
A A validation experiment

As an empirical validation, we conducted a synthetic experiment with ModCB. Our implementation is
built on top of an open source package for contextual bandit experimentation, which has been used in
several prior works (Krishnamurthy et al., 2016; Foster et al., 2018; Krishnamurthy et al., 2018).8
For computational efficiency, our implementation of ModCB uses ILOVETOCONBANDITS (Agarwal
et al. (2014), henceforth “ILTCB”) as the base learner instead of Exp4-IX, which is also sufficient for
our theoretical guarantees.

Figure 1: A validation experiment

We consider a simple contextual bandit environment with
K = 2 actions, and where the feature vectors have ambient
dimension d = 1000. We design the reward distribution
such that a predictor using the first d

m

� = 10 coordinates is
realizable. We consider three algorithms: LinUCB operat-
ing directly on the ambient dimension, ModCB with ILTCB
as the base learner, and ILTCB with knowledge of d

m

� ,
which we refer to as Oracle. We tune a single hyperparam-
eter for each algorithm (the confidence pre-multiplier for
LinUCB; the uniform exploration parameter for ModCB
and Oracle) and visualize the cumulative regret for the
best performing hyperparameter as a function of the number of rounds T . Figure 1 displays the regret
curves averaged over 20 replicates with error bands corresponding to two standard errors.

ModCB consistently outperforms LinUCB in the experiment, which is unsurprising since the ambient
dimension is much larger than the target dimension d

m

� . ModCB has a less favorable dependence on
T in comparison to LinUCB, but this does not seem to compromise its performance in this experiment.
Perhaps more surprising is that ModCB outperforms Oracle on average. A deeper inspection reveals
that while ModCB typically advances to d

m

> d
m

� , it sometimes stays below, where it can learn a
near-optimal policy faster than Oracle.

B Omitted details for Section 2

In this section we provide more detail as to why various natural approaches do not provide a
satisfactory resolution to the model selection problem for contextual bandits. We consider a more
general setup here, where the learner is given a set of policy classes ⇧

1

, . . . ,⇧
M

, each of which
contains a set of arbitrary mappings from the context space X to A. The (expected) regret to class m
is

Reg(⇧
m

) ∶= T�
t=1E [`t(at)] − min

⇡∈⇧
m

T�
t=1E [`t(⇡(xt

))] .
Let m� ∶= argmin

m

min

⇡∈⇧
m

∑T

t=1E [`t(⇡(xt

))] be the index of the class containing the optimal
policy. The goal is to achieve Reg(⇧

m

�) = O �T↵ ⋅ comp1−↵(⇧
m

�)� for some ↵ ∈ [1�2,1) without
knowing m� ahead of time (ignoring the dependence on K). Our realizable linear setting is clearly
a special case of this setup. It is well-known that the model selection guarantee we desire can be
achieved in the full-information online learning setting, and below we discuss the difficulties of
extending these approaches to the bandit setting, even when M = 2. For simplicity we consider finite
classes, so the complexity of ⇧

m

is measured by log �⇧
m

�.
B.1 Running Hedge with all policy classes

The classical contextual bandit algorithm Exp4 (Auer et al., 2002) is based on the full-information
algorithm Hedge (Freund and Schapire, 1997). Fix a policy class ⇧. At each time t, Exp4 computes a
distribution p

t

over the policies in ⇧ using the exponential weight update rule:

p
t

(⇡)∝ p
0

(⇡) exp�⌘�
⌧<t

ˆ`
⌧

(⇡(x
⌧

))� ,
8Code is publicly available at https://github.com/akshaykr/oracle_cb.

13

https://github.com/akshaykr/oracle_cb

where ⌘ is a learning rate parameter, p
0

is a prespecified prior distribution over the policies, and ˆ`
⌧

is
the importance-weighted loss estimator, defined as ˆ`

⌧

(a) ∶= `

⌧

(a)I{a
⌧

=a}∑
⇡∈⇧∶⇡(x

⌧

)=a p

⌧

(⇡) for all a. Exp4 ensures
for any ⇡� ∈ ⇧,

T�
t=1E [`t(at)] −

T�
t=1E [`t(⇡

�(x
t

))] ≤ log � 1

p0(⇡�)�
⌘

+ ⌘E � T�
t=1 �

⇡∈⇧
p
t

(⇡)ˆ`
t

(⇡(x
t

))2� (9)

≤ log � 1

p0(⇡�)�
⌘

+ ⌘TK.

Now, consider running this algorithm with ⇧

∶= �M

m=1⇧m

. With a uniform prior and the optimal
tuning of ⌘, this leads the following regret bound for all m, which is clearly undesirable:

Reg(⇧
m

) = O���
����TK log� M�

m=1 �⇧m

����� .
On the other hand, if we set p

0

(⇡) ∶= 1�(M �⇧
m

�), where m is the least index such that ⇡ ∈ ⇧
m

, then
we have that for each m,

Reg(⇧
m

) ≤ log (M �⇧
m

�)
⌘

+ ⌘TK.

With oracle tuning for ⌘ this would give Reg(⇧
m

�) = Reg ≤ O(�TK log �⇧
m

� �), as desired. The
issue, of course, is that tuning requires knowing m� ahead of time. One can instead simply set
⌘ = 1�√TK and obtain for all m,

Reg(⇧
m

) = O �√TK log (M �⇧
m

�)� ,
which is not a satisfactory model selection guarantee. In particular this bound is vacuous when
log �⇧

m

� � = ⌦(√T), even though we could have achieved sublinear regret here if m� were known.

A natural next step would be to apply an individual learning rate ⌘
m

for each class separately, with
the hope of achieving for all m,

Reg(⇧
m

) = log (M �⇧
m

�)
⌘
m

+ ⌘
m

TK,

which will then solve the problem by setting ⌘
m

=�log(�⇧
m

�)�(TK). However, we are not aware
of any existing approaches that achieve this guarantee. The closest guarantee (achieved by variants of
Hedge (Gaillard et al., 2014; Koolen and Van Erven, 2015)) is that for all m and ⇡

m

∈ ⇧
m

,
T�
t=1E [`t(at)] −

T�
t=1E [`t(⇡m

(x
t

))] ≤ log (M �⇧
m

�)
⌘
m

+ ⌘
m

E � T�
t=1(`t(at) − ˆ`t(⇡m

(x
t

)))2�
≤ log (M �⇧

m

�)
⌘
m

+ 2⌘
m

T + 2⌘
m

E � T�
t=1

ˆ`
t

(⇡
m

(x
t

))2� .
Unfortunately, this does not enjoy the useful local norm term as in (9), and in particular the last term
involving the second moment of the loss estimator can be unbounded. Common fixes such as forcing
a small amount of uniform exploration all lead to further tuning issues.

B.2 Aggregating via Corral

Next, we briefly describe issues with using Corral (Agarwal et al., 2017b) to aggregate multiple
instances of Exp4. In short, using Theorem 4 of (Agarwal et al., 2017b), one can verify that the
algorithm ensures for all m,

Reg(⇧
m

) = ˜O �M
⌘
+ T⌘ − ⇢

m

⌘
+�TK log(�⇧

m

�)⇢
m

� ,
for a fixed parameter ⌘ and a certain data-dependent quantity ⇢

m

. Using the AM-GM inequality to
upper bound the last term by ⌘TK log(�⇧

m

�) + ⇢
m

�⌘, and canceling with the third term, we have
Reg(⇧

m

) = ˜O �M
⌘

+ ⌘TK log(�⇧
m

�)�. At this point, one can see that the tuning issues similar to
those discussed in the previous section appear, and again there is no obvious fix.

14

B.3 Adaptive ✏-greedy

Here we present a natural adaptation of an ✏-greedy algorithm for model selection with two classes�⇧
1

�� �⇧
2

�. The algorithm does not achieve a satisfactory model selection guarantee, but we include
the analysis because it demonstrates some of the difficulties with parameter tuning, even for algorithms
based on naive exploration where the best rate one could hope to achieve is O(T 2�3

comp(F
m

�)1�3).
Algorithm 3 An adaptive explore-first algorithm.

Inputs: T , policy classes ⇧
1

,⇧
2

with �⇧
1

� ≤ �⇧
2

�.
Set t

1

∶= �T 2�3(K log �⇧
1

�)1�3�, t
2

∶= �T 2�3(K log �⇧
2

�)1�3�.
Set � ∶= ⌦�� K

T log(T �⇧1)�1�3�log(T �⇧
2

�)�.
for t = 1, . . . , t

1

do
Observe x

t

choose a
t

∼ Unif(A), observe `
t

(a
t

).
Define ˆL

1

∶ ⇡ � ∑t1
t=1 `t(at)1{⇡(xt

) = a
t

}. Set

⇡̂
1

∶= argmin

⇡∈⇧1

ˆL
1

(⇡), ⇡̂
2

∶= argmin

⇡∈⇧2

ˆL
1

(⇡)
if ˆL

1

(⇡̂
1

) ≤ ˆL
1

(⇡̂
2

) +� then
Use ⇡̂

1

to select actions for the rest of time.
else

Explore uniformly for a total of t
2

rounds, let ⇡̂(2)
2

∶= argmin

⇡∈⇧2
∑t2

t=1 `t(at)1{⇡(xt

) = a
t

},
and use ⇡̂(2)

2

to select actions for the rest of time.

Pseudocode is displayed in Algorithm 3. The algorithm operates in the stochastic setting, where we
have (x

t

, `
t

) ∼ D on each round for some distribution D. Define L(⇡) ∶= E(x,`)∼D [`(⇡(x))], and
let ⇡�

i

∶= argmin

⇡∈⇧
i

L(⇡). We assume that losses are bounded in [0,1].
The algorithm consists of an exploration phase, a statistical test, a second exploration phase depending
on the outcome of the test, and then an exploitation phase. The intuition is that we first explore for
t
1

rounds, where t
1

is the optimal hyperparameter choice for the smaller class ⇧
1

(smaller classes
require less exploration). Then, we perform a statistical test to determine if ⇧

1

can achieve loss that
is competitive with ⇧

2

. If this is the case, we simply exploit ⇧
1

for the remaining rounds. Otherwise,
we continue exploring for a total of t

2

rounds, where t
2

is the optimal hyperparameter for ⇧
2

. We
finish by exploiting with the empirical risk minimizer for ⇧

2

.
Proposition 6. In the stochastic setting, Algorithm 3 achieves the following guarantees simultane-

ously with probability at least 1 − 1�T :

Reg(⇧
1

) ≤ ˜O �T 2�3(K log �⇧
1

�)1�3� , and Reg(⇧
2

) ≤ ˜O �T 2�3K1�3 log1�2 �⇧2

�
log

1�3 �⇧
1

� � .
Note that this is not a satisfactory model selection guarantee, since the exponents on T and the policy
complexity for ⇧

2

do not sum to 1 as we would like. Conceptually, if the algorithm exploits with a
fixed policy, it must first determine whether ⇧

2

offers much lower loss than ⇧

1

so that it can decide
which class to use for exploitation. To make this determination, it must estimate the optimal loss for
both classes. Unfortunately, with too little exploration data, we will significantly underestimate the
loss for ⇧

2

, and with too much data we will compromise the regret bound for ⇧
1

. We are not aware
of an approach to balance these competing objectives with this style of algorithm.

Proof of Proposition 6. Define ˆL
2

∶ ⇡ � ∑t2
t=1 `t(at)1{⇡(xt

) = a
t

}. We will only use ˆL
2

in the
event that we continue to explore after the test. Via Bernstein’s inequality (and using that the deviation
is at most 1), the following inequalities all hold with probability at least 1 − �:

∀j ∈ [2],∀⇡ ∈ ⇧
i

∶ �L(⇡) − ˆL
j

(⇡)� ≤ c
����K log(�⇧

i

���)
t
j

,

∀i ∈ [2] ∶ �L(⇡�
i

) − ˆL
1

(⇡�
i

)� ≤ c
�

K log(1��)
t
1

.

15

Note that the second inequality does not use uniform convergence, and it applies only to each ⇡�
i

.
Appealing to the standard explore-first analysis, we know that the regret bound for ⇧

1

is achieved if
we exploit with ⇡̂

1

, and similarly for ⇧
2

if we exploit with ⇡̂(2)
2

. We are left to verify the other two
cases. Let us consider Reg(⇧

2

) when we only explore for t
1

rounds. We have

Reg(⇧
2

) = t
1

+ (T − t
1

) (L(⇡̂
1

) −L(⇡�
2

))
≤ t

1

+ T ��c
�

K log(�⇧
1

���)
t
1

+� + c
�

K log(1��)
t
1

�
�

≤ t
1

+ 2c
�

KT log(�⇧
1

���)
t
1

+ T�.

Here we use the two concentration inequalities above, the fact that ˆL
1

(⇡�
2

) ≥ ˆL
1

(⇡̂
2

), and the fact
that the test succeeded. Note that we did not require uniform convergence over ⇧

2

for this argument.
Now, let us consider the regret for ⇧

1

when we explore for t
2

rounds.

Reg(⇧
1

)
= t

2

+ (T − t
2

)�L(⇡̂(2)
2

) −L(⇡�
1

)�
≤ t

2

+ (T − t
2

)��c
�

K log(�⇧
2

���)
t
2

+L(⇡�
2

) − ˆL
1

(⇡̂
1

) + c
�

K log(1��)
t
1

�
�

≤ t
2

+ (T − t
2

)��c
�

K log(�⇧
2

���)
t
2

+ c
�

K log(�⇧
2

���)
t
1

+ ˆL
1

(⇡̂
2

) − ˆL
1

(⇡̂
1

) + c
�

K log(1��)
t
1

�
�

≤ 4c(T − t
2

)
�

K log(�⇧
2

���)
t
1

− (T − t
2

)�,

where we have used that t
2

is lower order than the deviation bound term, since t
1

is much smaller. To
obtain the claimed regret bound for ⇧

1

, we must choose � as

� ≥ 4c
�

K log(�⇧
2

���)
t
1

−⌦ �(K log(�⇧
1

���)�T)1�3� = ⌦���
K

T log(�⇧
1

���)�
1�3�

log(�⇧
2

���)�� ,
with � = 1�T .

C Preliminaries for main results

This section consists of self-contained technical results used to prove the main theorem.

C.1 Properties of subgaussian and subexponential random variables

Here we state some standard facts about subgaussian and subexponential random variables that will
be used throughout the analysis. The reader may consult e.g., Vershynin (2012), for proofs.

Note that if z ∼ subG
d

(⌧2) then we clearly have �z, ✓� ∼ subG(⌧2�✓�2
2

) and likewise if z ∼ subE
d

(�)
then �z, ✓� ∼ subE(��✓�

2

). Furthermore, if z ∼ subG
d

(�2), then E[zz�] � �2 ⋅ I
d

.
Proposition 7. There exist universal constants c

1

, c
2

, c
3

> 0 such that for any random variable

z ∼ subG(�2), the following hold:

• Pr(�z� > t) ≤ 2e− t

2

c1�

2 ∀t ≥ 0.

• E[exp(c
2

�z�2��2)] ≤ 2.

• If E[z] = 0, E[exp(sz)] ≤ exp

�c
3

s2�2� ∀s ∈ Rd

.

Moreover, there is some universal constant c
4

such that if any of the above properties hold, then

z ∼ subG(c
4

�2)
16

Proposition 8. There exist universal constants c
1

, c
2

, c
3

> 0 such that for any random variable

z ∼ subE(�), the following hold:

• Pr(�z� > t) ≤ 2e− t

c1� ∀t ≥ 0.

• If E[z] = 0, E[exp(sz)] ≤ exp

�c
2

s2�2� ∀s ∶ �s� ≤ 1

c3�
.

Moreover, there is some universal constant c
4

such that if any of the above properties hold, then

z ∼ subE(c
4

�)
Proposition 9. There is a universal constant c > 0 such that the following hold:

• If z ∼ subG(�2), z −E[z] ∼ subG(4�2), and if z ∼ subE(�), z −E[z] ∼ subE(2�).
• If z ∼ subG(�2), then z2 −E�z2� ∼ subE(c ⋅ �2).
• If z

1

∼ subG(�2

1

) and z
2

∼ subG(�2

2

), then z
1

z
2

−E[z
1

z
2

] ∼ subE(c ⋅ �
1

�
2

).
Proposition 10 (Bernstein’s inequality for subexponential random variables). Let z

1

, . . . , z
n

be

independent mean-zero random variables with z
i

∼ subE(�) for all i, and let Z = ∑n

i=1 zi. Then for

some universal constant c > 0,

Pr(�Z � ≥ t) ≤ 2 exp�−c� t2

�2n
∧ t

�
��.

In particular, with probability at least 1 − �, �Z � ≤ O��n�2

log(2��) + � log(2��)�.
Lemma 11. Let z

1

, . . . z
n

be i.i.d. draws of a mean-zero random variable z ∼ subE
d

(�), and let

Z
i

= ∑i

t=1 zt. Then with probability at least 1 − �,

max

i∈[n]�Zi

�
2

≤ O���dn log(2d��) + �d1�2 log(2d��)�.

Proof of Lemma 11. We first claim that for any s > 0, the sequence X
i

∶= es�Zi

�2 is a non-negative
submartingale. Indeed, using Jensen’s inequality, we have

E[X
i

� z
1

, . . . , z
i−1] = E�es�∑i

t=1 z

t

�
2 � z

1

, . . . , z
i−1� ≥ E�es�∑i−1

t=1 z

t

�
2 � z

1

, . . . , z
i−1� =Xi−1.

Thus, applying the Chernoff method along with Doob’s maximal inequality, we have

Pr�max

i∈[n]�Zi

�
2

> t� ≤ E�exp�s� n�
t=1 zt�

2

− st��.
We apply the bound

E�exp�s� n�
t=1 zt�

2

�� ≤ E�exp�s√d� n�
t=1 zt�∞�� ≤

d�
k=1

E�exp�s√d�� n�
t=1 zt, ek����,

where e
k

is the kth standard basis vector. Since z
t

∼ subE
d

(�) and {z
t

} are independent, the latter
quantity is bounded by

2d ⋅ exp�Cs2d�2n�,
so long as s ≤ 1�c�√d, for absolute constants C, c > 0. We set s∝ t

d�

2
n

∧ 1

�

√
d

to conclude

Pr�max

i∈[n]�Zi

�
2

> t� ≤ 2d ⋅ e−C� t

2

d�

2
n

∨ t

�

√
d

�.

Or in other words, with probability at least 1 − �,

max

i∈[n]�Zi

�
2

≤ O���dn log(2d��) + �d1�2 log(2d��)�.
17

C.2 Second moment matrix estimation

In this section we give some standard results for the rate at which the empirical correlation matrix
approaches the population correlation matrix for subgaussian random variables. Let x ∼ subG

d

(⌧2)
be a subgaussian random variable and let ⌃ = E[xx�]. Let x

1

, . . . , x
n

be i.i.d. draws from x, and let
⌃̂ = 1

n

∑n

t=1 xt

x�
t

.

Proposition 12. Suppose x ∼ subG
d

(⌧2) and ⌃ = I . Then with probability at least 1 − �,

1 − " ≤ �1�2
min

(⌃̂) ≤ �1�2
max

(⌃̂) ≤ 1 + ", (10)

where " ≤ 50⌧2�d+log(2��)
n

.

Proof of Proposition 12. Tracking constants carefully, equation (5.23) in Vershynin (2012) estab-
lishes that with probability at least 1 − 2e− ct

2

⌧

4 ,

�
⌃̂ − I�

2

≤ " ∨ "2,
where " = C⌧2

�
d

n

+ t√
n

, and c > 10−3 and C ≤ 25 are absolute constants. The result follows by
Vershynin (2012), Lemma 5.36.

Proposition 13. Let ⌃ be positive definite, and suppose ⌃̂ is such that

1 − " ≤ �1�2
min

(⌃−1�2⌃̂⌃−1�2) ≤ �1�2
max

(⌃−1�2⌃̂⌃−1�2) ≤ 1 + ",
where " ≤ 1�2. Then the following inequality holds:

1 − 2" ≤ �1�2
min

(⌃1�2
⌃̂

−1
⌃

1�2) ≤ �1�2
max

(⌃1�2
⌃̂

−1
⌃

1�2) ≤ 1 + 2",
and furthermore,

�
⌃̂ −⌃�

2

≤ �
max

(⌃) ⋅ 3", (11)

�
⌃̂

−1 −⌃−1�
2

≤ 6"

�
min

(⌃) , (12)

�
⌃

−1�2
⌃̂⌃

−1�2 − I�
2

≤ 3", (13)

�
⌃

1�2
⌃̂

−1
⌃

1�2 − I�
2

≤ 6". (14)

Proof of Proposition 13. To begin, note that the assumed inequality immediately implies that ⌃̂−1
is well-defined and that

1 − 2" ≤ �1�2
min

(⌃1�2
⌃̂

−1
⌃

1�2) ≤ �1�2
max

(⌃1�2
⌃̂

−1
⌃

1�2) ≤ 1 + 2",
using the elementary fact that (1− ")−1 ≤ 1+2" and (1+ ")−1 ≥ 1−2" when " ≤ 1�2. This inequality
and the assumed inequality, together with Lemma 5.36 of Vershynin (2012) imply that

�
⌃

−1�2
⌃̂⌃

−1�2 − I�
2

≤ 3", and �
⌃

1�2
⌃̂

−1
⌃

1�2 − I�
2

≤ 6".
Finally, observe that we can write

�
⌃̂ −⌃�

2

= �⌃1�2(⌃−1�2⌃̂⌃−1�2 − I)⌃1�2�
2

≤ �
max

(⌃) ⋅ �⌃−1�2⌃̂⌃−1�2 − I�
2

,

and

�
⌃̂

−1 −⌃−1�
2

= �⌃−1�2(⌃1�2
⌃̂

−1
⌃

1�2 − I)⌃−1�2�
2

≤ 1

�
min

(⌃) ⋅ �⌃1�2
⌃̂

−1
⌃

1�2 − I�
2

.

This establishes the result.

18

Algorithm 4 Exp4-IX with Natarajan class and anytime guarantee
Input: policy class ⇧ with Natarajan dimension d, maximum number of rounds T , confidence
parameter �.
for k = 0,1, . . . do

Explore uniformly at random for n
k

=�2

kd log �TK

�

� rounds.

t← 2

k + n
k

, ⌘
k

←
�

d log�TK

�

�
2

k

K

.
Let ⇧

k

∈ ⇧ be the set of unique policies witnessed by x
2

k , . . . , x
t−1 (choose a representative

from each equivalence class).
Initialize P

t

to be the uniform distribution over ⇧
k

.
while t < 2k+1 do

Receive x
t

, sample an action a
t

∼ P
t

(⋅�x
t

), and observe `
t

(a
t

).
Compute P

t+1 such that P
t+1(⇡)∝ P

t

(⇡) exp�−2⌘k

� `

t

(a
t

)
b

+1�1{a
t

=⇡(x
t

)}
P

t

(a
t

�x
t

)+⌘
k

� , ∀⇡ ∈ ⇧
k

.

t← t + 1.

C.3 Agnostic contextual bandit algorithm for Natarajan classes (Exp4-IX)

Here we present a variant of the Exp4-IX algorithm (Neu, 2015), originally proposed for achieving
high-probability regret bounds for contextual bandits with a finite policy class and bounded non-
negative losses. There are three main differences in the variant we present here (see Algorithm 4 for
the pseudocode).

First, for our application we need an “anytime” regret guarantee that holds for any time T ′ ≤ T .
This can be simply achieved by a standard doubling trick. Specifically, we run the algorithm on an
exponential epoch schedule (that is, epoch k lasts for 2k rounds) and restart Exp4-IX at the beginning
of each epoch with new parameters.

Second, our policy class is infinite, but with a finite Natarajan dimension. For the two-action case
with a VC class, Beygelzimer et al. (2011) gave a solution to this problem for stochastic contextual
bandits. We extend their approach to Natarajan classes. Specifically, in epoch k we spend the first n

k

rounds collecting contexts (while picking actions arbitrarily). Then we form a finite policy subset ⇧
k

by picking one representative from each equivalence class (that is, all policies that behave exactly the
same on these contexts), and play Exp4-IX using this finite policy class ⇧

k

for the rest of the epoch.

Finally, in our setting losses are subgaussian and potentially unbounded. However, since with high
probability they are bounded essentially by the subgaussian parameter (see Proposition 19), we simply
pick b = O �⌧ log1�2 �TK

�

�� such that with probability at least 1 − ��3, max

a∈A,t∈[T]�`t(a)� ≤ b, and
transform every loss `(a) as `(a)�b + 1, which with high probability falls in [0,2]. The rest of the
algorithm is the same as the original Exp4-IX. Note that we use the notation P

t

(a�x
t

) to denote∑
⇡∶⇡(x

t

)=a Pt

(⇡).
The regret guarantee for Algorithm 4 is as follows.

Proposition 14. With probability at least 1 − �, Algorithm 4 ensures that for all T ′ ∈ {1, . . . , T} and

⇡ ∈ ⇧,

T

′
�
t=1 `t(at) − `t(⇡(xt

)) = O �⌧√T ′Kd log �TK
�
��

Proof of Proposition 14. We condition on the event max

a∈A,t∈[T]�`t(a)� ≤ b which happens with
probability at least 1 − ��3. Following (Neu, 2015), with probability at least 1 − ��3 we have for any
T ′ and any ⇡ ∈ ⇧

k

(where k is the epoch containing T ′),
T

′
�
t=2k

`
t

(a
t

) − `
t

(⇡(x
t

)) = O��bnk

+ b
�

2

kK �log �⇧
k

� + log �TK
�
���� .

19

Sauer’s lemma for classes with finite Natarajan dimension (Ben-David et al., 1995; Haussler and
Long, 1995) gives log �⇧

k

� ≤ d log �nk

e(K+1)2
2d

�. Together with the choice of n
k

this gives

T

′
�
t=2k

`
t

(a
t

) − `
t

(⇡(x
t

)) = O��b
�

2

kKd log �TK
�
��� .

On the other hand, following Beygelzimer et al. (2011) we have with probability at least 1 − ��3,

min

⇡∈⇧
k

T

′
�
t=2k

`
t

(⇡(x
t

)) ≤min

⇡∈⇧
T

′
�
t=2k

`
t

(⇡(x
t

)) +O �b2kd
n
k

log �TK
�
��

≤min

⇡∈⇧
T

′
�
t=2k

`
t

(⇡(x
t

)) +O��b
�

2

kd log �TK
�
��� .

Combining these inequalities gives
T

′
�
t=2k

`
t

(a
t

) ≤min

⇡∈⇧
T

′
�
t=2k

`
t

(⇡(x
t

)) +O��b
�

2

kKd log �TK
�
��� .

Summing up regret in each epoch, using b = O �⌧ log1�2 �TK

�

��, and applying a union bound leads
to the result.

C.4 Natarajan dimension for linear policy classes

Proposition 15 (Daniely et al. (2015)). Let �(x, a) ∈ Rd

be a fixed feature map and consider the

policy class

⇧ = �������x� argmax

a∈[K] ��,�(x, a)� � � ∈ Rd

�������.
The Natarajan dimension of ⇧ is at most O(d log d).
D Proofs from Section 3

D.1 Square loss residual estimation

In this section we give self-contained results on estimating the square loss in a linear regression setup,
extending the results of Dicker (2014) and Kong and Valiant (2018). Our main result here is the
sample complexity bound for EstimateResidual described in Section 3

We first recall the abstract setting. We receive pairs (x
1

, y
1

), . . . , (x
n

, y
n

) i.i.d. from a distributionD ∈ �(Rd ×R), where x ∼ subG
d

(⌧2) and y ∼ subG(�2). Define ⌃

∶= E[xx�], and assume ⌃ � 0.
Let �� ∈ Rd be the predictor that minimizes prediction error:

�� ∶= argmin

�∈Rd

E(��, x� − y)2.
Suppose x can be partitioned into features x = (x(1), x(2)), where x(1) ∈ Rd1 and x(2) ∈ Rd2 , and
d
1

+ d
2

= d. We define ��
1

to be the optimal predictor when we regress only onto the features x(1):
��
1

∶= argmin

�∈Rd1

E���, x(1)� − y�2.
Our goal is to estimate the residual error incurred by restricting to the features x(1):

E ∶= E����
1

, x(1)� − ���, x��2.
EstimateResidual (Algorithm 2) estimates E with sample complexity sublinear in d whenever good
estimates for the matrices ⌃ and ⌃

1

∶= E�x(1)x(1)�� are available.9 The performance is stated in
Theorem 16. The result here is a more general version of Theorem 2, which is proven as a corollary
at the end of the section.

9Note that ⌃1 � 0.

20

Theorem 16. Suppose the correlation matrix estimates ⌃̂ and ⌃̂

1

are such that

1 − " ≤ �1�2
min

(⌃−1�2⌃̂⌃−1�2) ≤ �1�2
max

(⌃−1�2⌃̂⌃−1�2) ≤ 1 + ",
and

1 − " ≤ �1�2
min

(⌃−1�2
1

⌃̂

1

⌃

−1�2
1

) ≤ �1�2
max

(⌃−1�2
1

⌃̂

1

⌃

−1�2
1

) ≤ 1 + ",
where " ≤ 1�2. Then EstimateResidual guarantees that with probability at least 1 − �,

�Ê − E � ≤ 1

2

E +O��max

(⌃)
�2

min

(⌃) ⋅
�2⌧2d1�2 log2(2d��)

n
+ �

max

(⌃)
�2

min

(⌃) �E[xy]�22 ⋅ "2�. (15)

Proof of Theorem 16. We begin by giving an expression for E that will make the choice of estimator
more transparent. Let

D = � ⌃

1

0

d1×d2

0

d2×d1 0

d2×d2

� ,
and let R = D† − ⌃−1. Observe that by first-order conditions, we may take �� = ⌃

−1E[xy] and
��
1

= ⌃−1
1

E�x(1)y�. Moreover, for any x, we may write ���
1

, x(1)� = �D† E[xy], x�. Consequently,
we have

E = E��D† E[xy], x� − �⌃−1E[xy], x��2 = E�RE[xy], x�2 = �⌃1�2RE[xy]�2
2

.

With this representation, it is clear that if ⌃̂ = ⌃ and ⌃̂

1

= ⌃
1

, then Ê is an unbiased estimator for E .
Our proof has two parts: We first show that Ê concentrates around its expectation, then bound the
bias due to ⌃̂ and ⌃̂

1

.

For concentration, we appeal to Lemma 17. Note that �
min

(⌃
1

) ≥ �
min

(⌃) and �
max

(⌃
1

) ≤
�
max

(⌃); this can be seen using the variational representation for the eigenvalues. Consequently by
Proposition 13 we have that

�
max

(⌃̂) ∨ �
max

(⌃̂
1

) ≤ O(�
max

(⌃)), and, �
min

(⌃̂) ∧ �
min

(⌃̂
1

) ≥ ⌦(�
min

(⌃)).
This implies that �

⌃̂

1�2R̂�
2

≤ O��1�2
max

(⌃)��
min

(⌃)�,
and so by Proposition 9, it follows that the random variable ⌃̂1�2R̂xy−E�⌃̂1�2R̂xy� has subexponen-
tial parameter of order O(�⌧�1�2

max

(⌃)��
min

(⌃)). Thus, by Lemma 17, we have that with probability
at least 1 − �,

�Ê −E�Ê�� ≤ O��
�
max

(⌃)
�2

min

(⌃)
�2⌧2d1�2 log2(2d��)

n
+ �1�2

max

(⌃)
�
min

(⌃)
�⌧�⌃̂1�2R̂E[xy]�

2

log(2��)√
n

�
�.

But note that since �⌃̂1�2R̂E[xy]�
2

=�E�Ê�, we can apply the AM-GM inequality to deduce

�Ê −E�Ê�� ≤ 1

8

E�Ê� +O��max

(⌃)
�2

min

(⌃) ⋅
�2⌧2d1�2 log2(2d��)

n
�.

We now bound the error from E�Ê� to E . With the shorthand µ = E[xy], observe that we have

E�Ê� − E = �R̂⌃̂R̂µ, µ� − �R⌃Rµ,µ�
= 2�(R̂ −R)⌃̂Rµ,µ� + �R(⌃̂ −⌃)Rµ,µ� + �(R̂ −R)⌃̂(R̂ −R)µ,µ�.

Applying Cauchy-Schwarz to each term, we get an upper bound of

�E�Ê� − E � ≤ 2�⌃−1�2⌃̂(R − R̂)µ�
2

�
⌃

1�2Rµ�
2

+ �⌃−1�2(⌃ − ⌃̂)Rµ�
2

�
⌃

1�2Rµ�
2

+ �⌃̂1�2(R − R̂)µ�2
2

.

Since �⌃1�2Rµ�
2

= √E , we can apply the AM-GM inequality to each of the first two terms to
conclude that

�E�Ê� − E � ≤ 1

8

E +O��⌃−1�2⌃̂(R − R̂)µ�2
2

+ �⌃−1�2(⌃ − ⌃̂)R̂µ�2
2

+ �⌃̂1�2(R − R̂)µ�2
2

�. (16)

21

To proceed, we first collect a number of spectral properties, all of which follow from the assumptions
in the theorem statement and Proposition 13:

�
⌃

−1�2
⌃̂

�
2

= �⌃−1�2⌃̂⌃−1�2⌃1�2�
2

≤ (1 + ")�⌃1�2�
2

≤ O(�1�2
max

(⌃)),
�R̂�

2

≤ O(1��
min

(⌃)),
�R − R̂�

2

≤ �⌃̂−1
1

−⌃−1
1

�
2

+ �⌃̂−1 −⌃−1�
2

≤ O("��
min

(⌃)),
�
⌃

−1�2
⌃̂⌃

−1�2 − I�
2

≤ O(").
We now bound the terms in (16) one by one. Using the spectral bounds above, we have

�
⌃

−1�2
⌃̂(R − R̂)µ�2

2

≤ �⌃−1�2⌃̂�2
2

�µ�2
2

⋅ �R − R̂�2
2

≤ O��max

(⌃)
�2

min

(⌃) �µ�22 ⋅ "2�,
�
⌃

−1�2(⌃ − ⌃̂)R̂µ�2
2

≤ �⌃�
2

�R̂�2
2

�µ�2
2

⋅ �⌃−1�2⌃̂⌃−1�2 − I�2
2

≤ O��max

(⌃)
�2

min

(⌃) �µ�22 ⋅ "2�,
�
⌃̂

1�2(R − R̂)µ�2
2

≤ �⌃̂�
2

�µ�2
2

⋅ �R − R̂�2
2

≤ O��max

(⌃)
�2

min

(⌃) �µ�22 ⋅ "2�.
We conclude that

�E�Ê� − E � ≤ 1

8

E +O��max

(⌃)
�2

min

(⌃) �µ�22 ⋅ "2�,
which yields the result.

Lemma 17. Let z be a random variable such that z −E[z] ∼ subE
d

(�), and let z
1

, . . . , z
n

be i.i.d.

copies. Define

W =�
i<j
�z

i

, z
j

�.
Then with probability at least 1 − �,

�W −E[W]� ≤ O��2d1�2n log2(2d��) + �n3�2�E[z]�
2

log(2��)�.
Proof of Lemma 17. First observe that we can write

�W −E[W]� = ������������i<j�zi, zj� − �E[z],E[z]�
�����������

= ������������i<j�zi −E[z], zj −E[z]� +�i<j�zi −E[z],E[z]� +�i<j�zj −E[z],E[z]�
�����������

≤ ������������i<j�zi −E[z], zj −E[z]�
��

S1

+ (n − 1)� n�
i=1
�z

i

−E[z],E[z]��
���

S2

.

We bound S
2

first. Define B = �E[z]�
2

. Observe that for each i, the summand is subexponential:�z
i

−E[z],E[z]� ∼ subE(�B). Consequently, Bernstein’s inequality implies that with probability at
least 1 − �,

S
2

≤ O��Bn3�2(log(2��))1�2 + 2�Bn log(2��)�.
For S

1

, we first apply a decoupling inequality. Let z′
1

, . . . , z′
n

be a sequence of independent copies
of z

1

, . . . , z
n

. Then by Theorem 3.4.1 of de la Peña and Giné (1998), there are universal constants
C, c > 0 such that for any t ≥ 0,

Pr(S
1

> t) ≤ C Pr

�
�
������������i<j�zi −E[z], z

′
j

−E[z]������������ > t�c
�
�.

We write

�
i<j
�z

i

−E[z], z′
j

−E[z]� = n�
i=1
�z

i

−E[z], n�
j=i+1

z′
j

−E[z]� = n�
i=1
�z

i

−E[z], Z
i

�,

22

where Z
i

= ∑n

j=i+1 z′
j

− E[z]. Now condition on z′
1

, . . . , z′
n

. Then �z
i

−E[z], Z
i

� ∼ subE(��Z
i

�
2

).
Thus, by Bernstein’s inequality, we have that with probability at least 1−�, over the draw of z

1

, . . . , z
n

,

������������i<j�zi −E[z], z
′
j

−E[z]������������ ≤ O��(n log(2��))
1�2 + � log(2��)� ⋅max

i∈[n]�Zi

�
2

.

Next, using Lemma 11, we have that with probability at least 1 − �,

max

i∈[n]�Zi

�
2

≤ O���dn log(2d��) + �d1�2 log(2d��)�.
Thus, by union bound, after grouping terms we get that with probability at least 1 − �,

������������i<j�zi −E[z], z
′
j

−E[z]������������ ≤ O��
2d1�2n log2(2d��)�,

and
S
2

≤ O��2d1�2n log2(2d��)�.
Taking a union bound yields the final result.

Proof of Theorem 2. Consider the distribution over random vectors x′ ∶= ⌃−1�2x, and let ⌃̂′ denote
the empirical covariance under this distribution. Since E[x′x′�] = I , we may apply Proposition 12,
which implies that with probability at least 1 − �,

1 − " ≤ �1�2
min

(⌃̂′) ≤ �1�2
max

(⌃̂′) ≤ 1 + ",
where " ≤ 50�−1

min

(⌃)⌧2�d+log(2��)
m

, and we have used that the subgaussian parameter of x′ is at
most �−1

min

(⌃) times that of x. We can equivalently write this expression as

1 − " ≤ �1�2
min

(⌃−1�2⌃̂⌃−1�2) ≤ �1�2
max

(⌃−1�2⌃̂⌃−1�2) ≤ 1 + ".
Note also that once m ≥ C(d+log(2��))⌧4��

min

(⌃) for some universal constant C, we have " ≤ 1�2.
Applying the same reasoning to ⌃̂

1

and taking a union bound, then appealing to Theorem 16 yields
the result. We use that �

max

(⌃) ≤ ⌧2 to simplify the final expression.

D.2 Proof of Theorem 3

D.2.1 Basic technical results

In this section we prove some utility results that bound the scale of various random variables appearing
in the analysis of ModCB.

Proposition 18. For all a, `(a) ∼ subG(4⌧2).
Proof. We have `(a) = ���,�m

�(x)� + "
a

, where "
a

= `(a) −E[`(a) � x]. Note that ���,�m

�(x)�
has subgaussian parameter B2⌧2, and "

a

has subgaussian parameter �2, so the triangle inequality for
subgaussian parameters implies that the parameter of `(a) is at most (B⌧ + �)2 ≤ 4⌧2, where we
have used the assumption that B ≤ 1 and � ≤ ⌧ .

Proposition 19. With probability at least 1 − �, max

a∈A,t∈[T]�`t(a)� ≤ O�⌧�log(KT ��)�.

Proof. Immediate consequence of Proposition 18, along with Hoeffding’s inequality and a union
bound.

23

D.2.2 Square loss translation

We first introduce some additional notation. Let L�
m

=min

⇡∈⇧
m

L(⇡). Recall that

��
m

= argmin

�∈Rd

m

1

K
�
a∈A

E
x∼D(��,�m(x, a)� − `(a))2.

We let ⇡sq

m

(x) = argmin

a∈A���m,�m(x, a)� be the induced policy.
Proposition 20. For all m ∈ [M], ��

m

is uniquely defined, and ��
m

= (��,0
d

m

−d
m

�) for all m ≥m�.
As a consequence:

• ⇡sq

m

= ⇡� for all m ≥m�.
• E

i,m

� = E
i,j

for all i ∈ [M] and all j ≥m�.
• E

i,j

= 0 for all j > i ≥m�.
Proof of Proposition 20. That each ��

m

is uniquely defined follows from the assumption that
�
min

(⌃
m

) > 0, since this implies that the optimization problem (3) is strongly convex.

To show that ��
m

= (��,0
d

m

−d
m

�) when m ≥ m�, observe that by first order conditions, ��
m

is
uniquely defined via

��
m

= ⌃−1
m

⋅ 1

K

∑
a∈A E(x,`)∼D[�m(x, a)`(a)].

But note that for each a ∈ A, the realizability assumption (1) implies that

E(x,`)∼D[�m(x, a)`(a)] = E
x∼D��m(x, a)��m

�(x, a),����
= E

x∼D��m(x, a)�m(x, a)�(��,0
d

m

−d
m

�)�,
where the last equality follows from the nested feature map assumption. Combining this with the
preceding identity, we have

��
m

= ⌃−1
m

⌃

m

(��,0
d

m

−d
m

�) = (��,0d

m

−d
m

�).
The remaining claims now follow immediately from the definition of ⇡sq and E

i,j

.

Proposition 21. For all a ∈ A and m ∈ [M], we have �E[�m(x, a)`(a)]�
2

≤ ⌧2. For all m ∈ [M],
we have ���

m

�
2

≤ ⌧��, and so ⇡sq

m

∈ ⇧
m

.

Proof. For the first claim, we use realizability to write

E[�m(x, a)`(a)] = E��m(x, a)��m

�(x, a),����
Hence any ✓ ∈ Rd

m with �✓�
2

≤ 1, we have

�E[�m(x, a)`(a)], ✓� = E���m(x, a), ✓���m

�(x, a),����
≤�E��m(x, a), ✓�2 ⋅E��m

�(x, a),���2
≤ ⌧2,

where the first inequality is Cauchy-Schwarz and the second follows because ����
2

≤ 1 by assump-
tion and all feature maps belong to subG

d

m

(⌧2). For the second claim, recall as in the proof of
Proposition 20 that ��

m

is uniquely defined as

��
m

= ⌃−1
m

⋅ 1

K

∑
a∈A E(x,`)∼D[�m(x, a)`(a)] = 1

K

∑
a∈A E(x,`)∼D�⌃−1

m

�m(x, a)��m

�(x, a),����.
Following the same approach as for the first claim, for any any ✓ ∈ Rd

m with �✓�
2

≤ 1, we have

�✓,��
m

� = 1

K
�
a∈A

E(x,`)∼D��⌃−1
m

�m(x, a), ✓���m

�(x, a),����
≤
���� 1

K
�
a∈A

E(x,`)∼D�⌃−1
m

�m(x, a), ✓�2 ⋅ 1
K
�
a∈A

E(x,`)∼D��m

�(x, a),���2

=
�����⌃−1

m

✓, ✓� ⋅ 1
K
�
a∈A

E(x,`)∼D��m

�(x, a),���2
≤ ⌧��,

where we again have used that ����
2

≤ 1.

24

Lemma 22. For all i ∈ [M], and all j ≥m�,
�

i,j

≤ L(⇡sq

i

) −L(⇡sq

j

) ≤�4K ⋅ E
i,j

. (17)

Proof of Lemma 22. Observe that we have

L�
i

−L�
j

≤ L(⇡sq

i

) −L(⇡�
j

) = L(⇡sq

i

) −L(⇡sq

j

),
where the inequality holds because ⇡sq

i

∈ ⇧
i

and the equality follows from Proposition 20 and the
assumption that j ≥m�. Using realizability along with the representation for ��

j

from Proposition 20,
we write

L(⇡sq

i

) −L(⇡sq

j

) = E
x∼D����

j

,�j(x,⇡sq

i

(x))� − ���
j

,�j(x,⇡sq

j

(x))��
For each x, we have ���

i

,�i(x,⇡sq

j

(x))� − ���
i

,�i(x,⇡sq

i

(x))� ≥ 0,
which follows from the definition of ⇡sq

i

. We add this inequality to the preceding equation to get

L(⇡sq

i

) −L(⇡sq

j

) ≤ E
x∼D����

j

,�j(x,⇡sq

i

(x))� − ���
i

,�i(x,⇡sq

i

(x))��
+E

x∼D����
i

,�i(x,⇡sq

j

(x))� − ���
j

,�j(x,⇡sq

j

(x))��
≤ 2E

x∼Dmax

a

����
i

,�i(x, a)� − ���
j

,�j(x, a)��.
Lastly, using Jensen’s inequality, we have

E
x∼Dmax

a

����
i

,�i(x, a)� − ���
j

,�j(x, a)�� ≤�E
x∼Dmax

a

����
i

,�i(x, a)� − ���
j

,�j(x, a)��2
≤�K ⋅ 1

K

∑
a∈A E

x∼D����
i

,�i(x, a)� − ���
j

,�j(x, a)��2
=�K ⋅ E

i,j

.

D.2.3 Decomposition of regret

To proceed with the analysis we require some additional notation. We let N be the number of values
that m̂ takes on throughout the execution of the algorithm (i.e., N is the number of candidate policy
classes that are tried), and let m̂

k

for k ∈ [N] denote the kth such value. We let I
k

⊆ [T] denote the
interval for which m̂ = m̂

k

, and let T
k

denote the first timestep in this interval.

We let S
t

denote the value of the set S at step t (after uniform exploration has occurred, if it occurred).
We let I

k

= I
k

� S
T

denote the rounds in interval k in which uniform exploration did not occur.

We let Ê
ij

(t) the random variable defined by running EstimateResidual using the dataset H
j

(t) =�(�j(x
s

, a
s

), `
s

(a
s

))�
s∈S

t

and empirical second moment matrices ⌃̂
i

and ⌃̂

j

at time t. Note that
Ê
i,j

(t) is well-defined even for pairs (i, j) for which the algorithm does not invoke EstimateResidual
at time t.

We partition the intervals as follows: Let k
0

be the first interval containing t ≥ Tmin

m

� , and let k
1

be
the first inteval for which k ≥m�. We will eventually show that with high probability k

1

≥ N , or in
other words, once the algorithm reaches a class containing the optimal policy it never leaves (if it
reaches such a class, that is).

Let Reg(I
k

) denote the regret to m� incurred throughout interval k. We bound regret to ⇡� as

Reg ≤ k0−1�
k=1

Reg(I
k

) + k1−1�
k=k0

Reg(I
k

) + N�
k=k1

Reg(I
k

). (18)

The main result in this subsection is Lemma 23 which shows that with high probability, the estimatorsÊ
i,j

and Exp4-IX instances invoked by the algorithm behave as expected, and various quantities arising
in the regret analysis are bounded appropriately.
Lemma 23. Let A be the event that the following properties hold:

1. For all a ∈ A and t ∈ [T], �`
t

(a)� ≤ O�⌧�log(KT ��
0

)�. (event A
1

)

25

2. For all t ≥ Tmin

1

,

1

8

Kt1− ≤ �S
t

� ≤ 4Kt1−. (event A
2

)

3. For all i < j, for all t ≥ Tmin

j

,

�Ê
i,j

(t) − E
i,j

� ≤ 1

2

E
i,j

+ ↵
j,t

. (event A
3

)

4. For all k, ∑
t∈I

k

`
t

(a
t

) − `
t

(⇡sq

m̂

k

(x
t

)) ≤ O�⌧�d
m̂

k

�I
k

� ⋅K log

2(TK��
0

) log d
m̂

k

�.
(event A

4

)

5. For all i, j ∈ [M] and all intervals I = [t
1

, t
2

],
�
t∈I

`
t

(⇡sq

i

(x
t

)) − `
t

(⇡sq

j

(x
t

)) ≤ �I � ⋅ (L(⇡sq

i

) −L(⇡sq

j

)) +O�⌧��I � log(2��
0

)�.
(event A

5

)

When C
1

and C
2

are sufficiently large constants, event A holds with probability at least 1 − �.

Proof of Lemma 23. First, note that event A
1

holds with probability at least 1 − ��10 by Proposi-
tion 19.

We now move on to A
2

. For any fixed t, Bernstein’s inequality implies that with probability at least
1 − �

0

,

�S
t

� ≥ E
t

�S
t

� −�4E�S
t

� log(2��
0

) − log(2��
0

) ≥ 1

2

E�S
k

� − 3 log(2��
0

),
and likewise implies that �S

t

� ≤ 3

2

E�S
t

� + 3 log(2��
0

). Next, note that

E�S
t

� = ∑t

s=1�1 ∧ K

s

�.
It follows that E�S

t

� ≤ 2Kt1−. We also have E�S
t

� ≥K(t1− − 2K1−), which is lower bounded
by Kt1−�2 once t ≥ 4 1

1−K, and in particular once t ≥ Tmin

1

whenever C
2

is sufficiently large. If
we union bound over all t, these results together imply that once t ≥ (30 log(2��

0

)�K) 1
1− (which

is implied by t ≥ Tmin

1

when C
2

is large enough), then with probability at least 1 − �
0

T ≥ 1 − ��10,
for all t,

1

8

Kt1− ≤ �S
t

� ≤ 4Kt1−.
For A

3

, let t and i < j be fixed. Note that conditioned on the size of �S
t

�, the examples��j(x
s

, a
s

), `
s

(a
s

))�
s∈S

t

are i.i.d. Consequently, Theorem 2 implies that with probability at least
1 − �

0

,

�Ê
i,j

(t) − E
i,j

� ≤ 1

2

E
i,j

+O��
⌧6

�4

⋅ d1�2j

log

2(2d
j

��
0

)
�S

t

� + ⌧10

�8

⋅ dj log(2��0)
t

�
�,

where we have used Proposition 18 to show that `
s

(a
s

) ∼ subG(4⌧2) and used Proposition 21
to show that � 1

K

∑
a∈A E��j(x, a)`(a)��

2

≤ ⌧2. Conditioned on A
2

, we have �S
t

� = ⌦(Kt1−)
once t ≥ Tmin

1

, and so when C
1

is a sufficiently large absolute constant, �Ê
i,j

− E
i,j

� ≤ 1

2

E
i,j

+ ↵
j,t

.
By union bound, we get that conditioned on event A

2

, event A
3

holds with probability at least
1 −M3T �

0

≥ 1 − ��10.

To prove A
4

, we appeal to Proposition 14. To do so, we verify the following facts: 1. Losses belong
to subG(4⌧2) (Proposition 18) 2. Each policy class ⇧

m

is compact and contains ⇡sq

m

(compactness is
immediate, containment of ⇡sq

m

follows from Proposition 21) 3. The Natarajan dimension of ⇧
m

is at
most O(d

m

log(d
m

)) (Proposition 15).

Now let k ∈ [N] be fixed. Since Proposition 14 provides an anytime regret guarantee for Exp4-IX,
and since the context-loss pairs fed into the algorithm still follow the distribution D (the step at which
we perform uniform exploration does not alter the distribution). Consequently, conditioned on the
history up until time T

k

, we have that with probability at least 1 − �
0

,

�
t∈I

k

`
t

(a
t

) − `
t

(⇡sq

m̂

k

(x
t

)) ≤ O�⌧�d
m̂

k

�I
k

� ⋅K log

2(TK��
0

) log d
m̂

k

�,

26

since I
k

is precisely the set of rounds for which the Exp4-IX instance was active in epoch k. Taking a
union bound over all M Exp4-IX instances and all possible starting times for each instances, we have
that with probability at least 1 −MT �

0

≥ 1 − ��10, the inequality above holds for all k.

For A
5

, let i, j ∈ [M] and the interval I = {t
1

, . . . , t
2

} ⊂ [T] be fixed. The, since `
t

(a) ∼ subG(4⌧2)
for all a. Hoeffding’s inequality implies that with probability at least 1 − �

0

,

�
t∈I

`
t

(⇡sq

i

(x
t

)) − `
t

(⇡sq

j

(x
t

)) ≤ �I � ⋅ (L(⇡sq

i

) −L(⇡sq

j

)) +O�⌧��I � log(2��
0

)�.
By a union bound over all i, j pairs and all such intervals, we have that A

5

occurs with probability at
least 1 −M2T 2�

0

≥ 1 − ��10. Taking a union bound over events A
1

through A
5

leads to the final
result.

D.2.4 Final bound

We now use the regret decomposition (18) in conjunction with Lemma 23 to prove the theorem. We
use ˜O to suppress factors logarithmic in K, T , M , and log(1��).
Condition on the event A in Lemma 23, which happens with probability at least 1 − � so long as C

1

and C
2

are sufficiently large absolute constants.

We begin from the regret decomposition

Reg ≤ k0−1�
k=1

Reg(I
k

) + k1−1�
k=k0

Reg(I
k

) + N�
k=k1

Reg(I
k

).
We first handle regret from intervals before k

0

, which is the simplest case. Observe that that∑k0−1
i=1 �Ik � ≤ Tmin

m

� . Combined with event A
1

, this implies that
k0−1�
k=1

Reg(I
k

) ≤ 2T
k0 ⋅ max

a∈A,t∈[T]�`t(a)� ≤ ˜O�⌧3
�2

⋅ d
m

�
log

3�2(2��) + ⌧ log2(2��) + ⌧K log

1�2(2��)�,
(19)

whenever ≤ 1�3. For every other interval, we bound the regret as follows:
Reg(I

k

) = �
t∈I

k

`
t

(a
t

) − `
t

(⇡�(x
t

))
= �

t∈I
k

`
t

(a
t

) − `
t

(⇡sq

m

�(x
t

)) (using Proposition 20)

= �
t∈I

k

`
t

(a
t

) − `
t

(⇡sq

m̂

k

(x
t

)) + �
t∈I

k

`
t

(⇡sq

m̂

k

(x
t

)) − `
t

(⇡sq

m

�(x
t

)).
For the first summation, using event A

1

and A
4

, we have

�
t∈I

k

`
t

(a
t

) − `
t

(⇡sq

m̂

k

(x
t

)) ≤ �
t∈I

k

`
t

(a
t

) − `
t

(⇡sq

m̂

k

(x
t

)) + ˜O��I
k

∩ S
T

� ⋅ ⌧�log(2��)�
≤ ˜O�⌧�d

m̂

k

�I
k

� ⋅K log

2(2��)� + ˜O��I
k

∩ S
T

� ⋅ ⌧�log(2��)�.
The second summation is exactly zero when k ≥ k

1

, otherwise we invoke event A
5

and Lemma 22,
which imply

�
t∈I

k

`
t

(⇡sq

m̂

k

(x
t

)) − `
t

(⇡sq

m

�(x
t

)) ≤ �I
k

� ⋅ (L(⇡sq

m̂

k

) −L(⇡sq

m

�
k

)) + ˜O�⌧��I
k

� log(2��)�
≤ O��I

k

��K ⋅ E
m̂

k

,m

�� + ˜O�⌧��I
k

� log(2��)�.
Combining these results, we get that

k1−1�
k=k0

Reg(I
k

) + N�
k=k1

Reg(I
k

)
≤ ˜O��S

T

� ⋅ ⌧�log(2��)� + ˜O
�
�

N�
k=k1

⌧
�

d
m̂

k

�I
k

� ⋅K log

2(2��)��
+ ˜O
�
�
k1−1�
k=k0

⌧
�

d
m̂

k

�I
k

� ⋅K log

2(2��) + �I
k

��K ⋅ E
m̂

k

,m

� + ⌧��I
k

� log(2��)��. (20)

27

From here we split into two cases.

Regret after k
1

We first claim that if m̂
k

≥m�, it must be the case that k = N , or in other words, if
it happens that we switch to a policy class containing ⇡�, we never leave this class. Indeed, suppose
that m̂

k

≥ m�, and that at time T
k+1 we switched to m̂

k+1 ≠ m̂k

. Then it must have been the case
that for t = T

k+1 − 1, there was some i for which
Ê
m̂,i

(t) ≥ 2↵
i,t

.

But since we have t ≥ Tmin

i

, event A
3

then implies that
3

2

E
m̂,i

≥ Ê
m̂,i

(t) − ↵
i,t

≥ ↵
i,t

> 0,
which is a contradiction because E

i,j

= 0 for all m� ≤ i < j by Proposition 20. We conclude that
N�

k=k1

⌧
�

d
m̂

k

�I
k

� ⋅K log

2(2��) = ⌧�d
m̂

N

�I
N

� ⋅K log

2(2��),
in the case where k

1

= N , and is zero otherwise. It remains to show that if we happen to overshoot
the class m� (i.e., m̂

N

>m�), then d
m̂

N

is not too large relative to d
m

� .

Suppose m̂
N

>m�, let j ∶= m̂
k1 and consider the epoch prior to N . At the time t = T

N

− 1 at which
we switched, the definition of m̂ implies that we must have had

Ê
m̂,m

�(t) ≤ 2↵
m

�
,t

and Ê
m̂,j

(t) ≥ 2↵
j,t

.

Using event A
3

, this implies that E
m̂,m

� ≤ 6↵
m

�
,t

and 3

2

E
m̂,j

≥ ↵
j,t

. However, Proposition 20 impliesE
m̂,j

= E
m̂,m

� , and so we get that ↵
j,t

≤ 9↵
m

�
,t

. Expanding out the definition for the ↵
m,t

, and
defining c

1

= ⌧

6

�

4 ⋅ 1

K

t

1− and c
2

= ⌧

10

�

8 ⋅ log(2��0)
t

, this implies

C
1

⋅ �c
1

⋅ d1�2
j

log

2(2d
j

��
0

) + c
2

⋅ d
j

� ≤ 9C
1

⋅ �c
1

⋅ d1�2
m

� log2(2d
m

���
0

) + c
2

⋅ d
m

��
or, simplifying,

c
1

⋅ d1�2
j

log

2(2d
j

��
0

) ≤ 9c
1

⋅ d1�2
m

� log2(2d
m

���
0

) + c
2

(9d
m

� − d
j

)
Now consider two cases. If d

j

< 9d
m

� we are done. If not, the inequality above implies
d1�2
j

log

2(2d
j

��
0

) ≤ d1�2
m

� log2(2d
m

���
0

). We conclude that d
j

= O(d
m

�), so
N�

k=k1

⌧
�

d
m̂

k

�I
k

� ⋅K log

2(2��) = O�⌧�d
m

� �I
N

� ⋅K log

2(2��)�. (21)

Regret between k
0

and k
1

Let k
0

≤ k < k
1

. We will bound the term

⌧
�

d
m̂

k

�I
k

� ⋅K log

2(2��) + �I
k

��K ⋅ E
m̂

k

,m

�
appearing in (20). For the first term, note that we trivially have d

m̂

k

≤ d
m

� . For the second, consider
t = T

k+1 − 2. Since we did not switch at this time, we have Ê
m̂

k

,m

�(t) ≤ 2↵
m

�
,t

. Combined with
event A

3

, since t ≥ Tmin

m

� − 1, this implies that E
m̂

k

,m

� ≤ 6↵
m

�
,t

, and so

�I
k

��K ⋅ E
m̂

k

,m

� ≤ ˜O
�
�
⌧3

�2

⋅ �I
k

�K 1
2 (1−)d1�4

m

� log(2��)
T

1
2 (1−)
k+1

�
� + ˜O

�
�
⌧5

�4

⋅ �I
k

�
�

Kd
m

�
log(2��)

T
k+1

�
�

≤ ˜O�⌧3
�2

⋅K 1
2 (1−)�I

k

� 12 (1+)d1�4
m

� log(2��)� + ˜O�⌧5
�4

⋅��I
k

�Kd
m

�
log(2��)�.

(22)

Final result We combine equations (19), (20), (21), and (22), and use the bound on �S
T

� from event
A

2

to get

Reg ≤ ˜O� N�
k=1

⌧
�

K �I
k

�d
m

�
log

2(2��) + ⌧�log(2��)KT 1− + ⌧3

�2

⋅ d
m

�
log

3�2(2��)�
+ ˜O� N�

k=1
⌧3

�2

⋅K 1
2 (1−)�I

k

� 12 (1+)d1�4
m

� log(2��) + N�
k=1

⌧5

�4

⋅�K �I
k

�d
m

�
log(2��)�.

28

Using that ⌧�� ≥ 1 and Jensen’s inequality, this simplifies to an upper bound of

≤ ˜O�⌧�log(2��)KT 1− + ⌧3

�2

⋅K 1
2 (1−)(Tm�) 1

2 (1+)d1�4
m

� log(2��) + ⌧5

�4

⋅�KTm�d
m

�
log

2(2��)�.
For the choice = 1�3, this becomes

Reg ≤ ˜O�⌧�log(2��)K1�3T 2�3 + ⌧3

�2

⋅K1�3(Tm�)2�3d1�4
m

� log(2��) + ⌧5

�4

⋅�KTm�d
m

�
log

2(2��)�
≤ ˜O�⌧3

�2

⋅ (Kd
m

�)1�3(Tm�)2�3 log(2��) + ⌧5

�4

⋅�KTm�d
m

�
log

2(2��)�.
Whenever this regret bound is non-trivial, both terms above can be upper bounded as

Reg ≤ ˜O�⌧4
�3

⋅ (Kd
m

�)1�3(Tm�)2�3 log(2��)�.
For the choice = 1�4, we have

Reg ≤ ˜O�⌧�log(2��)K1�4T 3�4 + ⌧3

�2

⋅K3�8(Tm�)5�8d1�4
m

� log(2��) + ⌧5

�4

⋅�KTm�d
m

�
log

2(2��)�.
To simplify the middle term above we consider two cases. If K1�8d1�4

m

� ≤ (Tm�)1�8, then
K3�8(Tm�)5�8d1�4

m

� ≤K1�4(Tm�)3�4. If this does not hold, then we have

K3�8(Tm�)5�8d1�4
m

� =K3�8√Tm�d1�4
m

� ⋅ (Tm�)1�8 ≤�KTm�d
m

� .

Combining these results and using again that ⌧�� ≥ 1, we have

Reg ≤ ˜O�⌧3
�2

⋅K1�4(Tm�)3�4 log(2��) + ⌧5

�4

⋅�KTm�d
m

�
log(2��)�.

D.3 Proofs for remaining results

Proof of Theorem 4. This result is a fairly immediate consequence of Theorem 3. Let i ≥ 1 be
such that ei−1 ≤ d

m

� ≤ ei. Then the feature map ¯�i must not have been removed by the duplicate
removal step. Moreover, since ¯�i was chosen to be the largest feature map with dimension bounded
by ei, the policy class it induces must contain the policy class induced by �m

�
by nestedness, and

the realizability assumption is preserved by the new set of feature maps. Lastly, we observe that
i ≤ log(d

m

�) ≤ log(T), and that d
i

≤ e ⋅ d
m

� , leading to the result.

29

	Introduction
	Preliminaries
	Model selection for linear contextual bandits
	Key idea: Estimating prediction error with sublinear sample complexity
	Main result
	Proof sketch

	Discussion
	A validation experiment
	Omitted details for Section 2
	Running Hedge with all policy classes
	Aggregating via Corral
	Adaptive -greedy

	Preliminaries for main results
	Properties of subgaussian and subexponential random variables
	Second moment matrix estimation
	Agnostic contextual bandit algorithm for Natarajan classes (Exp4-IX)
	Natarajan dimension for linear policy classes

	Proofs from Section 3
	Square loss residual estimation
	Proof of Theorem 3
	Basic technical results
	Square loss translation
	Decomposition of regret
	Final bound

	Proofs for remaining results

