representations of a subgroup. Specifically, let p{e} : {e} = GL(R) = {(4+1)} be the

triv
trivial representation of the the trivial subgroup. Then Ind?e} pt{rf} G — GL(R‘Gl) is the regular

representation which permutes the cosets g{e} of G/{e} = G which are in one to one relation to the
group elements themself. For pfl : H — GL(R) = {(+1)} being the trivial representation of an

arbitrary subgroup H of G, the induced representation Ind%, pf : G — GL(R!CV/H1y permutes the
cosets gH of H and thus coincides with the quotient representation pg,é[H.

Note that a vector in R/“//I#! @ R™ is in one-to-one correspondence to a function f : G/H — R".
The induced representation can therefore equivalently be defined as acting on the space of such
functions ag']

Ind3 p(9) - F(gH) = p(h(GR(G~ " gH)) S (G gH) . ©)
This definition generalizes to non-finite groups where the quotient space G/ H is not necessarily
finite anymore.

For the special case of semidirect product groups G = N x H it is possible to choose representatives
of the cosets gH such that the elements h(§R (g’ H)) = h(g) become independent of the cosets [3].
This simplifies the action of the induced representation to

[nd% p() - f1(gH) = p(h(9)) f(5~"gH) (10)
which corresponds to Eq. (T)) for the group G = E(2) = (R?, +) x O(2), subgroup H = O(2) and
quotient space G/H = E(2)/ O(2) = R?.

F An intuition for quotient representation fields

The quotient representations of Cy in rows 11-15 of Table[7|and in Tableare all of the form pglz\é{ Cu

with Cp; < Cy. By the definition of quotient representations, given in Section this implies
Cn/C2

quot _ -fields encode features

features which are invariant under the action of Cj;. For instance, p,
like lines, which are invariant under rotations by 7. Similarly, pgﬁf 4 features are invariant under
rotations by 7r/2, and therefore describe features like a cross. The N/M channels of a pCN [CM _field

quot
respond to different orientations of these patterns, e.g. to 4+ and x for the two channels of pgﬁ,/lc“

A few more examples are given by the 16/2 = 8 channels of pgfo‘i/ 2 which respond to the patterns

— =, 7, /,1,\, N and ~,

respectively, or the 16/4 = 4 channels of pgjulo‘i/ 4 which respond to

“+, X, X and 4.

In principle, each of these pattemﬁ could be encoded by a regular feature field of Cy. A regular field
of type pg’gV comprises N instead of N/M channels, which detect arbitrary patterns in NV orientations,
for instance,

X, X, 4, X, &+, X and +

' The rhs. of Eq. (§) corresponds to [Ind$§ p(§) - f1(GgH) = p(h(GR(gH)))f(gH).
120r more generally, any possible pattern.
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for N = 8. In the case of Cy,-symmetric patterns, e.g. crosses for M = 4, this becomes

X, +,X,+,X,+,Xand + .

As evident from this example, the repetition after N/M orientations (here 8/4 = 2), introduces a

redundancy in the responses of the regular feature fields. A quotient representation pqﬂ){ M addresses

this redundancy by a-priori assuming the Cj; symmetry to be present and storing only the N/M
non-redundant responses. If symmetric patterns are important for the learning task, a quotient
representation can therefore save computational, memory and parameter cost.

In our experiments we mostly used quotients by Cy and C, since we assumed the corresponding
symmetric patterns ( | and +) to be most frequent in MNIST. As hypothesized, our model, which

Ci6/Cy

uses the representations 5pyeg ® 2pqUI 10/C2 g 2pquot @ 41pg of Cyg, improves slightly upon a purely
regular model with the same number of parameters see Table 3] By m1x1ng regular, quotient and
tr1v1a]E] representations, our model keeps a certain level of expressiveness in its feature fields but
incorporates a-priori known symmetries and compresses the model.

We want to emphasize that quotient representations are expected to severely harm the model perfor-
mance if the assumed symmetry does not actually exist in the data or is unimportant for the inference.
Since the space of possible quotient representations and their multiplicities is very large, it might be
necessary to apply some form of neural architecture search to find beneficial combinations. As a
default choice we recommend the user to work with regular representations.

Further, note that the intuition given above is specific for the case of quotient representations pg';/g
where N < G is a normal subgroup (which is always the case for Cy). Since normal subgroups
imply gN = Ng Vg € G by definition, the action of the quotient representation by any element

n € N is given by pgl/g(n)eg]v = engN = enNg = €Ng = €gn, that it, it describes N-invariant

feature fields. The quotient representations pgj/f for general, potentially non-normal subgroups

H < @G also imply certain symmetries in the feature fields but are not necessarily H-invariant.

. . . Dn/CN ;. : . . . .
For instance, the quotient representation pqu’zt/ " is invariant under rotations since Cy is a normal

subgroup of Dy = Cy ({41}, %), while the quotient representation pDN/ {19
since ({£1}, %) is not a normal subgroup of Dy . In the latter case one has instead

is not invariant

Er({£1},%) for s = +1
Er—1g({+1},%) = Er—1({£1},x) for s =—1

Pt I (9)er (1)) = €sr(zry ) = {

forall s € ({£1}, %) and representatives r € Cy. The feature fields are therefore not invariant under
the action of ({£1}, *) but become reversed.

G Equivariance of E(2) - steerable CNNs

G.1 Equivariance of E(2) - steerable convolutions

Assume two feature fields fi, : R? — R of type pin and fou : R? — R of type pout to be given.
Under actions of the Euclidean group these fields transform as

fnl@) = (WG o | (90)fn) (@) = pinlg) fin (7 (@ = 1)
foul@) = ([dE D" pou] (9 fou) @) = pou(g)fou (7 (@ = 1)) -

Here we show that the G-steerability (2) of convolution kernels is sufficient to guarantee the equivari-
ance of the mapping. We therefore define the convolution (or correlation) operation of a feature field
with a G-steerable kernel k : R? — R > a5 usual by

fout(x) (k*fm / k fm 96+y)

.. . G/G . .
BTrivial representations 9° 2 pqu& can themself be seen as an extreme case of quotient representations

which are invariant to the full group G.
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The convolution with a transformed input field then gives

/}R2 dy k(y) ([Ind§2’+)NG pin] (gt) fin) (z+y)

/W dy k(y)pin(9) fin (97 Hz +y — 1))

/RQ Ay pou(9) k(9™ Y)Pin(9) ™" pin(9) fin (97 (z +y — 1))

— poals) [ A7 k@) (g7 2 1)+ 9)
RZ

= pou(9) fou (97" (z — 1))

= ([IndeQ}Jr))quoul:I (gt)fout) (l‘),

i.e. it satisfies the desired equivariance condition
2 2
k * ([Ind(c]f R pin:| (gt)fm) = {Indg{ G pout:| (gt) (k * fin) .

We used the kernel steerability (2) in the second step to identify k() with pou(9)k (g™ 2)pin(g71). In

Oy

the third step we substituted = g~y which does not affect the integral measure since ‘det (873 =

|det(g)| = 1 for an orthogonal transformation g € G.
A proof showing the G-steerability of the kernel to not only be sufficient but necessary is given in [2].

G.2 Equivariance of spatially localized nonlinearities
We consider nonlinearities of the form
o R = R f(z)— o(f(2)),

which act spatially localized on feature vectors f(x) € R%. These localized nonlinearities are used
to define nonlinearities & acting on entire feature fields f : R? — R by mapping each feature
vector individually, that is,

o: fra(f) suchthat &(f)(z):=oc(f(z)).
In order for & to be equivariant under the action of induced representations it is sufficient to require
o0 pin(9) = poulg)oo  VgeG
since then
o ([mal™ D7 pu] (90)f) (@) = (pul9) (g7 (@ 1))
= pou(9)o (f(g~ " (z —1)))
= pout(g)5(f) (gil ((L’ - t))
= [mal 7 o) () ().

G.2.1 Equivariance of individual subspace