
A Missing Definitions

We provide the definition for the distribution version of maximum mean discrepancy.

Definition 1. Maximum mean discrepancy (MMD) between two distributions P and Q is defined as:

MMD2(P,Q) = EX,X0⇠P [k(X,X
0)] + EY,Y 0⇠Q[k(Y, Y

0)]

� 2EX⇠P,Y⇠Q[k(X,Y )] (4)

where k(·, ·) is a kernel function underlying an RKHS (Reproducing Kernel Hilbert Space) function
space such that k(x, y) = k(y, x) and k(·, ·) is positive definite.

B Quantization

Quantization Function Define a grid S of points S = {�1,�1+ ⌘,�1+ 2⌘... . . . 1� ⌘, 1}, where
we assume 2/⌘ is an integer for convenience. Define a random quantization function Q : [�1, 1] ! S

as follows:

Q(x) =

(
�1 + k⌘, w.p.

(k+1)⌘�1�x
⌘

�1 + (k + 1)⌘ w.p.
x+1�k✏

⌘

)
(5)

where k = b(x + 1)/⌘c. Here, the value x is quantized to one of the two nearest points from S

with probabilities chosen carefully to make sure that the expected quantization error is 0. Now,

we consider the quantized data set DQ =

⇢
Q

✓q
d
2vi

◆�q

i=1

. Observe that DQ 2 S
q⇥d. Let

ṽ1, ṽ2 . . . ṽq 2 S
1⇥d be the quantized vectors in DQ. Let w(DQ, i) =

Pq
j=1 ṽji.

C Approximation, Efficiency and Privacy Guarantees for the Protocol

Guarantees for h2(·): Now, we prove approximation and privacy guarantees for the hash function
h2(·) with respect to the input dataset it operates on. We observe that computing h2(·) involves
maintaining a distribution over | 2⌘ |

d variables which is exponentially large. We first prove that we

need only linear O
⇣

d
⌘

⌘
memory and update time to maintain the different distributions.

Lemma 1. In Algorithm 2, for all 0  t  T , Pt(s) needs O
⇣

d
⌘

⌘
memory and update time.

Proof. It is enough to prove that distribution Pt(s) satisfies the following two properties:

a) (Product Distribution): Pt(s) =
dQ

i=1
Pt(si), 8t here Pt(si) is the marginal distribution on the

coordinate i.

b) (Marginal Update): Pt(sj) = Pt�1(sj), j 6= i(t). Pt(sj) =
Pt�1(sj) exp [sj (µj � w(Pt�1, j)/2q)] , j = i(t).

We first prove (a) by induction. The base case is true since the initial distribution is uniform. Now
suppose it is true for some t� 1, with t > 1.

Pt(s) =
Pt�1(s) exp(si(t)

µi(t)�w(Pt�1,i(t))
2q )

P
s Pt�1(s) exp(si(t)

µi(t)�w(Pt�1,i(t))
2q )

=
⇥
⇧i 6=i(t)Pt�1(si)

⇤
⇤

2

4 Pt�1(si(t)) exp(si(t)
µi(t)�w(Pt�1,i(t))

2q )
P

s Pt�1(s) exp(si(t)
µi(t)�w(Pt�1,i(t))

2q )

3

5 (6)
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Now,
X

s

Pt�1(s) exp(si(t)(µi(t) � w(Pt�1, i(t)))/2q)

=
X

s

X

s(i(t))=s

Pt�1(s|s(i(t)) = s) exp(s
µi(t) � w(Pt�1, i(t))

2q
)

=
X

s

exp(s
µi(t) � w(Pt�1, i(t))

2q
)
X

si(t)=s

Pt�1(s|si(t) = s)

=
X

s

exp(s(µi(t) � w(Pt�1, i(t)))/2q)Pt�1(si(t) = s) (7)

It follows that the summation expression only depends on the coordinate i(t) and hence we have
decomposed Pt(s) into distributions that are dependent only on the coordinates. Now (b) follows by
computing the marginal distributions on each coordinate.

Now, we prove an additive approximation guarantee for every coordinate of h2(D, ").
Theorem 3. (Expected Approximation Guarantee) Algorithm 2 has the following approximation
guarantee:

E
"
max
i2[d]

�����
1

q
w(D, i)�

r
2

d

1

q
w(Pavg, i)

�����

#
 2

r
2 log(2/⌘)

d2
+ 11

p
2
log d

q"
p
d
+

4

d
+ 2d exp(�q/4) + ⌘

After the quantization step, the algorithm for h2(·) (Algorithm 2) follows steps similar to the MWEM
algorithm of Hardt et al. (2012) but applied to the vectors in dataset DQ. The different scalar
queries on this data set are essentially the sums of the vectors in DQ along each of the d coordinates.
Therefore, we have the following theorem from Hardt et al. (2012), adapted to our case where the data
set is DQ and the set of queries are the marginal sums w(DQ, i). This gives the following guarantee:

Theorem 4. Hardt et al. (2012) For any constant c � 1, with probability at least 1� 2T
dc , Algorithm

2 produces Pavg such that: maxi2[d]|w(DQ, i)� w(Pavg, i)|  2q
q

d log|S|
T + (3c+ 2) log d

" .

Proof. This follows directly from Hardt et al. (2012), where we set the distribution support to be |S|d
and support of every entry in DQ to be from [�q, q].

Now, we provide an approximation guarantee for the quantization step using the Q function.

Lemma 2. E[w(DQ, i)] =
q

d
2w(D, i). With probability at least 1 � 2d exp(� q

4 ), we have the

following approximation:
��� 1q
q

2
dw(DQ, i)� 1

qw(D, i)
���  ⌘

Proof. Every variable ṽji �
p
2dvji is an independent mean zero random variable bounded in the

interval [�⌘, ⌘]. Therefore, applying Chernoff Jukna (2011) bounds for bounded random variables
with deviation q⌘ to the sum random variable w(DQ, i) and combining it with a union bound on the
d coordinates yields the result.

Proof of Theorem 3. The theorem statement follows from the following: a) | 1qw(D, i) �q
2
d
1
qw(Pavg, i)|  2 in the worst case and b) Lemma 2 and choosing the parameters T = d

2
, c = 3

in Theorem 4 .

Final Differential Privacy and Approximation Guarantees: We now describe the choices of
different parameters in our protocol, including, ✏`,T over various epochs. In each of the p epochs
(note that p is the final summary size), we apply Algorithm 2. In Theorem 2, we prove that releases
of aggregator to any data owner i in our protocol are ✏-differentially private (using the composition
theorem from Kairouz et al. (2017)) with respect to data sets of all other data owners except i. Further,

13



we also bound the final expected additive error of our protocol over multiple rounds. Hence, using the
following corollary (of a theorem due to Nemhauser, Wolsey and Fisher) we obtain approximation
guarantees closely matching the greedy algorithm.
Theorem 5. (Corollary of Nemhauser et al. (1978)) Given a non-negative, monotone, submodular
function f : 2U ! R+ [ {0}. Let OPT be the optimal subset maximizing f such that |OPT |  p.
Similarly, let A be the subset produced by greedy algorithm such that the additive error in the
marginal gain in iteration i is �i. Then, f(A) � (1� e

�1)f(OPT )�
P

i2[p] �i

D Proof of Theorem 2

We first prove the following differential privacy guarantees on various participant releases:

Theorem 6. For any fixed 1
e > �̃ > 0, the releases of the aggregator during Algorithm 3 to the any

data owner i is (", �̃)-differentially private over all the iterations/epochs with respect to [j 6=iDi

when we set ✏`,T = ✏q
16T ` log( 1

�̃
) log p

. Similarly, we have (✏, �̃)-differentially privacy over all the

iterations with respect to validation set Dv , when we set "v = ✏p
16T

.

We quote a recent result on composition theorems for differential privacy first.
Theorem 7. Kairouz et al. (2017) For any ✏` > 0, �` 2 [0, 1] for any ` 2 {1, 2, . . . , k} and
�̃ 2 [0, 1/e], the class (✏`, �`)-differentially private mechanisms satisfy (✏̃�̃, 1� (1� �̃)⇧k

`=1(1��`))-
differential privacy under k-fold adaptive composition, for ✏̃�̃ =

min

8
<

:

kX

`=1

✏`,

kX

`=1

(e✏` � 1)✏`
e✏` + 1)

+

vuut
kX

`=1

2✏2` log

✓
1

�̃

◆
,

kX

`=1

(e✏` � 1)✏`
(e✏` + 1)

+

vuuut
kX

`=1

2✏2` log

0

@e+

qPk
`=1 2✏

2
`

�̃

1

A

9
>=

>;

Proof of Theorem 6. There are two types of releases by the aggregator to the data providers, over
various iterations and we bound the differential privacy for these releases individually.

1. Releases of hashes h1(·) and h2(·) over multiple iterations.

2. Release of information in the process of collecting data points from “winner” data sources.

Let us now analyze differential privacy of releases of type 2. We set ✏auc = ✏
3
p
2 log 1

�

K
�1
3 and

⌧ = K
2
3 . For the analysis of differential privacy from the perspective of data source j, consider

two neighboring datasets D = [j 6=iDi and D
0 = D [ {x}. Let us assume that x belongs to data

source i
0 6= j. When D

0 is involved, define an iteration as bad if (a) x is chosen by a data owner as
marginally the best point in Di0 (b) x is not chosen by the aggregator. By the virtue of our auction
mechanism, there are at most ⌧ such bad iterations, beyond which the point x is chosen by the
aggregator.

The key point to note is that if an iteration is not bad, then the output distribution, i.e., the probabilities
of chosen points by the aggregator, remains unchanged compared to the case when D is involved.

Further, in a bad iteration, the bid-value position of the data source j can change by at most 1, say
from j to j+1 and thus the probability of choosing the data source Dj’s point can change by a factor
of at most e�(j�1)✏auc

e�j✏auc = e
✏auc . Thus, the aggregator’s queries for the private auction to data source j

for these iterations are ✏auc-differentially private.

Now, applying Theorem 7, we have:
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⌧X

b=1

(e✏auc � 1)✏auc
(e✏auc + 1)


⌧X

b=1

✏
2
auc =

✏
2

18 log 1
�̃

 ✏
2
/18

(8)

and
vuut

⌧X

b=1

2✏2auc log

✓
1

�̃

◆
=

vuut
2✏2 log 1

�̃

18 log2
⇣

1
�̃

⌘

 ✏

3
(9)

In Algorithm 2, steps 6 and 7 together release i(t) and µi(t) (that are function of the final summary
Ds) which is used in the computation of Pt(s) which is used in the release from the aggregator to the
data owners. Each of them is " differentially private. However, the `-th call to Algorithm 2 by the
protocol 3 uses " = ✏`,T . There are T steps inside each call.

We now set ✏`,T = ✏q
36T ` log( 1

�̃
) log p

, for iteration ` and apply Theorem 7 over all iterations. Firstly,

note that by basic calculus, for x � 0, ex�1
ex+1  x. This is because, setting f(x) = (ex�1)�x(ex+1)

has f(0) = 0 and f
0(x) = e

x � (ex + 1)� x(ex + 1) <= 0.

Thus, we have,

pX

`=1

2TX

t=1

(e✏`,T � 1)✏`,T
(e✏`,T + 1)


pX

`=1

2TX

t=1

✏
2
`,T

=
pX

`=1

✏
2

18 log
⇣

1
�̃

⌘
` log p

 ✏
2

18 log
⇣

1
�̃

⌘
log p

 
pX

`=1

1

`

!
 ✏

2

18
(10)

and
vuut

pX

`=1

2TX

t=1

2✏2`,T log

✓
1

�̃

◆
=

vuut
pX

`=1

2 log 1
�̃
✏2

18 log
⇣

1
�̃

⌘
` log p

 ✏

3
(11)

By Theorem 7, the protocol releases to any data owner is (✏̃, �̃)-differentially private with respect to
Ds �Di where ✏̃  2✏

3 + ✏2

9 . A similar computation shows that the releases of the aggregator during
the protocol is (✏, �̃)-differential private with respect to the validation set Dv .

Now, we bound the overall expected additive error of our protocol. Define err(E) as the expected
additive error in computing an expression E.

Lemma 3. Suppose in the greedy algorithm, Sq is the set of points chosen until iteration q and xq+1

be the new point chosen in iteration q + 1. Let Dv be the validation set. Let ⇠ denote the maximum
expected error in computing the terms, err(

P
i2Dv

k(xq+1,yi)

m )  ⇠ and err(
P

j2Sq
k(xq+1,yj)

q )  ⇠.
Then the overall expected additive error of the algorithm is bounded by �  7⇠ ln p.
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Proof. Consider the marginal increment in J(.) in iteration q + 1:

J(Sq [ xq+1)� J(Sq)

=
2

m

8
<

:
1

q + 1

X

i2Dv,j2Sq+1

k(yi, xj)�
1

q

X

i2Dv,j2Sq

k(yi, xj)

9
=

;

�

8
<

:
1

(q + 1)2

X

i,j2Sq+1

k(xi, xj)�
1

q2

X

i,j2Sq

k(xi, xj)

9
=

;

=
1

q + 1

⇢
2
P

i2Dv
k(xq+1, yi)

m

� q

q + 1

(1 + 2
P

j2Sq
k(xq+1, xi))

q

)

+

✓
1

q + 1
� 1

q

◆ P
q2Sq

P
i2Dv

k(xq, yi)

m
+

✓
1

(q + 1)2
� 1

q2

◆ X

i,j2Sq

k(xi, xj) (12)

Now, we bound the additive error in computing this marginal increment as follows.

err(J(Sq [ xq+1)� J(Sq))

 1

q + 1
err
✓
2
P

i2Dv
k(xq+1, yi)

m

◆
+

q

(q + 1)2
err

 
2
P

j2Sq
k(xq+1, xi)

q

!

+

✓
1

q
� 1

q + 1

◆ X

q2Sq

err
✓P

i2Dv
k(xq, yi)

m

◆
+

✓
q

q2
� q

(q + 1)2

◆ X

q2Sq

err

 P
j2Sq

k(xq, xj)

q

!

 2⇠

q + 1
+

2q⇠

(q + 1)2
+

1

q(q + 1)

X

q2Sq

⇠ +
2q + 1

q(q + 1)2

X

q2Sq

⇠

=
2⇠

q + 1
+

2q⇠

(q + 1)2
+

1

q(q + 1)
q⇠ +

2q + 1

q(q + 1)2
q⇠  7⇠

q + 1
(13)

By Theorem 5, the overall expected additive error in the greedy algorithm is bounded by � P
q2[p] �q 

P
q2[p]

7⇠
q+1  7⇠ ln p

Lemma 4. Let 0 < a < 1 be a small fixed constant. Let |Dv| � 11⇤4
p
2
p
d log d log2 p
"v

, |Dinit| �
121 ⇤ 8d2 log2 d log( 1

�̃
) log5 p, d � 16(log 2N)(log p)2

a2 , ⌘  1
d , we have �  7⇠ ln p < O( log p

p
ln dp

d
)+

a+ 1
✏ log p < 1.

Proof. Let N be total number of points in the system. First, we use a theorem from Rahimi & Recht
(2008), to show that P( sup

xi,xj

|h1(xi) · h1(xj)� k(xi, xj)| � "rr)  1
N2 . Indeed, for a fixed pair of

points, xi, xj , it holds that: P(|h1(xi) · h1(xj)� k(xi, xj)| � "rr)  exp (�d"2rr
4 ). Thus, by union

bound, and setting d � 16 log 2N
"2rr

, we have the above claim.
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Now, from Theorem 3, for iteration ` in the protocol, we have the following guarantee:

err
✓
w(h1(Ds), i)

q

◆
 2

r
2 log(2/⌘)

d2
+ 11

p
2

log d

q✏`,T

p
d
+

4

d
+ 2d exp(�q/4) + ⌘ (14)

Observe that at iteration `, q = ` + |Dinit| since this is the effective size of the summary. By the
inequality between the arithmetic and geometric mean, we have: q �

p
4`|Dinit|. Now, we let

|Dinit| � 121 ⇤ 8d2 log2 d log( 1
�̃
) log5 p. Now, we set ⌘  1

d . Then,

err
✓
w(h1(Ds), i)

q

◆
 2

r
2 log(2/⌘)

d2
+

6

d
+

1p
d✏ log2 p

= �max

Let h1(xq+1)[i] be the i-th coordinate of h1(xq+1). Observe that |h1(xq+1)[i]| 
q

2
d .

We have the following expected additive error:

err
✓P

j2Ds
k(xq+1, xj)

q

◆
 "rr+

err
✓P

j2Ds
h1(xq+1) · h1(xj)

q

◆
 "rr +�max

p
2d. (15)

We set ✏err = a/ log p for some small constant a > 0. Therefore, d � 16 log 2N(log p)2/a2. Now,
we have:

err
✓P

j2Ds
k(xq+1, xj)

q

◆
 "rr +�max

p
2d

=
a

log p
+ 4

r
log(2/⌘)

d
+

6
p
2p
d

+
1

✏ log2 p

= O(

p
ln dp
d

) +
a

log p
+

1

✏ log2 p
(16)

Similarly, we can show that for validation set Dv, we need |Dv| � 11 ⇤ 4
p
2
p
d log d log2 p. Now,

since "v = "p
16d2

, the �max bound holds for the validation term too.

Lemma 5. In Algorithm 3 the expected number of points accessed by the aggregator is p(K⌧ + 1
✏auc

) =

(1 +
3
p
2 log 1

�
✏ )pK

1
3 = O(

p log 1
�

✏ K
1
3 )

Proof. In the Step 13 of the mechanism, the expected number of points chosen in each iteration isP
i2[K] P(xi) =

P
i2[K] e

(i�1)✏auc = (1� e
�K✏auc)/(1� e

�✏auc)  1
1�e�✏auc  1

✏auc
. Thus in p

iterations, the expected number of points chosen = p
✏auc

. In the second step, the maximum number
of points that are the best for a data source more than ⌧ times is pK

⌧ . Thus the lemma follows.

Proof of Theorem 2. The proof follows from the results in this section.
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E Proof of Theorem 1

We begin by quoting a known result from Kim et al. (2016).
Theorem 8. Kim et al. (2016) Let H 2 Rg⇥g be element-wise non-negative and bounded with
h
⇤ = max i, j 2 [g]hi,j > 0. Define a binary matrix E with entries ei,j = 1 if hi,j = h

⇤ and 0
otherwise. Similarly define E

0 = 1 � E. Given the ground set S ✓ 2[g] consider the linear form:
F (H, S) = hA(S),Hi 8S 2 S . Given s = |S|, define the functions:

↵(g, s) = a(S[{u})�a(S)
b(S) , �(g, s) = a(S[{u})+a(S[{v})�a(S[{u,v})�a(S)

b(S)+b(S[{u,v}) , where a(S) =

F (E, S) and b(S) = F (E0
, S) for all u, v 2 S. Let s⇤ = maxS2S |S|, we have

1. F (H, S) is monotone, if hi,j  h
⇤
↵(g, s), 80  s  s

⇤

2. F (H, S) is submodular, if hi,j  h
⇤
�(g, s), 80  s  s

⇤

Proof of Theorem 1. Firstly, we show that the function J(S) can be written in a linear form. Note
that the same linear form used by Kim et al. (2016) would not work for our case.

We define U as the kernel matrix of all the points in D1 [D2 . . . Dk [Dv .

Now, we observe that our J(S) = hA(S),Ui, where A(S) = 2
m|S|1[i2S]1[j2V ] � 1

|S|21[i2S]1[j2S].
Let E as the binary matrix defined in Theorem 8 with H = U.

We now compute a(S) = hA(S),Ei and b(S) = hA(S),1�Ei values.

Computing a(S):

a(S) = hA(S), Ii = 2

m|S|0�
1

|S|2 |S| = � 1

|S| (17)

Computing b(S):

b(S) = hA(S),1� Ii = hA(S),1i � hA(S), Ii

=
2

m|S| |S|m� 1

|S|2 |S|
2 +

1

|S| =
1

|S| + 1 (18)

Now, we show that the bounds on ↵(g, s) and �(g, s) hold:

↵(g, s) =
a(S [ {u})� a(S)

b(S)
=

1
|S| �

1
|S|+1

1
|S| + 1

=
1

(1 + |S|)2 (19)

Further,

�(g, s) =
a(S [ {u}) + a(S [ {v})� a(S [ {u, v})� a(S)

b(S) + b(S [ {u, v})

=
� 2

|S|+1 + 1
|S|+2 + 1

|S|
1
|S| + 1 + 1

|S|+2 + 1
=

1

n3 + 3n2 + n
(20)

Thus, we have ki,j  �(g, s)k⇤ and hence the conditions of the Theorem 8 are satisfied. Therefore,
J(S) is a monotone and submodular function.

F Additional Privacy Properties of h1(·) :

Consider any data set Dr. Over the course of p epochs, suppose the data source r contributes
pr points by winning bids at Line 7 of Algorithm 3. Let the points be x1,x2, . . . ,xpr . We
show that the joint probability density function of the random variables h1(x1), . . . , h1(xpr ) de-
pends only on the pairwise distances between the points, i.e. kxu � xvk 8u, v 2 [1 : pr]. In
a strong information theoretic sense, this implies that the only information that can be gained
about these points by the aggregator are the pairwise distances between the data points. The
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intention of usage of the hashes is to compute k(xu,xv) = k(kxu � xvk2) approximately at
the aggregator. Hence, the aggregator gains strictly no more information than it needs. Con-
sider the matrix

⇥
h1(x1)T , . . . , h1(xpr )

T
⇤T . Each column of this matrix is an i.i.d sample drawn

from the distribution on the variables:
hp

2/d cos(wT
x1 + b) . . .

p
2/d cos(wT

xpr + b)
i

where
w ⇠ N(0, 2�In), b ⇠ Uniform[0, 2⇡]. In fact, we will analyze the joint characteristic function of
the angles in a single column given by:

⇥
(wT

x1 + b) mod 2⇡ . . . (wT
xpr + b) mod 2⇡

⇤T . In an
intuitive sense, these variables represent a randomly shifted jointly Gaussian variables ‘wrapped’
around a unit circle (usually called the wrapped distribution Mardia & Jupp (2009)). The next theorem
shows that the characteristic function depends only on the pairwise distance of the data points.
Theorem 9. Let �w(·) be the characteristic function of the wrapped distribution of the variables⇥
(wT

x1 + b) mod 2⇡, . . . , (wT
xpr + b) mod 2⇡

⇤
. Then, we have: a) 8s 2 Rpr �Zpr , �w(s) =

0. b) 8k 2 Zpr , 1
k 6= 0, �w(k) = 0. c) 8k 2 Zpr , 1

k 6= 0, �w(k) = �(k) =
Q

i,j2[1:pr]

�
�
(i,j)
�mi,j

where mi,j are some integers that depend on the vector k alone. Here, �(i,j) = exp(�2�kxi �
xjk22) = k(kxi � xjk2).

Remark: We are not aware of any analysis of the joint distribution of multiple data point releases
using Rahimi-Recht random features method for the RBF kernel. We use Fourier analysis, properties
of multi-dimensional Dirac-combs Giraud & Peschanski (2015) to prove the above theorem.

F.1 Proof of Theorem 9

We first review results relating characteristic function of unwrapped distributions and the wrapped
distributions. This relationships is due to some facts known about multi-dimensional Dirac Comb in
standard Fourier Analysis. Let p(v) be a density function defined on Rs. Here p(·) is the unwrapped
joint density function of the variables,

⇥
w

T
x1 + b . . .w

T
xpr + b

⇤
. Here, v 2 Rs. The wrapped

distribution of this density function is given by: pw(v) =
P

k2Zn

p(v + 2⇡k). Define the Dirac comb

as: �2⇡(v) =
P

k2Zs

�(v � 2⇡k) where �(v) =
Q

i �(vi) and �(·) is a single dimensional Dirac-delta

function. Although Dirac-delta functions are not rigorous as a real function, as a measure on the
space Rs, they are very well defined and rigorous.

It is known that the Fourier Series of the Dirac comb is given by:

�2⇡(v) =
1

(2⇡)s

X

k2Zs

exp(�ik
T
v) (21)

Therefore, any wrapped distribution can be written in the following way:

pw(v) =

Z
p(v0)�2⇡(v � v

0)dv0

=
1

(2⇡)s

Z
p(v0)

X

k2Zs

exp(�ik
T (v � v

0))dv0 (22)

=
1

(2⇡)s

X

k2Zs

�(k) exp(�ik
T
v) (23)

Here, �(k) = Ep[exp(ikv)] is the characteristic function of the distribution p(·) on the integer lattice.
Therefore, any wrapped distribution can be written as a Fourier series with Fourier Coefficients being
the characteristic function evaluated at the integer lattice.

Let �w(·) be the characteristic function of the wrapped distribution. Further, �w(k) = �(k), 8k 2
Z+ while �w(s) = 0 when s 2 Rs Zs is not on the integer lattice. This is very clear from the Fourier
serier representation of the wrapped distribution as in (22).
Lemma 6. �w(k) = �(k) = 0, 8k : 1T

k 6= 0 when p(·) is the unwrapped joint distribution of⇥
w

T
x1 + b . . .w

T
xpi + b

⇤
where w ⇠ N (0, 2�In) and b ⇠ Uniform[0, 2⇡].
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Proof. Let X =
⇥
x
T
1 . . .x

T
pr

⇤T . Therefore, variables wT
xj are jointly Gaussian with the covariance

matrix ⌃ = XX
T . Given a fixed b, the conditional characteristic function over the integer lattice is

given by:

�|b(k) = exp(i(kT
1)b) exp(�1

2
k
T⌃k) (24)

This is the characteristic function of the standard multidimensional normal distribution.

Eb[exp(imb)] = 0 for an integer m and b ⇠ Uniform[0, 2⇡]. Therefore, by (24), we have the desired
result.

We will show that the �(k) is a function only of the pairwise distances between the points whenever
1
T
k = 0.

Lemma 7. Let k(i,j) = [0 . . . 1
position i

. . . . . . �1
position j

]). Then, �
�
k
(i,j)
�
= exp(�2�kxi � xjk22).

Further, whenever k
T
1 = 0, �w(k) = �(k) =

Q
i,j2[1:pr]

�
�
�
k
(i,j)
��mi,j where mi,j are some

integers that depend on the vector k alone.

Proof of Lemma 7. Whenever k
T
1 = 0, by (24) �(k) is a function of kkT

Xk2. Let
P

|ki| =
2t, t 2 Z+. The sum of absolute values is an even integer because

P
ki = 0. Now, we can write

kkT
Xk2 as follows:

kkT
Xk2 = k

tX

j=1

(gi � hi)k22 (25)

where gi = xj for some j 2 [1 : pr] and hi = xk for some k 2 [1 : pr]. Because any distinct data
point xj is multiplied only by either positive or negative integers, clearly {gi}ti=1

T
{hi}ti= = ;.

Now, we have:

k
tX

j=1

(gi � hi)k22 =
tX

j=1

k(gj � hj)k22+

2 ⇤
X

j,j0

(gj � hj)
T (gj0 � hj0) (26)

The first terms set of terms clearly are function of pairwise distances between points. Now we rewrite
the cross terms as linear combination of pairwise distances in the following way.

2 ⇤ (gj � hj)
T (gj0 � hj0) = kgj � hj0k22 + kgj0 � hjk22

� kgj � gj0k22 � khj � hj0k22 (27)

Hence, characteristic function can be written as pairwise distances between the data points.

Let k(i,j) = [0 . . . 1
position i

. . . . . . �1
position j

]). Then, �
�
k
(i,j)
�
= exp(�2�kxi � xjk22). These are

exactly the kernel values that the Aggregator is interested in. By (26) and (27), it is clear that the
characteristic function can be written in terms of powers of �

�
k
(i,j)
�
, i.e.

�(k) =
Y

i,j2[1:pr]

⇣
�

⇣
k
(i,j)
⌘⌘mi,j

(28)

where mi,j are some integers that depend on the vector k alone.

Proof of Theorem 9. The results of the two lemmas above prove the theorem.
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G Additional Experiments

As discussed before, we set the parameters of our algorithm as in Table 1.

� = 0.1 d = 140
Tinit(= T, ` = 1) =

d
1.5 = 1656 Tsubs(= T, ` � 2) = 5

"v "`,T

0.01 0.05 for ` = 1, 0.01p
pTsubs

for ` � 2

Table 1: We describe the parameters for our experiments. Here � is the RBF kernel parameter. d
is the dimension of the Rahimi-Recht hash function h1(·). We use two different T parameters for
different epochs given by Tinit (for the first epoch) and Tsubs (for subsequent epochs). ✏v is the ✏

parameter for h2(·) for the validation set and ✏`,T is set for h2(·) on summaries Ds over epochs `.

MNIST Dataset: We now demonstrate similar results on a standard hand-written digit recognition
dataset namely MNIST. We start with a brief description of the setup.

Training: We distribute the MNIST training dataset among five data owners based on digit labels as
follows. Splitting the digits into groups [[0, 1], [3, 4], [5, 6], [7, 8], [9, 2], we allocate the training data
corresponding to these digits to the corresponding data owners. Testing: The test set contains data
corresponding to two labels [3, 4] sampled with ratio [0.7, 0.3]. Validation: We sample (and remove)
from the test set with probability 0.25 to construct the validation dataset.

Figure 2: MNIST Dataset (Top): Comparison of the percentage increase in MMD
2 of both the

private and uniform sampling algorithms with respect to baseline greedy algorithm. Lower values
indicate better performance. Consistently there is 10-15% performance difference from uniform
sampling. (Bottom): Comparison of the classification accuracy of the three algorithms using a neural
network with one hidden layer of 32 units. Higher numbers indicate better performance.

As before, we vary the number of samples and in Figure 2, compare the percentage increase in
MMD

2 with respect to greedy, i.e., MMD2(ALGM)�MMD2(GREEDY )
MMD2(GREEDY ) ⇥ 100. Recall from above

that ALGM is either our private greedy algorithm or the uniform sampling algorithm. Our results
show that we consistently outperform the uniform sampling algorithm by at least 10-13%. In Figure 2,
we compare the performance of these algorithms using a neural net with 32 neurons in a single hidden
layer and drop out of 0.2. Note that since our goal is to demonstrate that the relative performance
of these algorithms, we are not concerned with the actual performance numbers (prior works on
this subject in fact use a much simple 1-Nearest Neighbor classifier). We again find that the private
algorithm beats uniform sampling in most cases.
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