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Abstract

This paper studies a recent proposal to use randomized value functions to drive
exploration in reinforcement learning. These randomized value functions are
generated by injecting random noise into the training data, making the approach
compatible with many popular methods for estimating parameterized value func-
tions. By providing a worst-case regret bound for tabular finite-horizon Markov
decision processes, we show that planning with respect to these randomized value
functions can induce provably efficient exploration.

1 Introduction

Exploration is one of the central challenges in reinforcement learning (RL). A large theoretical
literature treats exploration in simple finite state and action MDPs, showing that it is possible
to efficiently learn a near optimal policy through interaction alone [5, 8, 10, 11, 13–16, 25, 26].
Overwhelmingly, this literature focuses on optimistic algorithms, with most algorithms explicitly
maintaining uncertainty sets that are likely to contain the true MDP.

It has been difficult to adapt these exploration algorithms to the more complex problems investigated
in the applied RL literature. Most applied papers seem to generate exploration through ε–greedy
or Boltzmann exploration. Those simple methods are compatible with practical value function
learning algorithms, which use parametric approximations to value functions to generalize across
high dimensional state spaces. Unfortunately, such exploration algorithms can fail catastrophically in
simple finite state MDPs [See e.g. 24]. This paper is inspired by the search for principled exploration
algorithms that both (1) are compatible with practical function learning algorithms and (2) provide
robust performance, at least when specialized to simple benchmarks like tabular MDPs.

Our focus will be on methods that generate exploration by planning with respect to randomized value
function estimates. This idea was first proposed in a conference paper by [22] and is investigated more
thoroughly in the journal paper [24]. It is inspired by work on posterior sampling for reinforcement
learning (a.k.a Thompson sampling) [20, 27], which could be interpreted as sampling a value function
from a posterior distribution and following the optimal policy under that value function for some
extended period of time before resampling. A number of papers have subsequently investigated
approaches that generate randomized value functions in complex reinforcement learning problems
[6, 9, 12, 21, 23, 28, 29]. Our theory will focus on a specific approach of [22, 24], dubbed randomized
least squares value iteration (RLSVI), as specialized to tabular MDPs. The name is a play on the
classic least-squares policy iteration algorithm (LSPI) of [17]. RLSVI generates a randomized value
function (essentially) by judiciously injecting Gaussian noise into the training data and then applying
applying LSPI to this noisy dataset. One could naturally follow the same template while using other
value learning algorithms in place of LSPI.

This is a strikingly simple algorithm, but providing rigorous theoretical guarantees has proved
challenging. One challenge is that, despite the appealing conceptual connections, there are significant
subtleties to any precise link between RLSVI and posterior sampling. The issue is that posterior
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sampling based approaches are derived from a true Bayesian perspective in which one maintains
beliefs over the underlying MDP. The approaches of [6, 9, 12, 23, 24, 28, 29] model only the value
function, so Bayes rule is not even well defined.1 The work of [22, 24] uses stochastic dominance
arguments to relate the value function sampling distribution of RLSVI to a correct posterior in a
Bayesian model where the true MDP is randomly drawn. This gives substantial insight, but the
resulting analysis is not entirely satisfying as a robustness guarantee. It bounds regret on average
over MDPs with transitions kernels drawn from a particular Dirichilet prior, but one may worry that
hard reinforcement learning instances are extremely unlikely under this particular prior.

This paper develops a very different proof strategy and provides a worst-case regret bound for RLSVI
applied to tabular finite-horizon MDPs. The crucial proof steps are to show that each randomized
value function sampled by RLSVI has a significant probability of being optimistic (see Lemma 4)
and then to show that from this property one can reduce regret analysis to concentration arguments
pioneered by [13] (see Lemmas 6, 7). This approach is inspired by frequentist analysis of Thompson
sampling for linear bandits [2] and especially the lucid description of [1]. However, applying these
ideas in reinforcement learning appears to require novel analysis. The only prior extension of these
proof techniques to tabular reinforcement learning was carried out by [3]. Reflecting the difficulty of
such analyses, that paper does not provide regret bounds for a pure Thompson sampling algorithm;
instead their algorithm samples many times from the posterior to form an optimistic model, as in
the BOSS algorithm [4]. Also, unfortunately there is a significant error that paper’s analysis and the
correction has not yet been posted online, making a careful comparison difficult at this time.

The established regret bounds are not state of the art for tabular finite-horizon MDPs. Two steps in
the proofs introduce extra factors of

√
S in the bounds, where S denotes the number of states. I hope

some smart reader can improve this by intelligently adapting the techniques of [5, 11]. However, the
primary goal of the paper is not to give the tightest possible regret bound, but to broaden the set of
exploration approaches known to satisfy polynomial worst-case regret bounds. To this author, it is
both fascinating and beautiful that carefully adding noise to the training data generates sophisticated
exploration and proving this formally is worthwhile.

2 Problem formulation

We consider the problem of learning to optimize performance through repeated interactions with an
unknown finite horizon MDP M = (H,S,A, P,R, s1). The agent interacts with the environment
across K episodes. Each episode proceeds over H periods, where for period h ∈ {1, . . . ,H} of
episode k the agent is in state skh ∈ S = {1, . . . , S}, takes action akh ∈ A = {1, . . . , A}, observes the
reward rkh ∈ [0, 1] and, for h < H , also observes next state skh+1 ∈ S. Let Hk−1 = {(sih, aih, rih) :
h = 1, . . . H, i = 1, . . . , k − 1} denote the history of interactions prior to episode k. The Markov
transition kernel P encodes the transition probabilities, with

Ph,skh,akh(s) = P(skh+1 = s | akh, skh, . . . , ak1 , sk1 ,Hk−1).

The reward distribution is encoded inR, with

Rh,skh,akh(dr) = P
(
rkh = dr | akh, skh, . . . , ak1 , sk1 ,Hk−1

)
.

We usually instead refer to expected rewards encoded in a vector R that satisfies Rh,s,a = E[rkh,s,a |
skh = s, akh = a]. We then refer to an MDP (H,S,A, P,R, s1), described in terms of its expected
rewards rather than its reward distribution, as this is sufficient to determine the expected value accrued
by any policy. The variable s1 denotes a deterministic initial state and we assume sk1 = s1 for every
episode k. At the expense of complicating some formulas, the entire paper could also be written
assuming initial states are drawn from some distribution over S, which is more standard in the
literature.

A deterministic Markov policy π = (π1, . . . , πH) is a sequence of functions, where each πh : S → A
prescribes an action to play in each state. We let Π denote the space of all such policies. We use
V πh ∈ RS to denote the value function associated with policy π in the sub-episode consisting of

1The precise issue is that, even given a prior over value functions, there is no likelihood function. Given and
MDP, there is a well specified likelihood of transitioning from state s to another s′, but a value function does not
specify a probabilistic data-generating model.

2



periods {h, . . . ,H}. To simplify many expressions, we set V πH+1 = 0 ∈ RS . Then the value
functions for h ≤ H are the unique solution to the the Bellman equations

V πh (s) = Rh,s,π(s) +
∑
s′∈S

Ps,h,π(s)(s
′)V πh+1(s′) s ∈ S, h = 1, . . . ,H.

The optimal value function is V ∗h (s) = maxπ∈Π V
π
h (s).

An episodic reinforcement learning algorithm Alg is a possibly randomized procedure that associates
each history with a policy to employ throughout the next episode. Formally, a randomized algorithm
can depend on random seeds {ξk}k∈N drawn independently of the past from some prespecified
distribution. Such an episodic reinforcement learning algorithm selects a policy πk = Alg(Hk−1, ξk)
to be employed throughout episode k.

The cumulative expected regret incurred by Alg over K episodes of interaction with the MDP M is

Regret(M,K, Alg) = EAlg

[
K∑
k=1

V ∗1 (sk1)− V πk
1 (sk1)

]
where the expectation is taken over the random seeds used by a randomized algorithm and the
randomness in the observed rewards and state transitions that influence the algorithm’s chosen
policies. This expression captures the algorithm’s cumulative expected shortfall in performance
relative to an omniscient benchmark, which knows and always employs the true optimal policy.

Of course, regret as formulated above depends on the MDP M to which the algorithm is applied. Our
goal is not to minimize regret under a particular MDP but to provide a guarantee that holds uniformly
across a class of MDPs. This can be expressed more formally by considering a classM containing
all MDPs with S states, A actions, H periods, and rewards distributions bounded in [0, 1]. Our goal
is to bound the worst-case regret supM∈MRegret(M,K, Alg) incurred by an algorithm throughout
K episodes of interaction with an unknown MDP in this class. We aim for a bound on worst-case
regret that scales sublinearly in K and has some reasonable polynomial dependence in the size of
state space, action space, and horizon. We won’t explicitly maximize over M in the analysis. Instead,
we fix an arbitrary MDP M and seek to bound regret in a way that does not depend on the particular
transition probabilities or reward distributions under M .

It is worth remarking that, as formulated, our algorithm knows S,A, and H but does not have
knowledge of the number of episodes K. Indeed, we study a so-called anytime algorithm that has
good performance for all sufficiently long sequences of interaction.

Notation for empirical estimates. We define nk(h, s, a) =
∑k−1
`=1 1{(s`h, a`h) = (s, a)} to be

the number of times action a has been sampled in state s, period h. For every tuple (h, s, a) with
nk(h, s, a) > 0, we define the empirical mean reward and empirical transition probabilities up to
period h by

R̂kh,s,a =
1

nk(h, s, a)

k−1∑
`=1

1{(s`h, a`h) = (s, a)}r`h (1)

P̂ kh,s,a(s′) =
1

nk(h, s, a)

k−1∑
`=1

1{(s`h, a`h, s`h+1) = (s, a, s′)} ∀s′ ∈ S. (2)

If (h, s, a) was never sampled before episode k, we define R̂kh,s,a = 0 and P̂ kh,s,a = 0 ∈ RS .

3 Randomized Least Squares Value Iteration

This section describes an algorithm called Randomized Least Squares Value Iteration (RLSVI).
We describe RLSVI as specialized to a simple tabular problem in a way that is most convenient
for the subsequent theoretical analysis. A mathematically equivalent definition – which defines
RSLVI as estimating a value function on randomized training data – extends more gracefully . This
interpretation is given at the end of the section and more carefully in [24].

At the start of episode k, the agent has observed a history of interactionsHk−1. Based on this, it is
natural to consider an estimated MDP M̂k = (H,S,A, P̂ k, R̂k, s1) with empirical estimates of mean
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rewards and transition probabilities. These are precisely defined in Equation (2) and the surrounding
text. We could use backward recursion to solve for the optimal policy and value functions under the
empirical MDP, but applying this policy would not generate exploration.

RLSVI builds on this idea, but to induce exploration it judiciously adds Gaussian noise before solving
for an optimal policy. We can define RLSVI concisely as follows. In episode k it samples a random
vector with independent components wk ∈ RHSA, where wk(h, s, a) ∼ N

(
0, σ2

k(h, s, a)
)
. We

define σk(h, s, a) =
√

βk

nk(h,s,a)+1 , where βk is a tuning parameter and the denominator shrinks

like the standard deviation of the average of nk(h, s, a) i.i.d samples. Given wk, we construct a
randomized perturbation of the empirical MDP M

k
= (H,S,A, P̂ k, R̂k + wk, s1) by adding the

Gaussian noise to estimated rewards. RLSVI solves for the optimal policy πk under this MDP and
applies it throughout the episode. This policy is, of course, greedy with respect to the (randomized)
value functions under M

k
. The random noise wk in RLSVI should be large enough to dominate the

error introduced by performing a noisy Bellman update using P̂ k and R̂k. We set βk = Õ(H3) in the
analysis, where functions of H offer a coarse bound on quantities like the variance of an empirically
estimated Bellman update. For β = {βk}k∈N, we denote this algorithm by RLSVIβ .

RLSVI as regression on perturbed data. To extend beyond simple tabular problems, it is fruit-
ful to view RLSVI–like in Algorithm 1–as an algorithm that performs recursive least squares
estimation on the state-action value function. Randomization is injected into these value func-
tion estimates by perturbing observed rewards and by regularizing to a randomized prior sam-
ple. This prior sample is essential, as otherwise there would no be randomness in the esti-
mated value function in initial periods. This procedure is the LSPI algorithm of [17] applied
with noisy data and a tabular representation. The paper [24] includes many experiments with
non-tabular representations. It should be stressed that although data-perturbations are some-
times used to regularize machine learning algorithms, here it is used only to drive exploration.

Algorithm 1: RLSVI for Tabular, Finite Horizon, MDPs
input :H , S, A, tuning parameters {βk}k∈N

(1) for episodes k = 1, 2, . . . do
/* Define squared temporal difference error */

(2) L(Q | Qnext,D) =
∑

(s,a,r,s′)∈D (Q(s, a)− r −maxa′∈AQnext(s
′, a′))

2 ;
(3) Dh = {(s`h, a`h, r`h, s`h+1) : ` < k} h < H ; /* Past data */

(4) DH = {(s`H , a`H , r`H , ∅) : ` < k};
/* Randomly perturb data */

(5) for time periods h = 1, . . . ,H do
(6) Sample array Q̃h ∼ N(0, βkI) ; /* Draw prior sample */

(7) D̃h ← {};
(8) for (s, a, r, s′) ∈ Dh do
(9) sample w ∼ N(0, βk);

(10) D̃h ← D̃h ∪ {(s, a, r + w, s′)};
(11) end
(12) end

/* Estimate Q on noisy data */

(13) Define terminal value QkH+1(s, a)← 0 ∀s, a ;
(14) for time periods h = H, . . . , 1 do
(15) Q̂h ← argminQ∈RSA L(Q | Qh+1, D̃h) + ‖Q− Q̃h‖22 ;
(16) end
(17) Apply greedy policy with respect to (Q̂1, . . . Q̂H) throughout episode;
(18) Observe data sk1 , a

k
1 , r

k
1 , . . . s

k
H , a

k
H , r

k
H ;

(19) end

To understand this presentation of RLSVI, it is helpful to understand an equivalence between
posterior sampling in a Bayesian linear model and fitting a regularized least squares estimate to
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randomly perturbed data. We refer to [24] for a full discussion of this equivalence and review
the scalar case here. Consider Bayes updating of a scalar parameter θ ∼ N(0, β) based on noisy
observations Y = (y1, . . . , yn) where yi | θ ∼ N(0, β). The posterior distribution has the closed
form θ | Y ∼ N

(
1

n+1

∑n
1 yi ,

β
n+1

)
. We could generate a sample from this distribution by fitting a

least squares estimate to noise perturbed data. Sample W = (w1, . . . , wn) where each wi ∼ N(0, β)

is drawn independently and sample θ̃ ∼ N(0, β). Set ỹi = yi + wi. Then

θ̂ = argmin
θ∈R

n∑
i=1

(θ − ỹi)2
+ (θ − θ̃)2 =

1

n+ 1

(
n∑
i=1

ỹi + θ̃

)
(3)

satisfies θ̂ | Y ∼ N
(

1
n+1

∑n
1 yi ,

β
n+1

)
. For more complex models, where exact posterior sampling

is impossible, we may still hope estimation on randomly perturbed data generates samples that reflect
uncertainty in a sensible way. As far as RLSVI is concerned, roughly the same calculation shows that
in Algorithm 1 Q̂h(s, a) is equal to an empirical Bellman update plus Gaussian noise:

Q̂h(s, a) | Q̂h+1 ∼ N

(
R̂h,s,a +

∑
s′∈S

P̂h,s,a(s′) max
a′∈A

Q̂h+1(s′, a′) ,
βk

nk(h, s, a) + 1

)
.

It is worth noting that Algorithm 1 can be naturally applied to settings with function approximation.
In line 15, instead of minimizing over all possible state-action value functions Q ∈ RS×A, we
minimize over the parameter θ defining some approximate value function Qθ. Instead of regularizing
toward a random prior sample Q̃h in line 15, the methods in [24] regularize toward a random prior
parameter θ̃h. See [23] for a study of these randomized prior samples in deep reinforcement learning.

4 Main result

Theorem 1 establishes that RLSVI satisfies a worst-case polynomial regret bound for tabular finite-
horizon MDPs. It is worth contrasting RLSVI to ε–greedy exploration and Boltzmann exploration,
which are both widely used randomization approaches to exploration. Those simple methods explore
by directly injecting randomness to the action chosen at each timestep. Unfortunately, they can
fail catastrophically even on simple examples with a finite state space – requiring a time to learn
that scales exponentially in the size of the state space. Instead, RLSVI generates randomization by
training value functions with randomly perturbed rewards. Theorem 1 confirms that this approach
generates a sophisticated form of exploration fundamentally different from ε–greedy exploration and
Boltzmann exploration. The notation Õ ignores poly-logarithmic factors in H,S,A and K.

Theorem 1. LetM denote the set of MDPs with horizonH , S states,A actions, and rewards bounded
in [0,1]. Then for a tuning parameter sequence β = {βk}k∈N with βk = 1

2SH
3 log(2HSAk),

sup
M∈M

Regret(M,K, RLSVIβ) ≤ Õ
(
H3S3/2

√
AK

)
.

This bound is not state of the art and that is not the main goal of this paper. I conjecture that the extra
factor of S can be removed from this bound through a careful analysis, making the dependence on
S, A, and K, optimal. This conjecture is supported by numerical experiments and (informally) by
a Bayesian regret analysis [24]. One extra

√
S appears to come from a step at the very end of the

proof in Lemma 7, where we bound a certain L1 norm as in the analysis style of [13]. For optimistic
algorithms, some recent work has avoided directly bounding that L1-norm, yielding a tighter regret
guarantee [5, 11]. Another factor of

√
S stems from the choice of βk, which is used in the proof of

Lemma 5. This seems similar to an extra
√
d factor that appears in worst-case regret upper bounds

for Thompson sampling in d-dimensional linear bandit problems [1].

Remark 1. Some translation is required to relate the dependence on H with other literature. Many
results are given in terms of the number of periods T = KH , which masks a factor of H . Also unlike
e.g. [5], this paper treats time-inhomogenous transition kernels. In some sense agents must learn
about H extra state/action pairs. Roughly speaking then, our result exactly corresponds to what one
would get by applying the UCRL2 analysis [13] to a time-inhomogenous finite-horizon problem.
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5 Proof of Theorem 1

The proof follows from several lemmas. Some are (possibly complex) technical adaptations of ideas
present in many regret analyses. Lemmas 4 and 6 are the main discoveries that prompted this paper.
Throughout we use the following notation: for any MDP M̃ = (H,S,A, P̃ , R̃, s1), let V (M̃, π) ∈ R
denote the value function corresponding to policy π from the initial state s1. In this notation, for the
true MDP M we have V (M,π) = V π1 (s1).

A concentration inequality. Through a careful application of Hoeffding’s inequality, one can give
a high probability bound on the error in applying a Bellman update to the (non-random) optimal value
function V ∗h+1. Through this, and a union bound, Lemma bounds 2 bounds the expected number of
times the empirically estimated MDP falls outside the confidence set

Mk =

{
(H,S,A, P ′, R′, s1) : ∀(h, s, a)|(R′h,s,a −Rh,s,a) + 〈P ′h,s,a − Ps,a,h , V ∗h+1〉|

≤
√
ek(h, s, a)

}
where we define √

ek(h, s, a) = H

√
log (2HSAk)

nk(s, h, a) + 1
.

This set is a only a tool in the analysis and cannot be used by the agent since V ∗h+1 is unknown.

Lemma 2 (Validity of confidence sets).
∑∞
k=1 P

(
M̂k /∈Mk

)
≤ π2

6 .

From value function error to on policy Bellman error. For some fixed policy π, the next simple
lemma expresses the gap between the value functions under two MDPs in terms of the differences
between their Bellman operators. Results like this are critical to many analyses in the RL literature.
Notice the asymmetric role of M̃ and M . The value functions correspond to one MDP while the state
trajectory is sampled in the other. We’ll apply the lemma twice: once where M̃ is the true MDP and
M is estimated one used by RLSVI and once where the role is reversed.

Lemma 3. Consider any policy π and two MDPs M̃ = (H,S,A, P̃ , R̃, s1) and M =

(H,S,A, P ,R, s1). Let Ṽ πh and V
π

h denote the respective value functions of π under M̃ and
M . Then

V
π

1 (s1)−Ṽ π1 (s1) = Eπ,M

[
H∑
h=1

(
Rh,sh,π(sh) − R̃h,sh,π(sh)

)
+ 〈Ph,sh,π(sh) − P̃h,sh,π(sh) , Ṽ

π
h+1〉

]
,

where Ṽ πH+1 ≡ 0 ∈ RS and the expectation is over the sampled state trajectory s1, . . . sH drawn
from following π in the MDP M .

Proof.

V
π

1 (s1)− Ṽ π1 (s1)

=R1,s1,π(s1) + 〈P 1,s1,π(s1) , V
π

2 〉 − R̃1,s1,π(s1) − 〈P̃1,s1,π(s1) , Ṽ
π
2 〉

=R1,s1,π(s1) − R̃1,s1,π(s1) + 〈P 1,s1,π(s1) − P̃1,s1,π(s1) , Ṽ
π
2 〉+ 〈P 1,s1,π(s1) , V

π

2 − Ṽ π2 〉

=R1,s1,π(s1) − R̃1,s1,π(s1) + 〈P 1,s1,π(s1) − P̃1,s1,π(s1) , Ṽ
π
2 〉+ Eπ,M

[
V
π

2 (s2)− Ṽ π2 (s2)
]
.

Expanding this recursion gives the result.

Sufficient optimism through randomization. There is always the risk that, based on noisy obser-
vations, an RL algorithm incorrectly forms a low estimate of the value function at some state. This
may lead the algorithm to avoid that state, therefore failing to gather the data needed to correct its
faulty estimate. To avoid such scenarios, nearly all provably efficient RL exploration algorithms build
purposefully optimistic estimates. RLSVI does not do this and instead generates a randomized value
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function. The following lemma is key to our analysis. It shows that, except in the rare event when it
has grossly mis-estimated the underlying MDP, RLSVI has at least a constant chance of sampling an
optimistic value function. Similar results can be proved for Thompson sampling with linear models
[1]. Recall M is the unknown true MDP with optimal policy π∗ and M

k
is RLSVI’s noise perturbed

MDP under which πk is an optimal policy.

Lemma 4. Let π∗ be an optimal policy for the true MDP M . If M̂k ∈ Mk, then
P
(
V (M

k
, πk) ≥ V (M,π∗) | Hk−1

)
≥ Φ(−1).

This result is more easily established through the following lemma, which avoids the need to carefully
condition on the historyHk−1 at each step. We conclude with the proof of Lemma 4 after.
Lemma 5. Fix any policy π = (π1, . . . , πH) and vector e ∈ RHSA with e(h, s, a) ≥ 0. Consider
the MDP M = (H,S,A, P,R, s1) and alternative R̄ and P̄ obeying the inequality

−
√
e(h, s, a) ≤ R̄h,s,a −Rh,s,a + 〈P̄h,s,a − Ph,s,a, Vh+1〉 ≤

√
e(h, s, a)

for every s ∈ S, a ∈ A and h ∈ {1, . . . ,H}. Take W ∈ RHSA to be a random vector with
independent components where w(h, s, a) ∼ N(0, HSe(h, s, a)). Let V̄ π1,W denote the (random)
value function of the policy π under the MDP M̄ = (H,S,A, P̄ , R̄+W ). Then

P
(
V̄ π1,W (s1) ≥ V π1 (s1)

)
≥ Φ(−1).

Proof. To start, we consider an arbitrary deterministic vector w ∈ RHSA (thought of as a possible
realization of W ) and evaluate the gap in value functions V̄ π1,w(s1)− V π1 (s1). We can re-write this
quantity by applying Lemma 3. Let s = (s1, . . . , sH) denote a random sequence of states drawn by
simulating the policy π in the MDP M̄ from the deterministic initial state s1. Set ah = π(sh) for
h = 1, . . . ,H . Then

V̄ π1,w(s1)− V π1 (s1)

= E
[ H∑
h=1

w(h, sh, πh(sh)) + R̄h,sh,πh(sh) −Rh,sh,πh(sh) + 〈P̄h,sh,πh(sh) − Ph,sh,πh(sh) , V
π
h,w〉

]

≥ HE

[
1

H

H∑
h=1

(
w(h, sh, πh(sh))−

√
e(h, sh, πh(sh))

)]

where the expectation is taken over the sequence of sates s = (s1, . . . , sH). Define d(h, s) =
1
HP(sh = s) for every h ≤ H and s ∈ S. Then the above equation can be written as

1

H

(
V̄ π1,w(s1)− V π1 (s1)

)
≥

∑
s∈S,h≤H

d(h, s)
(
w(h, s, πh(s))−

√
e(h, s, πh(s))

)

≥

 ∑
s∈S,h≤H

d(h, s)w(h, s, πh(s))

−√HS√ ∑
s∈S,h≤H

d(h, s)2e(h, s, πh(s)) := X(w)

where the second inequality applies Cauchy-Shwartz. Now, since

d(h, s)W (h, s, πh(s)) ∼ N(0, d(h, s)2HSe(h, s, πh(s))),

we have

X(W ) ∼ N

−√HS ∑
s∈S,h≤H

d(h, s)2e(h, s, πh(s)), HS
∑

s∈S,h≤H

d(h, s)2e(h, s, πh(s))

 .

By standardization, P(X(W ) ≥ 0) = Φ(−1). Therefore, P(V̄ π1,W (s1)−V π1 (s1) ≥ 0) ≥ Φ(−1).
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Proof of Lemma 4. Consider some historyHk−1 with M̂k ∈Mk. Recall πk is the policy chosen by
RLSVI, which is optimal under the MDP M

k
= (H,S,A, P̂ k, R̂k + wk, s1). Since σ2

k(h, s, a) =
HSek(h, s, a), applying Lemma 5 conditioned onHk−1 shows that with probability at least Φ(−1),
V (M

k
, π∗) ≥ V (M,π∗). When this occurs, we always have V (M

k
, πk) ≥ V (M,π∗), since by

definition πk is optimal under M
k
.

Reduction to bounding online prediction error. The next lemma shows that the cumulative
expected regret of RLSVI is bounded in terms of the total prediction error in estimating the value
function of πk. The critical feature of the result is it only depends on the algorithm being able
to estimate the performance of the policies it actually employs and therefore gathers data about.
From here, the regret analysis will follow only concentration arguments. For the purposes of
analysis, we let M̃k denote an imagined second sample drawn from the same distribution as the
perturbed MDP M

k
under RLSVI. More formally, let M̃k = (H,S,A, P̂ k, R̂k + w̃k, s1) where

w̃k(h, s, a) | Hk−1 ∼ N(0, σ2
k(h, s, a)) is independent Gaussian noise. Conditioned on the history,

M̃k has the same marginal distribution as M
k
, but it is statistically independent of the policy πk

selected by RLSVI.

Lemma 6. For an absolute constant c = Φ(−1)−1 < 6.31, we have

Regret(M,K, RLSVIβ) ≤(c+ 1)E

[
K∑
k=1

|V (M
k
, πk)− V (M,πk)|

]

+ cE

[
K∑
k=1

|V (M̃k, πk)− V (M,πk)|

]
+H

K∑
k=1

P(M̂k /∈Mk)︸ ︷︷ ︸
≤π2/6

.

Online prediction error bounds. We complete the proof with concentration arguments. Set
εkR(h, s, a) = R̂kh,s,a − Rh,s,a ∈ R and εkP (h, s, a) = P̂ kh,s,a − Ph,s,a ∈ RS to be the error in
estimating mean the mean reward and transition vector corresponding to (h, s, a). The next re-
sult follows by bounding each term in Lemma 6. This is done by using lemma 3 to expand the
terms V (M,πk) − V (M,πk) and V (M,πk) − V (M̃, πk). We focus our analysis on bounding
E
[∑K

k=1 |V (M
k
, πk)− V (M,πk)|

]
. The other term can be bounded in an identical manner2, so

we omit this analysis.

Lemma 7. Let c = Φ(−1)−1 < 6.31. Then for any K ∈ N,

E

[
K∑
k=1

|V (M
k
, πk)− V (M,πk)|

]
≤

√√√√E
K∑
k=1

H−1∑
h=1

∥∥εkP (h, skh, a
k
h)
∥∥2

1

√√√√E
K∑
k=1

H−1∑
h=1

∥∥V kh+1

∥∥2

∞

+E

[
K∑
k=1

H∑
h=1

|εkR(h, skh, a
k
h)|

]
+ E

[
K∑
k=1

H∑
h=1

|wk(h, skh, a
k
h)|

]
.

The remaining lemmas complete the proof. At each stage, RLSVI adds Gaussian noise with stan-
dard deviation no larger than Õ(H3/2

√
S). Ignoring extremely low probability events, we expect,∥∥V kh+1

∥∥
∞ ≤ Õ(H5/2

√
S) and hence

∑H−1
h=1

∥∥V kh+1

∥∥2

∞ ≤ Õ(H6S). The proof of this Lemma
makes this precise by applying appropriate maximal inequalities.

Lemma 8. √√√√E
K∑
k=1

H−1∑
h=1

∥∥V kh+1

∥∥2

∞ = Õ
(
H3
√
SK

)
2In particular, an analogue of Lemma7 holds where we replace M

k
with M̃k, V k

h+1 with the value function
Ṽ k
h+1 corresponding to policy πk in the MDP M̃k, and the Gaussian noise wk with the fictitious noise terms w̃k.
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The next few lemmas are essentially a consequence of analysis in [13], and many sub-
sequent papers. We give proof sketches in the appendix. The main idea is to apply
known concentration inequalities to bound

∥∥εkP (h, skh, a
k
h)
∥∥2

1
, |εkR(h, skh, a

k
h)| or |wk(h, skh, a

k
h)|

in terms of either 1/nk(h, skh, a
k
h) or 1/

√
nk(h, skh, a

k
h). The pigeonhole principle gives∑K

k=1

∑H−1
h=1 1/nk(h, skh, a

k
h) = O(log(SAKH) and

∑K
k=1

∑H−1
h=1 (1/

√
nk(h, skh, a

k
h)) =

O(
√
SAKH) .

Lemma 9.

E

[
K∑
k=1

H−1∑
h=1

∥∥εkP (h, skh, a
k
h)
∥∥2

1

]
= Õ

(
S2AH

)
Lemma 10.

E

[
K∑
k=1

H∑
h=1

|εkR(h, skh, a
k
h)|

]
= Õ

(√
SAKH

)
Lemma 11.

E

[
K∑
k=1

H∑
h=1

|wk(h, skh, a
k
h)|

]
= Õ

(
H3/2S

√
AKH

)

6 Extensions and open directions

This paper gives the first worst-case regret bounds for algorithms that use randomized value functions
to drive exploration. That the bounds are polynomial in all parameters indicates that adding noise
during value function training generates a sophisticated form of deep exploration that randomizing
actions does not [24]. I hope this paper serves as a useful foundation for future analysis, as many
questions remain open. One glaring open problem is to study these approaches in problems that
require generalization across large state space. Another is to study ensemble approaches [19, 21, 24]
that avoid re-estimating the value function in each episode.

There are also clear open questions in the tabular setting. The first, which I am pursuing, is to tighten
the dependence on S in the bounds. Another is to tighten the dependence onH . I suspect attaining the
optimal dependence on H would require adjusting the variances of the noise perturbations in a more
adaptive manner. Another question is to extend these proof techniques to handle time-homogeneous
MDPs, where there are additional statistical dependencies that would break the current proof. Finally,
I believe the proof techniques in this paper could yield high probability bounds on regret. To see this,
set ∆k = V (M,π∗)− V (M,πk) to be the regret incurred in period k. Lemma 4 together with the
proof of Lemma 7 essentially bounds conditional expected regret E[∆k | Hk−1] with high probability.
Since each ∆k is bounded, one should be able to apply concentration inequalities to bound the sum
of martingale differences

∑K
k=1 (∆k − E[∆k | Hk−1]) with high probability.

Acknowledgments. Much of my understanding of randomized value functions comes from a
collaboration with Ian Osband, Ben Van Roy, and Zheng Wen. Mark Sellke and Chao Qin each
noticed the same error in the proof of Lemma 6 in the initial draft of this paper. The lemma has now
been revised. I am extremely grateful for their careful reading of the paper.
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A Omitted Proofs

A.1 Proof of Lemma 2

Lemma 2 (Validity of confidence sets).
∑∞
k=1 P

(
M̂k /∈Mk

)
≤ π2

6 .

Proof. The following construction is the standard way concentration inequalities are applied in bandit
models and tabular reinforcement learning. See the discussion of what Lattimore and Szepesvári [18]
calls a “stack of rewards” model in Subsection 4.6.

For every tuple z = (h, s, a), generate two i.i.d sequences of random variables rz,n ∼ Rh,s,a
and sz,n ∼ Ph,s,a(·). Here r(h,s,a),n denotes the reward and s(h,s,a),n denotes the state transition
generated from the nth time action a is played in state s, period n. Set

Yz,n = rz,n + V ∗h+1(sz,n) n ∈ N.
These are i.i.d, with Yz,n ∈ [0, H] since ‖V ∗h+1‖∞ ≤ H − 1, and satisfies

E[Yz,n] = Rh,s,a + 〈Ph,s,a , V ∗h+1〉.
By Hoeffding’s inequality, for any δn ∈ (0, 1),

P

(∣∣∣∣∣ 1n
n∑
i=1

Y(h,s,a),i −Rh,s,a − 〈Ph,s,a , V ∗h+1〉

∣∣∣∣∣ ≥ H
√

log(2/δn)

2n

)
≤ δn.

For δn = 1
HSAn2 , a union bound over HSA values of z = (h, s, a) and all possible n gives

P

 ⋃
h,s,a,n

{∣∣∣∣∣ 1n
n∑
i=1

Y(h,s,a),i −Rh,s,a − 〈Ph,s,a , V ∗h+1〉

∣∣∣∣∣ ≥ H
√

log(2/δn)

2n

} ≤ ∞∑
n=1

1

n2
=
π2

6
.

Now, by definition, if nk(h, s, a) = n > 0, we have

R̂kh,s,a + 〈P̂ kh,s,a , V ∗h+1〉 =
1

n

n∑
i=1

Y(h,s,a),i.

Therefore, the above shows

P

(
∃(k, h, s, a) : nk(h, s, a) > 0 ,

∣∣∣R̂kh,s,a −Rh,s,a + 〈P̂ kh,s,a − Ph,s,a , V ∗h+1〉
∣∣∣ ≥ H√ log (2HSAnk(h, s, a))

2nk(s, h, a)

)
is upper bounded by π2/6. Note that by definition, when nk(h, s, a) > 0 we have√

ek(h, s, a) ≥ H

√
log (2HSAnk(h, s, a))

2nk(s, h, a)

and hence this concentration inequality holds with
√
ek(h, s, a) on the right hand side. When

nk(h, s, a) = 0, we have the trivial bound∣∣∣R̂kh,s,a −Rh,s,a + 〈P̂ kh,s,a − Ph,s,a , V ∗h+1〉
∣∣∣ = |Rh,s,a + 〈Ph,s,a , V ∗h+1〉| ≤ H ≤ ek(h, s, a)

since we have defined the empirical estimates to satisfy R̂kh,s,a = 0 and P̂ kh,s,a(·) = 0 in the case that
h, s, a has never been played.

A.2 Proof of Lemma 6

Lemma 6. For an absolute constant c = Φ(−1)−1 < 6.31, we have

Regret(M,K, RLSVIβ) ≤(c+ 1)E

[
K∑
k=1

|V (M
k
, πk)− V (M,πk)|

]

+ cE

[
K∑
k=1

|V (M̃k, πk)− V (M,πk)|

]
+H

K∑
k=1

P(M̂k /∈Mk)︸ ︷︷ ︸
≤π2/6

.
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Proof. Recall that Hk−1 = {(sih, aih, rih) : h = 1, . . . H, i = 1, . . . , k − 1}. So conditioned on
Hk−1, M

k
, πk and M̃k are random only due to the internal randomness of the RLSVI algorithm. Set

Ek[·] = E[· | Hk−1]. Suppose that M̂k ∈Mk. Then

P
(
V (M

k
, πk) ≥ V (M,π∗)

∣∣∣∣Hk−1

)
≥ Φ(−1). (4)

We begin with the regret decomposition:

Ek
[
V (M,π∗)− V (M,πk)

]
= Ek

[
V (M,π∗)− V (M

k
, πk)

]
+ Ek

[
V (M

k
, πk)− V (M,πk)

]
.

(5)
We focus on the first term. We show

V (M,π∗)− Ek
[
V (M

k
, πk)

]
≤ cEk

[(
V (M

k
, πk)− Ek

[
V (M

k
, πk)

])+
]
. (6)

The inequality is immediate if V (M,π∗) < Ek
[
V (M

k
, πk)

]
. We now show this when a ≡

V (M,π∗)− Ek
[
V (M

k
, πk)

]
≥ 0. Then,

Ek
[(
V (M

k
, πk)− Ek

[
V (M

k
, πk)

])+
]
≥ aPk

(
V (M

k
, πk)− Ek

[
V (M

k
, πk)

]
≥ a

)
=

(
V (M,π∗)− Ek

[
V (M

k
, πk)

])
Pk
(
V (M

k
, πk) ≥ V (M,π∗)

)
≥

(
V (M,π∗)− Ek

[
V (M

k
, πk)

])
Φ(−1),

where the first step applies Markov’s inequality, the second simply plugs in for a, and the third uses
Equation 4. Dividing each side by Φ(−1) gives Equation (6). Hence we have shown

Ek
[
V (M,π∗)− V (M,πk)

]
≤ cEk

[(
V (M

k
, πk)− Ek

[
V (M

k
, πk)

])+
]
+Ek

[
V (M

k
, πk)− V (M,πk)

]
.

(7)

We complete our argument by bounding Ek
[(
V (M

k
, πk)− Ek

[
V (M

k
, πk)

])+
]

. For each fixed

(nonrandom) policy π, define

µ(π) ≡ Ek
[
V (M̃k, π)

]
= Ek

[
V (M

k
, π)
]
.

Notice that µ(πk) = Ek
[
V (M̃k, πk) | πk

]
almost surely. This relies on the fact that M̃k and πk are

independent conditioned on the historyHk−1. In general µ(πk) 6= Ek
[
V (M

k
, πk) | πk

]
, since πk

is the optimal policy under M
k

and so these two are statistically dependent. Now, for every policy π

µ(π) = Ek
[
V (M

K
, π)
]
≤ Ek

[
sup
π′
V (M

K
, π′)

]
= Ek

[
V (M

K
, πk)

]
.

So, µ(πk) ≤ Ek
[
V (M

K
, πk)

]
almost surely. Using this, we find

Ek
[(
V (M

k
, πk)− Ek

[
V (M

k
, πk)

])+
]
≤ Ek

[(
V (M

k
, πk)− µ(πk)

)+
]

≤ Ek
[∣∣∣V (M

k
, πk)− µ(πk)

∣∣∣]
= Ek

[∣∣∣V (M
k
, πk)− Ek

[
V (M̃k, πk) | πk

]∣∣∣ ]
= Ek

[∣∣∣∣Ek [V (M
k
, πk)− V (M̃k, πk)

∣∣∣∣πk,Mk
]∣∣∣∣ ]

≤ Ek
[
Ek
[∣∣∣V (M

k
, πk)− V (M̃k, πk)

∣∣∣ ∣∣∣∣πk,Mk
]]

= Ek
[∣∣∣V (M

k
, πk)− V (M̃k, πk)

∣∣∣]
≤ Ek

[∣∣∣V (M
k
, πk)− V (M,πk)

∣∣∣]+ Ek
[∣∣∣V (M̃k, πk)− V (M,πk)

∣∣∣] .
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Plugging this into (7) shows that, for any historyHk−1 with M̂k ∈Mk,

Ek
[
V (M,π∗)− V (M,πk)

]
≤ (c+1)Ek

[∣∣∣V (M
k
, πk)− V (M,πk)

∣∣∣]+cEk [∣∣∣V (M̃k, πk)− V (M,πk)
∣∣∣] .

In the unlikely event M̂k /∈Mk, we have the worst case bound

0 ≤ V (M,π∗)− V (M,πk) ≤ H.
Combing these two cases and taking expectations gives

E
[
V (M,π∗)− V (M,πk)

]
≤ HP(M̂k /∈Mk)+(c+1)E

[∣∣∣V (M
k
, πk)− V (M,πk)

∣∣∣]+cE [∣∣∣V (M̃k, πk)− V (M,πk)
∣∣∣] .

Summing over k concludes the proof.

A.3 Proof of Lemma 7

Lemma 7. Let c = Φ(−1)−1 < 6.31. Then for any K ∈ N,

E

[
K∑
k=1

|V (M
k
, πk)− V (M,πk)|

]
≤

√√√√E
K∑
k=1

H−1∑
h=1

∥∥εkP (h, skh, a
k
h)
∥∥2

1

√√√√E
K∑
k=1

H−1∑
h=1

∥∥V kh+1

∥∥2

∞

+E

[
K∑
k=1

H∑
h=1

|εkR(h, skh, a
k
h)|

]
+ E

[
K∑
k=1

H∑
h=1

|wk(h, skh, a
k
h)|

]
.

Proof. We bound each term in the bound in Lemma 6. By applying Lemma 3 with a choice of
M = M and M̃ = M

K
, the largest term is bounded, for any k ∈ N, as∣∣∣V (M

k
, πk)− V (M,πk)

∣∣∣
=

∣∣∣∣∣E
[
H∑
h=1

(
〈P̂ kh,skh,akh − Ph,skh,akh , V

k
h+1〉

)
+ R̂kh,skh,akh

+ wk(h, skh, a
k
h)−Rh,skh,akh

∣∣∣∣πk,Hk−1

]∣∣∣∣∣
≤ E

[
H−1∑
h=1

∥∥εkP (h, skh, a
k
h)
∥∥

1

∥∥V kh+1

∥∥
∞

∣∣∣∣πk,Hk−1

]
+ E

[
H∑
h=1

(
|εkR(h, skh, a

k
h)|+ |wk(h, skh, a

k
h)|
) ∣∣∣∣πk,Hk−1

]
Taking expectations, summing over k, and applying Cauchy-Schwartz gives

E

[
K∑
k=1

∣∣∣V (M
k
, πk)− V (M,πk)

∣∣∣] ≤

√√√√E
K∑
k=1

H−1∑
h=1

∥∥εkP (h, skh, a
k
h)
∥∥2

1

√√√√E
K∑
k=1

H−1∑
h=1

∥∥V kh+1

∥∥2

∞

+E

[
K∑
k=1

H∑
h=1

|εkR(h, skh, a
k
h)|

]
+ E

[
K∑
k=1

H∑
h=1

|wk(h, skh, a
k
h)|

]
.

A.4 Proof of Lemma 8

The proof relies on the following maximal inequality.
Lemma 12 (Example 2.7 From [7]). If X1, . . . , Xn are i.i.d. random variables following a χ2

1
distribution, then

E
[
max
i≤n

Xi

]
≤ 1 +

√
2 log(n) + 2 log(n).

Let us now recall Lemma 8.
Lemma 8. √√√√E

K∑
k=1

H−1∑
h=1

∥∥V kh+1

∥∥2

∞ = Õ
(
H3
√
SK

)
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Proof. We have √√√√E
K∑
k=1

H−1∑
h=1

∥∥V kh+1

∥∥2

∞ ≤

√
HKE

[
max

k≤K,h≤H
‖V kh+1‖2∞

]
Now

V kh+1(s′) ≤ (H − h− 1)(1 + max
h,s,a

wk(h, s, a))

V kh+1(s′) ≥ (H − h− 1)(min
h,s,a

wk(h, s, a)).

Together this gives that for all k ≤ K and h ∈ {1, . . . ,H − 1}

‖V kh+1‖∞ ≤ H
(

1 + max
k≤K,h,s,a

|wk(h, s, a)|
)2

≤ 4H2 + 4H2

(
max

k≤K,h,s,a
|wk(h, s, a)|2

)
.

We have wk(h, s, a) = σk(h, s, a)ξkh,s,a where the ξkh,s,a ∼ N(0, 1) are drawn i.i.d across h, s, a.
Set Xk

h,s,a = (ξkh,s,a)2, each of which follows a chi-squared distribution with 1 degree of freedom.
Then,

E
[

max
k≤K,h,s,a

|wk(h, s, a)|2
]
≤

(
max

k≤K,h,s,a,
σ2
k(h, s, a)

)
E
[

max
k≤K,h,s,a

|ξkh,s,a|2
]

=

(
max

k≤K,h,s,a,
σ2
k(h, s, a)

)
E
[

max
k≤K,h,s,a

Xk
h,s,a

]
≤

(
SH3 log(2SAHK)

)
E
[

max
k≤K,h,s,a

Xk
h,s,a

]
≤

(
SH3 log(2SAHK)

) (
1 +

√
2 log(SAHK) + 2 log(SAHK)

)
≤ O

(
SH3 log (2SAHK)

2
)
.

This gives us√
KHE

[
max

k≤K,h≤H
‖V kh+1‖2∞

]
= Õ

(√
KH ·H2 · SH3

)
= Õ

(
H3
√
SK

)
.

A.5 Proof sketch of Lemma 9

This result relies on an inequality by Weissman et al. [30], which we now restate.
Lemma 13. [L1 deviation bound] If p is a probability distribution over S = {1, . . . S} and p̂ is the
empirical distribution constructed from n i.i.d draws from p, then for any ε > 0,

P (‖p̂− p‖1 ≥ ε) ≤ (2S − 2) exp

(
−nε

2

2

)
Lemma 9.

E

[
K∑
k=1

H−1∑
h=1

∥∥εkP (h, skh, a
k
h)
∥∥2

1

]
= Õ

(
S2AH

)
Proof sketch. By picking an appropriate ε in Lemma 13 as in [13, Appendix C.1], together with a
union bound over all HSA possible values for the tuple (h, s, a), there exists a numerical constant c
such that

P

 ⋃
s,a,h,k≤K

{∥∥∥P̂ kh,s,a − Ph,s,a∥∥∥
1
≥ c

√
S log(1 +HSAK)

nk(h, s, a)
+ 1

} ≤ 1

KH
. (8)
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Set βk(h, s, a) = S`
nk(h,s,a) where ` = c2 log(1 +HSAK) denotes a logarithmic factor. Recall the

definition εkP (h, s, a) ≡ P̂ kh,s,a − Ph,s,a. Let B be the “bad event” that ‖εkP (h, s, a)‖21 ≥ βk(h, s, a)

for some (h, s, a) and k ≤ K. Since ‖εkP (h, s, a)‖1 ≤ 2 always, we have

E
K∑
k=1

H−1∑
h=1

‖εkP (h, skh, a
k
h)‖211(B) ≤ 4 (9)

On the other hand, assuming Bc we have the bound

K∑
k=1

H−1∑
h=1

‖εkP (h, skh, a
k
h)‖21 ≤

K∑
k=1

H−1∑
h=1

βk(h, skh, a
k
h) = S`

K∑
k=1

H−1∑
h=1

1

nk(h, skh, a
k
h) + 1

≤
∑
h,s,a

nK(h,s,a)∑
n=0

1

n+ 1

= O (HSA log(K)) .

A.6 Proof sketch of Lemma 10

Lemma 10.

E

[
K∑
k=1

H∑
h=1

|εkR(h, skh, a
k
h)|

]
= Õ

(√
SAKH

)

Proof sketch. The proof is similar to Lemma 9. By Hoeffding’s inequality together with a union

bound, we can ensure that |εkR(h, s, a)| ≤ c
√

log(1+HSAK)
nk(h,s,a)+1 for all k ≤ K and all tuples (h, s, a)

except on some bad event that, as in (9), contributes at most a constant to the bound. Now the result
follows from using the pigeonhole principle to conclude

K∑
k=1

H∑
h=1

1√
nk(h, skh, a

k
h)

= O
(√

HSAK
)
.

This kind of bound bound is standard in the RL and bandit literature. See [20, Appendix A] for one
proof.

A.7 Proof sketch of Lemma 11

Lemma 11.

E

[
K∑
k=1

H∑
h=1

|wk(h, skh, a
k
h)|

]
= Õ

(
H3/2S

√
AKH

)

Proof. Recall σk(h, s, a) =
√

β
nk(h,s,a)+1 where βk = Õ(SH3). Write wk(h, s, a) =

σk(h, s, a)ξk(h, s, a) where ξk(h, s, a) ∼ N(0, 1) and the array of random variable {ξk(h, s, a) :
1 ≤ k ≤ K, 1 ≤ h ≤ H, a ∈ A, s ∈ S} is drawn independently. By Holder’s inequality,

E
K∑
k=1

H∑
h=1

|wk(h, skh, a
k
h)| ≤ E

(
max

k≤K,h,s,a
|ξk(h, s, a)|

)
E

K∑
k=1

H∑
h=1

σk(h, skh, a
k
h)

The (sub) Gaussian maximal inequality gives

E
(

max
k≤K,h,s,a

|ξk(h, s, a)|
)

= O
(√

log(HSAK)
)
.
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To simplify the next expression, note that βk ≤ βK . On any sample path, by the same argument as in
Lemma 10, we have

K∑
k=1

H∑
h=1

σk(h, skh, a
k
h) ≤ βK

K∑
k=1

H∑
h=1

√
1

nk(h, skh, a
k
h) + 1

= O
(
βK
√
HSAK

)
.
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