
A Proofs

A.1 Symmetry-Based Disentangled Representation Learning requires interaction with
environments

We prove Theorem 1.

Theorem. Suppose we have a SB representation (f, ·Z) of a world W0 = (W = (w1, .., wm) ∈
Rm×d, ·W0) w.r.t to G = G1 × ...×Gn using a training set T of unordered observations ofW0. Let
Wk be the set of possible values for the kth dimension of w ∈W .
Then:

1. There exists at least kW,G = n[(mink(card(Wk))!]− 1 worlds (W1, ..,WkW,G
) equipped

with the same world statesWi = (w1, .., wm) and symmetriesG, but different group actions
·Wi .

2. For these worlds, (f, ·Z) is not a SB representation.

3. These worlds can produce exactly the same training set T of still images.

Proof. We prove the three points.

1. For each symmetry Gi, we can shuffle the order of states along each axis of W . For instance, if
the symmetry is translation along a cyclic hue axis composed of three colors (red, green, blue). Then
one can consider two worlds where translating right from red moves the agent in blue (world 1) or
green (world 2).

We provide a lower bound to the number of possible worlds. For a symmetry Gi, the minimal number
of possible visited states is mink(card(Wk)). It is the case if all symmetries affect only one axis of
W and all axis of W have the same number of possible values (= mink(card(Wk)). The number of
possible world is then given by the number of permutations of a set composed of mink(card(Wk))
elements, which is mink(card(Wk))!.

There are n symmetries inG = G1×..×Gn, hence there are at least kW,G = n[(mink(card(Wk))!]−
1 possible worlds (W1, ..,WkW,G

) that are notW0 but share the same state space W and symmetries
G. They differ by the action ·Wi

of G on the worldWi.

2. For any different worldWi thanW0, there exists a state and a symmetry (g, w ∈ G×W) such
that the action of g on w is not the same on the two worlds. Thus, f is not equivariant between
the group actions on W and Z w.r.t to both W0 and Wi. Hence (f, ·Z) is necessarily not a SB
representation w.r.t to any of the worlds (W1, ..,WkW,G

) and G.

Formally, let i ∈ [|1..kW,G|]. Wi 6=W0 =⇒ ∃(g, w ∈ G×W), g ·Wi
w 6= g ·W0

w. Necessarily,
f(g ·Wi

w) 6= f(g ·W0
w). Yet, (f, ·Z) is SB w.r.tW0: f(g ·W0

w) = g ·Z f(w). Hence, f(g ·Wi
w) 6=

g ·Z f(w), i.e. for worldWi, (f, ·Z) is not equivariant between the group actions on W and Z.

3. (W0, ..,WkW,G
) all share the same state space. Hence they can theoretically produce any

training set of still images collected inW0.

A.2 Trivial representations

We first define trivial representations and then prove that they are LSB-disentangled. We will then
use this definition to prove Theorem 2.

Definition 1. Z is a trivial representation if and only if f is constant.

If Z is a trivial representation, we thus have that each state of the world w ∈ W has the same
representation.

Proposition 1. If Z is a trivial representation then Z is LSB-disentangled w.r.t to every group
decomposition.

We prove Proposition 1 which states that trivial representations are LSB-disentangled.

11

Proof. The definition of LSB-disentangled representation of dimension 2 is:

1. There is a linear action ·Z : G× Z → Z. It thus can be viewed as a group representation
ρ : G→ GL(Z).

2. The map f :W → Z is equivariant between the actions on W and Z.

3. There is a decomposition Z = Z1 × Z2 or Z = Z1

⊕
Z2 such that each Zi is fixed by the

action of all Gj , j 6= i and affected only by Gi.

Let ρ(g) be the identity function ∀g ∈ G, which is linear.

We have that f :W → Z is constant. We can verify that f is equivariant between the actions on W
and Z:

ρ(g)(f(w)) = f(w) = f(g ·W w) (3)

Finally, Z has the same representation ∀w ∈ W , so Z is fixed by the action of any subgroup of G.
Hence for all decomposition of G, point 3. of the definition is satisfied.

A.3 It is impossible to learn a LSB-disentangled representation of dimension 2 in the
considered environment

We prove Theorem 2 which states that it is impossible to learn a LSB-disentangled representation
of dimension 2 in the environment presented in Sec.4 (the result also applies to the environment
considered in Higgins et al. (2018)).
Theorem 2. For the considered world, there exists no LSB-disentangled representation Z w.r.t to the
group decomposition G = Gx ×Gy , such that dim(Z) = 2 and Z is not trivial.

Proof. Proof by contradiction.
Suppose that there exists a LSB-disentangled representation Z w.r.t to the group decomposition
G = Gx ×Gy , such that dim(Z) = 2. Then, by definition:

1. There is a linear action ·Z : G× Z → Z. It thus can be viewed as a group representation
ρ : G→ GL(Z).

2. The map f :W → Z is equivariant between the actions on W and Z.

3. There is a decomposition Z = Z1 × Z2 or Z = Z1

⊕
Z2 such that each Zi is fixed by the

action of all Gj , j 6= i and affected only by Gi.

We now prove that if these conditions are verified, f is necessarily constant. Consequently, Z has
the same representation for each state of the world, which is a trivial representation. So, if Z a
LSB-disentangled representation of dimension 2 w.r.t to G, then Z is the trivial representation.

We thus suppose that there exists a LSB-disentangled representation Z of dimension 2 w.r.t to the
group decomposition G = Gx ×Gy . Hence, we have, by point 2. of the definition:

g ·Z f(w) = f(g ·W w) (4)

Since ·Z is linear, we can view it as a group representation ρ, as mentioned in point 1. of the definition:

g ·Z f(w) = ρ(g)(f(w)) (5)

Because f(W) ∈ Z ⊂ R2 and W =Wx

⊕
Wy = (x, y), we can re-write f as:

f(w) = f((x, y))

= (f1(x, y), f2(x, y))
(6)

12

Hence, combining (4) and (5):

f(g ·W (x, y)) = ρ(g)((f1(x, y), f2(x, y))) (7)

We can decompose any g ∈ G into the composition of functions of each subgroup of G, i.e.
∀g ∈ G = Gx × Gy,∃(gx, gy) ∈ Gx × Gy such that g = gx ◦ gy. Plus, by definition of Z and
because W = Wx

⊕
Wy = (x, y), the action of all Gi on W and Z is fixed by the action of all

Gj , j 6= i and affected only by Gi. We can thus re-write both terms of Equation (7).

f(g ·W (x, y)) = (f1((gx(x), gy(y))), f2((gx(x), gy(y))) since g ·W (x, y) = (gx(x), gy(y))
(8)

ρ(g)((f1(x, y), f2(x, y))) = (ρx(gx)(f1(x, y)), ρy(gy)(f2(x, y))) by definition of ρ (9)

Hence, Equation 7 becomes:

(f1((gx(x), gy(y))), f2((gx(x), gy(y))) = (ρx(gx)(f1(x, y)), ρy(gy)(f2(x, y))) (10)

We will now prove that f1 is necessarily constant. The same argument applies for f2.

From Equation (10), we have:

f1((gx(x), gy(y))) = ρx(gx)(f1(x, y)) (11)

gx and gy are respectively translations on the x-axis and y-axis. Let N be the size of the grid, then
∃(nx, ny) ∈ [|0, N |] s.t. (gx(x), gy(y)) = ((x + nx) mod N, (y + ny) mod N). When at edge
of the world, if the object translates to the right, it returns to the left, hence the modulo operation that
represents this cycle. Hence:

f1((gx(x), gy(y))) = f1(((x+ nx) mod N, (y + ny) mod N))

= ρx(gx)(f1(x, y))
(12)

The key argument of the proof lies in the fact that ρx(gx) is necessary cyclic of order 2N (the minimal
order can be inferior to N , but it is not useful to caracterize the minimal order in this proof). Let’s
compose ρx(gx) 2N times:

ρx(gx)
(2N)(f1(x, y)) = f1(((x+ 2N · nx) mod N, (y + 2N · ny) mod N))

= f1((x, y))
(13)

We now use the fact that ρx(gx) is a linear application of R, thus:

ρx(gx) ∈ GL(R) =⇒ ∃(a(gx), b(gx)) ∈ R2 s.t. ∀x ∈ R ρx(gx)(x) = a(gx) · x+ b(gx)
(14)

For notation purposes, we drop the dependence on gx of the coefficients of the real linear application
ρx(gx), and we can rewrite Equation (10):

ρx(gx)(f1(x, y)) = a · f1(x, y) + b (15)

Hence, using Equation 13 we can develop the term ρx(gx)
(2N)(f1(x, y)):

ρ2Nx (gx)(f1(x, y)) = a2N · f1(x, y) + b ·
2N−1∑
i=0

ai

= f1(x, y)

(16)

13

Define c = b ·
∑2N−1
i=0 ai, we have:

a2N · f1(x, y) + c = f1(x, y)

⇐⇒ (a2N − 1) · f1(x, y) + c = 0
(17)

Equation (17) is verified ∀(x, y) ∈ R2. Let ((x1, y1), (x2, y2)) ∈ R2 × R2:

{
(a2N − 1) · f1(x1, y1) + c = 0

(a2N − 1) · f1(x2, y2) + c = 0
=⇒ (a2N − 1) · (f1(x1, y1)− f1(x2, y2)) = 0 (18)

We can now derive conditions on f1 or (a, b). From Equation (18) we know that either f1 is constant
or (a2N − 1) = 0 =⇒ a = 1. If a = 1, then Equation (17) simplifies to c = 0 =⇒ b = 0. So
either ρx(gx) is the identity function or f1 is constant. The same argument applies to f2 and ρy(gy),
hence we have that either f is constant or ρ(g) = Id(R2). By plugging the second option in Equation
(7), we have that ρ(g) = Id =⇒ f is constant.

Hence f is necessarily constant, which implies that Z is a trivial representation.

B Hyperparameters and neural networks architectures

The code for our experiments is available at the following link: https://github.com/Caselles/
NeurIPS19-SBDRL.

More specifically, the architecture and hyperparameters used for all the VAEs is avail-
able here: https://github.com/Caselles/NeurIPS19-SBDRL/blob/master/code/learn_
4_dim_linear_disentangled_representation/vae/arch_torch_sans_cos_sin.py.

All representation are learned using the same base architecture mentioned above. For the Forward-
VAE model, we only add the action matrices mentioned in the description of the model.

As for the training hyperparameters:

• We use 15k transitions for training, batch sizes of 128, β annealed from 1 using a factor of
0.995 at each batch.

• For optimization, we use Adam (Kingma and Ba, 2014) with the standard hyperparameters
provided in PyTorch (Paszke et al., 2017).

• LSB-disentangled representation of dimension 4 (Forward-VAE trained as in Sec.6.2): 35
epochs.

• SB-disentangled representation of dimension 2 (CCI-VAE variant trained as in Sec.6.1): 11
epochs.

• Non-disentangled representation of dimension 2 (Auto-encoder, non-disentangled baseline):
11 epochs.

• SB-disentangled representation of dimension 4 (CCI-VAE trained as in Sec.6.1 but with 4
dimensions, baseline to control for the effect of the size of the representation): 11 epochs.

As for the experiments in Sec.7, we use the standard implementation of random forest in Scikit-Learn,
and we only modify the hyperparameters indicated in the experiments.

14

https://github.com/Caselles/NeurIPS19-SBDRL
https://github.com/Caselles/NeurIPS19-SBDRL
https://github.com/Caselles/NeurIPS19-SBDRL/blob/master/code/learn_4_dim_linear_disentangled_representation/vae/arch_torch_sans_cos_sin.py
https://github.com/Caselles/NeurIPS19-SBDRL/blob/master/code/learn_4_dim_linear_disentangled_representation/vae/arch_torch_sans_cos_sin.py

C Details about Forward-VAE

C.1 Definition of Â

A∗(g) is a 2x2 block-diagonal rotation matrix of dimension 4. For instance, if g = gx ∈ Gx is a

translation on the x-axis, the corresponding matrix is: A∗(gx) =

cos(nx) − sin(nx) 0 0
sin(nx) cos(nx) 0 0

0 0 1 0
0 0 0 1

.

Similarly, for g = gy ∈ Gy which is a translation on the y-axis, the corresponding matrix is

A∗(gy) =

1 0 0 0
0 1 0 0
0 0 cos(nx) − sin(nx)
0 0 sin(nx) cos(nx)

.

Let’s consider the environment in Sec.4. The agent has 4 actions: go left, right, up or down. We
associate each action with a corresponding matrix with trainable weights. Thus, we associate actions

go up and go down with a matrix of the form Â =

 · · 0 0
· · 0 0
0 0 1 0
0 0 0 1

, and we associate actions go left

and go right with a matrix of the form Â =

1 0 0 0
0 1 0 0
0 0 · ·
0 0 · ·

 where · represents trainable parameters.

C.2 Pseudo-code of Forward-VAE

Algorithm 1 Pseudo-code for training procedure of Forward-VAE

1: batch = ((ot, .., ot+k), (at, .., at+k−1)) = (o,a)
2: for batch in dataset do
3:

— Forward model Loss—
4:
5: z← encoder_mean(batch)
6: zbefore ← z[: −1]
7: zafter ← z[1 :] # targets
8: Â← [Â(at), .., Â(at+k−1)] # actions matrices corresponding to given action sequence
9: zprediction ← Â · zbefore # predictions

10: Lforward(batch)←MeanSquaredError(zprediction, zafter)
11:

— VAE Loss (reconstruction and KL) —
12:
13: z← encoder_sample(batch)
14: ô← decoder(z)
15: Lrecon(batch)←MeanSquaredError(ô,o)
16: LKL(batch)← KL_divergence(z,N (0, 1))
17:

— Backpropagation —
18:
19: LForward−V AE(batch)← Lrecon(batch) + LKL(batch) + Lforward(batch)
20: encoder, decoder, (Â1, .., Âj)← Backpropagation(LForward−V AE(batch)

15

D Additional results

We observe that the mean squared difference between the ideal matrices (Ai)i=1..4 and the learned
matrices (Âi)i=1..4 is very small (order of 10−4). Hence, we have :

Â(go left / go right) ≈ A∗(go left / go right) =

cos(±α) − sin(±α) 0 0
sin(±α) cos(±α) 0 0

0 0 1 0
0 0 0 1

Â(go up / go down) ≈ A∗(go up / go down) =

1 0 0 0
0 1 0 0
0 0 cos(±α) − sin(±α)
0 0 sin(±α) cos(±α)

The result is quite surprising as we do not have completely explicitly optimized for this matrix (at
least for the cos/sin part). Plus there is no instability in training.

One issue with the fact that the approximation is not exact, is unstability with composition. Rotation
matrices’ determinants are stable with composition, as we have:

det(AB) = det(A) det(B)

As rotation matrices have a determinant equal to 1, the composition operation is cyclic for rotations.

However, as (Â)i=1..4 are only approximation of rotation matrices, their determinant is approximately
1 but not exactly. This is why, as many compositions are performed, the determinant of the resulting
matrix either collapses to zero or explodes to +∞. We provide evidence for this phenomenon in
Fig.4.

Figure 4: Determinant of real (A∗) and learned rotation matrix (Â) as a function of number of
compositions. As many compositions are performed, the determinant of the approximation of the
rotation matrix A∗ collapses to zero.

16

	Introduction
	Symmetry-Based Disentangled Representation Learning
	Symmetry-Based Disentangled Representation Learning requires interaction with environments
	Considered environment
	Theoretical analysis
	Symmetry-Based Disentangled Representation Learning in practice
	Decoupled approach (illustrated on SB-disentangled representation)
	End-to-end approach (illustrated on LSB-disentangled representation)
	Remarks

	Using (L)SB-disentangled representations for downstream tasks
	Experimental protocol
	Results
	Remarks

	Discussion & Conclusion
	Proofs
	Symmetry-Based Disentangled Representation Learning requires interaction with environments
	Trivial representations
	It is impossible to learn a LSB-disentangled representation of dimension 2 in the considered environment

	Hyperparameters and neural networks architectures
	Details about Forward-VAE
	Definition of
	Pseudo-code of Forward-VAE

	Additional results

