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Abstract

Bayesian approaches have become increasingly popular in causal inference prob-
lems due to their conceptual simplicity, excellent performance and in-built uncer-
tainty quantification (‘posterior credible sets’). We investigate Bayesian inference
for average treatment effects from observational data, which is a challenging prob-
lem due to the missing counterfactuals and selection bias. Working in the standard
potential outcomes framework, we propose a data-driven modification to an ar-
bitrary (nonparametric) prior based on the propensity score that corrects for the
first-order posterior bias, thereby improving performance. We illustrate our method
for Gaussian process (GP) priors using (semi-)synthetic data. Our experiments
demonstrate significant improvement in both estimation accuracy and uncertainty
quantification compared to the unmodified GP, rendering our approach highly
competitive with the state-of-the-art.

1 Introduction

Inferring the causal effect of a treatment or condition is an important problem in many applications,
such as healthcare [11, 17, 38], education [20], economics [16], marketing [6] and survey sampling
[13] amongst others. While carefully designed experiments are the gold standard for measuring
causal effects, these are often impractical due to ethical, financial or time-constraints. For example,
when evaluating the effectiveness of a new medicine it may not be ethically feasible to randomly
assign a patient to a particular treatment irrespective of their particular circumstances. An alternative
is to use observational data which, while typically much easier to obtain, requires careful analysis.

A common framework for causal inference is the potential outcomes setup [19], where every in-
dividual possesses two ‘potential outcomes’ corresponding to the individual’s outcomes with and
without treatment. For every subject in the observation cohort we thus observe only one of these two
outcomes and not the ‘missing’ counterfactual outcome, without which we cannot observe the true
treatment effect. This problem differs from standard supervised learning in that we must thus account
for the missing counterfactuals, which is the well-known missing data problem in causal inference.

A further complication is that in practice, particularly in observational studies, individuals are often
assigned treatments in a biased manner [36] so that a simple comparison of the two groups may be
misleading. A common way to deal with selection bias is to measure features, called confounders,
that are believed to influence both the treatment assignment and outcomes. The discrepancy in feature
distributions for the treated and control subject groups can be expressed via the propensity score,
which is then used to apply a correction to the estimate. Under the assumption of unconfoundedness,
namely that the treatment assignment and outcome are conditionally independent given the features,
one can then identify the causal effect. Widely used methods include propensity score matching
[32, 34, 36] and double robust methods [5, 31, 33].
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In recent years, Bayesian methods have become increasingly popular for causal inference due to
their excellent performance, for example Gaussian processes [1–4, 11, 23, 38] and BART [13, 15, 17,
18, 20, 35] amongst other priors [6]. Apart from excellent estimation precision, advantages of the
Bayesian approach are its conceptual simplicity, ability to incorporate prior knowledge and access to
uncertainty quantification via posterior credible sets.

In this work we are interested in Bayesian inference for the (population) average treatment effect
(ATE) of a causal intervention, which is relevant when policy makers are interested in evaluating
whether to apply a single intervention to the entire population. This may be the case when one no
longer observes feature measurements of new individuals outside the dataset. This problem is an
example of estimating a one-dimensional functional (the ATE) of a complex Bayesian model (the
full response surface). In such situations, the induced marginal posterior for the functional can often
contain a significant bias in its centering, leading to poor estimation and uncertainty quantification
[7, 8, 27]. This is indeed the case in our setting, where it is known that a naive choice of prior can
yield badly biased inference for the ATE in casual inference/missing data problems [14, 26, 30]. For
instance, Gaussian process (GP) priors will typically not be correctly centered, see Figure 1 below.
Correcting for this is a delicate issue since even when the prior is perfectly calibrated (i.e. all tuning
parameters are set optimally to recover the treatment response surface), the posterior can still induce
a large bias in the marginal posterior for the ATE [25].

Our main contribution is to propose a data-driven modification to an arbitrary nonparametric prior
based on the estimated propensity score that corrects for the first-order posterior bias for the ATE. By
correctly centering the posterior for the ATE, this improves performance for both estimation accuracy
and uncertainty quantification. We numerically illustrate our method on simulated and semi-synthetic
data using GP priors, where our prior correction corresponds to a simple data-driven alteration to the
covariance kernel. Our experiments demonstrate significant improvement in performance from this
debiasing. This method should be viewed as a way to increase the efficiency of a given Bayesian
prior, selected for modelling or computational reasons, when estimating the ATE.

Our method provides the same benefits for inference on the conditional average treatment effect
(CATE). We further show that randomization of the feature distribution is not necessary for accurate
uncertainty quantification for the CATE, but is helpful for the ATE. Since this approach provides
similar estimation accuracy irrespective of whether the feature distribution is randomized, this
highlights that care must be taken when using finer properties of the posterior, such as uncertainty
quantification.

Organization: in Section 2 we present the causal inference problem, in Section 3 our main idea for
debiasing an arbitrary Bayesian prior, with the specific case of GPs treated in Section 4. Simulations
and further discussion are in Sections 5 and 6, respectively. Additional technical details, some
motivation based on semiparametric statistics and further simulation results are in the supplement.

2 Problem setup

Consider the situation where a binary treatment with heterogeneous treatment effects is applied
to a population. Working in the potential outcomes setup [19], every individual i possesses a d-
dimensional feature Xi ∈ Rd and two ‘potential outcomes’ Y (1)

i and Y (0)
i , corresponding to the

individual’s outcomes with and without treatment, respectively. We wish to make inference on the
treatment effect Y (1)

i − Y (0)
i , but since we only observe one out of each pair of outcomes, and not

the corresponding (missing) counterfactual outcome, we do not directly observe samples of the
treatment effect. In this paper we are interested in estimating the average treatment effect (ATE)
ψ = E[Y (1) − Y (0)].

For Ri ∈ {0, 1} the treatment assignment indicator, we observe outcome Y (Ri)
i , which can also be

expressed as observing Y = RiY
(1) + (1 − Ri)Y (0). The treatment assignment policy generally

depends on the features Xi and is expressed by the conditional probability π(x) = P (R = 1|X = x)

called the propensity score (PS). We assume unconfoundedness, namely Y (1)
i , Y

(0)
i ⊥⊥ Ri|Xi for all

Xi ∈ Rd, which is a standard assumption in the potential outcomes framework [19]. Unconfound-
edness (or strong ignorability) says that the outcomes Y (1)

i , Y
(0)
i are independent of the treatment
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assignment Ri given the measured features Xi, i.e. any dependence can be fully explained through
Xi. Without such an assumption the ATE is typically not even identifiable [32].

We work in the standard nonparametric regression framework for causal inference with mean-zero
additive errors [2, 14, 15, 18, 23]

Yi = m(Xi, Ri) + εi, (1)

where εi ∼iid N(0, σ2
n), Ri ∈ {0, 1} is the indicator variable for whether treatment is applied and

Xi ∈ Rd represents measured feature information about individual i. We assume the general feature
information is unbiased Xi ∼iid F , but the treatment assignment π(x) = P (R = 1|X = x) may be
heavily biased. Our goal is to estimate the average treatment effect (ATE)

ψ = E[Y (1) − Y (0)] =

∫
Rd

E[Y |R = 1, X = x]− E[Y |R = 0, X = x]dF (x)

=

∫
Rd

m(x, 1)−m(x, 0)dF (x)

(2)

based on an observational dataset Dn consisting of n i.i.d. samples of the triplet (Xi, Ri, Yi). A
related quantity is the conditional average treatment effect (CATE)

ψc = ψc(X1, . . . , Xn) =
1

n

n∑
i=1

E[Y
(1)
i − Y (0)

i |Xi] =
1

n

n∑
i=1

m(Xi, 1)−m(Xi, 0), (3)

which represents the average treatment effect over the measured individuals. Compared to the
ATE, this quantity ignores the randomness in the feature data, replacing the true population feature
distribution F in the definition (2) of ψ with its empirical counterpart n−1

∑n
i=1 δXi

with δx the
Dirac measure (point mass) at x.

3 Bayesian causal inference for average treatment effects

We fit a nonparametric prior to the model (F, π,m) and consider the ATE ψ as a functional of
these three components, studying the one-dimensional marginal posterior for ψ induced by the full
nonparametric posterior. More concretely, one can sample from the marginal posterior for ψ by
drawing a full posterior sample (F, π,m) and computing the corresponding draw ψ according to the
formula (2). Note that this yields the full posterior for the ATE ψ, which is much more informative
than simply the posterior mean, for instance also providing credible intervals for ψ. This is the natural
Bayesian approach to modelling ψ and it is indeed typically necessary to fully model (F, π,m) rather
than ψ directly when considering heterogeneous treatment effects.

Assuming the distribution F has a density f , the likelihood for data Dn arising from model (1) is
n∏
i=1

f(Xi)π(Xi)
Ri(1− π(Xi))

1−Ri
1√
2πσn

e
− 1

2σ2
n
Ri(Yi−m(Xi,1))

2− 1
2σ2

n
(1−Ri)(Yi−m(Xi,0))

2

.

Since this factorizes in the model parameters (f, π,m), placing a product prior on these three
parameters yields a product posterior, i.e. f , π, m are (conditionally) independent under the posterior.
As this is particularly computationally efficient, we pursue this approach. In this case, since π does
not appear in the ATE ψ, the π terms will cancel from the marginal posterior for ψ and the prior
on π is irrelevant for estimating the ATE. We thus need not specify the π component of the prior.
These properties hold even when F has no density and so a likelihood cannot be defined, see the
supplement.

A Bayesian will typically endow the response surface m with a nonparametric prior for either
modelling or computational reasons. As already mentioned, the induced marginal posterior for ψ will
then often have a significant bias term in its centering, see Figure 1 for an example arising from a
standard GP prior. Our main idea is to augment a given Bayesian prior for m by efficiently using an
estimate π̂ of the PS, since it is well-known that using PS information can improve estimation of the
ATE [32]. We model (F,m) using the following prior:

m(x, r) =W (x, r) + νnλ

(
r

π̂(x)
− 1− r

1− π̂(x)

)
, F ∼ DP, (4)
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Figure 1: Plot of marginal posterior distributions for the ATE with true ATE (red), histogram of
10,000 posterior draws (blue), posterior mean (solid black), 90% credible interval (dotted black)
and best fitting Gaussian distribution (orange). Data arises from the synthetic simulation (HOM) in
Section 5 with n = 500 and Gaussian process prior described in Section 4. Left/right: without/with
bias correction. Note the incorrect centering on the left-hand side.

where W : Rd × {0, 1} → R is a stochastic process, DP denotes the Dirichlet process with a finite
base measure [12], νn > 0 is a scaling parameter and λ is a real-valued random variable, withW,F, λ
independent. Estimating the PS is a standard binary classification problem and one can use any
suitable estimator π̂, from logistic regression to more advanced machine learning methods. It may
be practically advantageous to truncate the estimator π̂ away from 0 and 1 for numerical stability.
For estimating the CATE, we propose the same prior (4) but with the Dirichlet process prior for F
replaced by a plug-in estimate consisting of the empirical distribution Fn = n−1

∑n
i=1 δXi .

The prior (4) increases/decreases the prior correlation within/across treatment groups in a hetero-
geneous manner compared to the unmodified prior (νn = 0). For example, in regions with few
observations in the treatment group (small π(x)), (4) significantly increases the prior correlation with
other treated individuals, thereby borrowing more information across individuals to account for the
lack of data. Conversely, in observation rich areas (large π(x)), (4) borrows less information, instead
using the (relatively) numerous local observations.

Using an unmodified prior (νn = 0), the posterior will make a bias-variance tradeoff aimed at
estimating the full regression function m rather than the smooth one-dimensional functional ψ.
In particular, the bias for the ATE ψ will dominate, leading to poor estimation and uncertainty
quantification unless the true m and f = F ′ are especially easy to estimate. The idea behind the
prior (4) is to use a data-driven correction to (first-order) debias the resulting marginal posterior
for ψ. The quantity r/π(x) − (1 − r)/(1 − π(x)) corresponds in a specific technical sense to the
‘derivative’ of the ATE ψ with respect to the model (1), the so-called ‘least favorable direction’ of ψ.
Heuristically, Taylor expanding ψ|Dn − ψ0, where ψ|Dn and ψ0 are the posterior and ‘true’ ATE,
the hyperparameter λ is introduced to help the posterior remove the first-order (bias) term in this
expansion, see Figure 1 for an illustration. Since the true π is unknown, the natural approach is to
replace it with an estimator π̂. A more technical explanation can be found in the supplement.

Such a bias correction will help most when (F,m) are difficult to estimate, for instance in high-
dimensional feature settings. Higher-order bias corrections have also been considered using estimating
equations [28, 29], but it is unclear how to extend this to the Bayesian setting. A similar idea has been
investigated theoretically in [25], where it is shown that in a related idealized model, priors correctly
calibrated to the unknown true functions (i.e. non-adaptive) satisfy a semiparametric Bernstein-von
Mises theorem, i.e. the marginal posterior for the ATE is asymptotically normal with optimal variance
in the large data setting. Figure 1 suggests the shape also holds in the present setting.

A good choice of prior for W is still essential, since poor modelling of m can also induce bias.
In particular, νn should be picked so that the second term in (4) is of smaller order than W in
order to have relatively little effect on the full posterior for m. If the Bernstein-von Mises theorem
holds, the marginal posterior for ψ fluctuates on a 1/

√
n scale (see [25] for a related model), which

suggests taking νn ∼ 1/
√
n. On this scale the bias correction is sufficiently large to meaningfully
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affect the marginal posterior, but not so large as to dominate. Simulations indicate that taking
νn significantly larger than this can cause the bias correction to dominate in small data situations,
reducing performance. In a data-rich situation, larger values of νn are also admissible since the
posterior can calibrate the value of λ based on the data. Thus correct calibration of νn is mainly
important for small or moderate sample performance, see Section 4.

One can also take a fully Bayesian approach by placing a prior on π in (4). While such an approach
may be philosophically appealing, it can cause computational difficulties since the priors for (π,m),
and hence also the corresponding posteriors, are no longer independent. For Gaussian processes
(GPs), considered in detail in Section 4, one can then only sample from the fully Bayesian posterior
using a Metropolis-Hastings-within-Gibbs-sampling algorithm, which is far slower in practice. In
contrast, the ‘empirical Bayes’ approach we advocate in (4) maintains this independence and is thus
computationally more efficient, e.g. in the GP case, the resulting prior for m remains a GP.

It is known that for estimating a smooth one-dimensional functional of a nonparametric model,
selecting an undersmoothing prior can be advantageous [8]. As well as being computationally
efficient due to conjugacy, the choice of Dirichlet process for F is thus also theoretically motivated,
since it can be viewed as a considerable undersmoothing (f = F ′ does not even exist as F is a
discrete probability measure with prior probability one).

One can also directly plug-in an estimator Fn of F in (2), such as the empirical distribution, and
randomize only m from its posterior. This provides an estimate of both the ATE (2) and CATE (3),
but is only suitable for uncertainty quantification regarding the CATE. Not randomizing F causes the
posterior to ignore the uncertainty in the features, leading to an underestimation of the variance for
ψ. The resulting credible intervals will then be too narrow, giving wrong uncertainty quantification
as we see in the supplementary material. The message here is that even when different (empirical)
Bayes methods give equally good estimation, as these two do, one must be careful about assuming
that finer aspects of the posteriors behave similarly well, for example uncertainty quantification.

In summary, we view the prior modification (4) as a way to increase the efficiency of a given Bayesian
prior for estimating the ATE and CATE.

A related approach is Bayesian Causal Forests (BCF) [15], where the estimated PS is directly added
as an additional input feature to a BART model, yielding better performance. This approach is
designed to improve nonparametric estimation of the entire response surface (i.e. the heterogeneous
treatment effects themselves), which will also lead to some improvement when estimating the ATE.
However, it is known that even when the prior is perfectly calibrated (i.e. all tuning parameters are
set optimally) and recovers the entire response surface at the optimal rate, the posterior can still
induce a bias in the marginal posterior for the ATE ψ that prevents efficient estimation and destroys
uncertainty quantification (see e.g. [25]).

As discussed above, the specific form in which we include the PS in our prior (4) is very deliberate,
being motivated by semiparametric statistical theory and specifically designed for estimating the
ATE. When either the PS or response surface are especially difficult to estimate, we expect that
incorporating the PS as a feature as in BCF will still induce a bias for the ATE (the theory in [25]
predicts this). We emphasize, however, that the main goal of BCF is to estimate the entire response
surface, which is a different problem to estimating the ATE we consider here. An alternative Bayesian
approach to estimating the ATE is to reparametrize the model to force π into the likelihood [14, 26].

4 Gaussian process priors

In recent years, Gaussian process (GP) priors have found especial uptake in causal inference problems
[1–4, 23], for example in healthcare [11, 38]. We therefore concretely illustrate the prior (4) for W a
mean-zero GP with covariance kernel K, λ ∼ N(0, 1) independent and scaling parameter νn > 0 to
be defined below. Under the prior (4), m is again a mean-zero GP with data-driven covariance kernel

Em(x, r)m(x′, r′) = K((x, r), (x′, r′)) + ν2n

(
r

π̂(x)
− 1− r

1− π̂(x)

)(
r′

π̂(x′)
− 1− r′

1− π̂(x′)

)
. (5)

For GPs, our debiasing corresponds to a simple and easy to implement modification to the covariance
kernel. One should use the original covariance kernel K that was considered suitable for estimating
m (e.g. squared exponential, Matérn), since accurately modelling the regression surface is also
necessary.
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For our simulations in Section 5, we compute π̂ using logistic regression based on the same data,
truncating our estimator to [0.1, 0.9] for numerical stability in (5). We take K equal to the squared
exponential kernel (also called radial basis function) with automatic relevance determination (ARD),

K((x, r), (x′r′)) = ρ2m exp

(
−1

2

d∑
i=1

(xi − x′i)2

`2i

)
exp

(
−1

2

(r − r′)2

`2d+1

)
with (`i)

d+1
i=1 the length scale parameters and ρ2m > 0 the kernel variance [24]. The data-driven

length scales `i can be interpreted as the relevance of the ith feature to the regression surface m
and are particularly important for high-dimensional data, where some features may play little role.
ARD has been used successfully for removing irrelevant inputs by several authors (see Chapter 5.1
[24]) and can thus be viewed as a form of automatic (causal) feature selection. We optimize the
hyperparameters (`i)d+1

i=1 , ρm and σn (noise variance) by maximizing the marginal likelihood (using
the scaled conjugate gradient method option in the GPy package). We set νn = 0.2ρm/(

√
nMn) for

Mn = n−1
∑n
i=1[Ri/π̂(Xi) + (1−Ri)/(1− π̂(Xi))] the average absolute value of the last part of

(5). This places the second term in (5) on the same scale as the original covariance kernel K.

We assign F |Dn the Bayesian bootstrap (BB) distribution [12], namely a Dirichlet process with base
measure equal to the rescaled empirical measure

∑n
i=1 δXi

of the observations. When n is moderate
or large, the BB distribution will be very close to that of the true DP posterior. The advantage
of the BB is that samples are particularly easy to generate: using that F |Dn can be represented
as
∑n
i=1 ViδXi

for (V1, . . . , Vn) ∼ Dir(n; 1, . . . , 1) and that m and F are independent under the
posterior, the posterior mean and draws for the ATE can be written as

E[ψ|Dn] =
1

n

n∑
i=1

E [m(Xi, 1)−m(Xi, 0)|Dn] , ψ|Dn =

n∑
i=1

Vi (m(Xi, 1)−m(Xi, 0)) , (6)

respectively. Using the representation Vi = Ui/
∑n
j=1 Uj for Ui ∼iid exp(1), sampling (V1, . . . , Vn)

is particularly simple. One also needs to generate an n-dimensional multivariate Gaussian random
variable (m(Xi, 1)−m(Xi, 0))

n
i=1, whose covariance can be directly obtained from the posterior

GP process (m(x, r) : x ∈ Rd, r ∈ {0, 1})|Dn evaluated at the observations and their counterfactual
values. This follows from the usual formula for the mean and covariance of a posterior GP in
regression with Gaussian noise (Chapter 2.2 of [24]) and the whole procedure is summarized in
Algorithm 11. Using this scheme, we may sample directly from the marginal posterior for the ATE ψ.

To show the importance of randomizing F for uncertainty quantification, we also consider the
posterior where one plugs in the empirical measure n−1

∑n
i=1 δXi

for F in (2). This yields the same
posterior mean as in (6), while sampling ψ|Dn corresponds to the right-hand side of (6) with Vi
replaced by 1/n. We expect this to yield similar prediction to the posterior mean in (6) but worse
uncertainty quantification for the ATE (but not CATE). This is indeed what we see in the supplement.

5 Simulations

We numerically illustrate the improved performance of our debiased GP method (GP+PS) versus
the original GP approach, both with (GP and GP+PS) and without randomization (GP (noRand)
and GP + PS (noRand)) of the feature distribution F . The methods are implemented as described
in Section 4. Credible intervals are computed by sampling 2,000 posterior draws and taking the
empirical 95% credible interval, see Figure 1. We measure estimation accuracy via the absolute error
between the posterior mean and true (C)ATE. We also report the average size and coverage of the
resulting credible/confidence intervals (CI) and the Type II error, which measures the fraction of
times the method does not identity a statistically significant (C)ATE.

We further compare their performance with standard state-of-art-methods for estimating the ATE and
CATE, namely Bayesian Additive Regression Trees (BART) [10, 18, 15] both with and without using
the PS as a feature, Bayesian Causal Forests (BCF) [15], Causal Forests (CF) with average inverse

1Lines 8-9 in Algorithm 1 are the usual predictive mean and covariance computations for a posterior GP.
In particular, these can be more efficiently solved using for example Cholesky factorization, see Chapter 2.2
of [24]. Similarly, m can be efficiently generated by once taking the Cholesky factor LΣ of Σ, generating
W ∼ N2n(0, I2n) and settingm = µ+ LΣW
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Algorithm 1 Debiased GP with PS correction
1: Input: X (features), R (treatment assignments), Y (outcomes), K (covariance kernel)
2: Run logistic regression on (X1, R1), . . . , (Xn, Rn) and return estimates π̂(X1), . . . , π̂(Xn)

3: wf =
(

R1

π̂(X1)
− 1−R1

1−π̂(X1)
, . . . , Rn

π̂(Xn)
− 1−Rn

1−π̂(Xn)

)
(factual)

4: wc =
(

1−R1

π̂(X1)
− R1

1−π̂(X1)
, . . . , 1−Rn

π̂(Xn)
− Rn

1−π̂(Xn)

)
(counterfactual)

5: Optimize hyperparameters of k (including σ2
n) and then ν2 (see Section 4)

6: Z = (X R) and Z∗ =
(
X R
X 1−R

)
7: Kf,c = K(Z∗, Z) + ν2(wf wc)

Twf

8: µ = Kf,c[K(Z,Z) + ν2wf
Twf + σ2

nIn]
−1Y

9: Σ = K(Z∗, Z∗) + ν2(wf wc)
T (wf wc)−Kf,c[K(Z,Z) + ν2wf

Twf + σ2
nIn]

−1K
T

f,c

10: Compute ψ̂ = E[ψ|Dn] from µ according to the left hand side of (6)
11: for l = 1 . . . P (# posterior samples) do
12: Generate (V1, . . . , Vn) ∼ Dir(n; 1, . . . , 1)
13: Generatem ∼ N2n(µ,Σ)
14: Compute ψl fromm and V1, . . . , Vn according to the right hand side of (6)
15: Compute credible interval (CI) based on quantiles of ψ1, . . . , ψP
16: Output: ψ̂ (posterior mean), CI (credible interval), ψ1, . . . , ψP (posterior samples)

propensity weighting (AIPW) and targeted maximum likelihood estimation (TMLE) [39], Propensity
Score Matching (PSM) [36], ordinary least squares (OLS), and Covariate Balancing (CB) with the
standard inverse PS weights and weights computed by constrained minimization (CM) [9]. Details of
these benchmarks are provided in the supplementary material. We ran all simulations 200 times and
report average values.

Synthetic dataset. We consider two versions of synthetic data generated following the protocol used
in [21, 22, 37]. We take sample sizes n = 500, 1000 and d = 100 features x1, x2, ..., x100

iid∼ N(0, 1).
The response surface and treatment assignments are defined via the following ten functions: g1(x) =
x− 0.5, g2(x) = (x− 0.5)2 + 2, g3(x) = x2 − 1/3, g4(x) = −2 sin(2x), g5(x) = e−x − e−1 − 1,
g6(x) = e−x, g7(x) = x2, g8(x) = x, g9(x) = Ix>0, g10(x) = cos(x). A subject with features x =

(x1, ..., x100) is assigned (non-randomly) to the treatment group if
∑5
k=1 gk(xk) > 0 and otherwise

to the control group. Given the features and treatment assignment, in case (HOM) the outcome Y is
generated as Y |X = x,R = r ∼ N(

∑5
k=1 gk+5(xk)+r, 1), which models a homogeneous treatment

effect. In case (HET), Y is generated as Y |X = x,R = r ∼ N(
∑5
k=1 gk+5(xk)+ r(1+2x2x5), 1),

which models heterogeneous treatment effects. In both cases, the first five features affect both the
treatment and outcome, representing confounders, while the remaining 95 features are noise. The
ATE is 1 in both cases. Some results are in Table 1 with the remainder in the supplement.

IHDP dataset with simulated outcomes. Since simulated covariates often do not accurately repre-
sent “real world” examples, we consider a semi-synthetic dataset with real features and treatment
assignments from the Infant Health and Development Program (IHDP), but simulated responses.
The IHDP consisted of a randomized experiment studying whether low-birth-weight and premature
infants benefited from intensive high-quality child care. The data contains d = 25 pretreatment
variables per subject. Following [18] (also used in [2, 21]), an observational study is created by
removing a non-random portion of the treatment group, namely all children with non-white mothers.
This leaves a dataset of 747 subjects, with 139 in the treatment group and 608 in the control group.

We consider a slight modification of the non-linear “Response Surface B” of [18], taking

Y (0)|X = x ∼ N(e(x+w)β , 1) and Y (1)|X = x ∼ N(xTβ − ωβ , 1),

where x ∈ Rd are the features, w = (0.5, . . . , 0.5) is an offset vector, β is a vector of regres-
sion coefficients with each entry randomly sampled from {0, 0.1, 0.2, 0.3, 0.4} with probabilities
(0.6, 0.1, 0.1, 0.1, 0.1). For each simulation of β, ωβ is then selected so that the CATE equals 4.
Here, we can only measure estimation quality of the CATE and not the ATE since the true feature
distribution F is unknown. Results are in Table 2.
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Table 1: Results for synthetic dataset (HET) with n = 1000.

Method Abs. error± sd Size CI± sd Coverage Type II error

GP 0.321± 0.027 0.613± 0.027 0.38 0.00

GP (noRand) 0.321± 0.027 0.427± 0.017 0.00 0.00

GP PS 0.063 ± 0.042 0.883± 0.040 1.00 0.00

GP PS (noRand) 0.063 ± 0.042 0.766± 0.037 1.00 0.00

BART 0.228± 0.186 1.723± 0.490 1.00 0.50
BART (PS) 0.134± 0.092 0.741± 0.079 0.99 0.00

BCF 0.144± 0.109 0.535± 0.066 0.87 0.00

CF (AIPW) 0.138± 0.097 0.695 ± 0.103 0.96 0.00

CF (TMLE) 0.136± 0.099 0.891± 0.156 0.99 0.01

OLS 0.725± 0.160 0.361± 0.034 0.00 0.26
CB (IPW) 0.606± 0.324 1.467± 0.418 0.68 0.01
PSM 0.234± 0.178 1.282± 0.158 0.97 0.06

Table 2: Results for semi-synthetic IHDP dataset.

Method Abs. error± sd Size CI± sd Coverage Type II error

GP 0.246± 0.398 1.383± 1.458 0.95 0.01
GP (noRand) 0.246± 0.398 1.096± 1.305 0.89 0.01
GP + PS 0.189± 0.234 1.445± 1.013 0.97 0.01
GP +PS (noRand) 0.189± 0.234 1.162± 0.822 0.93 0.01
BART 0.234± 0.282 0.945± 0.745 0.91 0.00

BART (PS) 0.238± 0.342 0.906± 0.682 0.89 0.00

BCF 0.108 ± 0.106 0.526 ± 0.151 0.95 0.00

CF (AIPW) 0.245± 0.236 1.052± 0.811 0.91 0.01
CF (TMLE) 0.242± 0.240 1.087± 0.842 0.91 0.01
OLS 0.127± 0.101 0.815± 0.537 0.98 0.00

CB (IPW) 0.238± 0.180 1.200± 0.860 0.91 0.00

CB (CM) 0.134± 0.117 0.961± 0.765 0.93 0.00

PSM 0.136± 0.108 2.052± 1.701 1.00 0.01

Both of these simulations contain unbalanced treatment groups, with roughly 90% and 20% of subjects
in the treatment group in the synthetic and IHDP simulations, respectively. Like PS reweighting-
based methods, our bias corrected GP method (5) is designed with problems satisfying the standard
overlap assumption [19] (namely 0 < P (R = 1|X = x) < 1 for all x ∈ Rd) in mind. In the
synthetic simulation the treatment assignment is fully deterministic so this condition is not satisfied;
in particular the data generation process was not selected to favour our method.

Results. We see from Tables 1 and 2 that our methods (GP + PS and GP + PS (noRand)) substantially
improve upon the performance of the vanilla GP methods (GP and GP (noRand)) [also true in the
additional simulations in the supplement]. In both cases we obtain significantly improved estimation
accuracy and uncertainty quantification. As an example of what can go wrong, in the synthetic
simulation the absolute errors of the vanilla GP methods barely decrease as the sample size increases
(Table 1 and the supplementary tables) since the posterior for the ATE contains a non-vanishing
bias. Moreover, since the posterior variance shrinks rapidly with the sample size (at rate 1/n for the
ATE [25]), the posterior will concentrate tightly around the wrong value, giving poor uncertainty
quantification that actually worsens with increasing data, see Figure 1 and Table 1. This is a typical
aspect of causal inference problems with difficult to estimate PS and response surfaces, particularly
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in high feature dimensions. In contrast, our debiased method explicitly corrects for this bias at
the expense of a (smaller) increase in variance, as can be seen from the average CI length. The
substantially improved coverage from our method is the result of the debiasing rather than the increase
in posterior variance.

Asymptotic theory predicts the frequentist coverage of our method should converge to exactly 0.95 as
the sample size increases due to the semiparametric Bernstein-von Mises theorem [25]. However, it
is a subtle question as to when the asymptotic regime applies and our examples seem insufficiently
data rich for this to be the case (e.g. d = 100 input features, but only n = 1000 observations).

We see that our method makes the previously underperforming GP method highly competitive with
state-of-the-art methods, even outperforming them in certain cases. In the synthetic simulation, our
method performs best yielding substantially better estimation accuracy. It further provides reliable
and informative uncertainty quantification, performing similarly to BART (PS), CF (AIPW) and CF
(TMLE). On the IHDP dataset, our debiased methods outperform the widely used BART and CF for
estimation accuracy, but BCF performs best. While OLS and CB (CM) also performed well here, we
note that in the synthetic simulation, OLS performed especially badly while CB (CM) did not even
run. Regarding uncertainty quantification, our method provides excellent coverage though larger CIs
than BART (whose coverage is slightly lower), but BCF again performs best.

We lastly note that not randomizing the feature distribution (noRand) yields narrower CIs and lower
coverage as expected. This does not make a substantial difference in Tables 1 and 2, but can have a
significant impact, see the tables in the supplement. We recall that randomization is generally helpful
for uncertainty quantification for the ATE, but is conservative for the CATE.

6 Discussion

We have introduced a general data-driven modification that can be applied to any given prior that
corrects for first-order posterior bias when estimating (conditional) average treatment effects (ATEs)
in a causal inference regression model. We illustrated this experimentally on both simulated and
semi-synthetic data for the example of Gaussian process (GP) priors. We showed that by correctly
incorporating an estimate of the propensity score into the covariance kernel, one can substantially
improve the precision of both the posterior mean and posterior uncertainty quantification. In particular,
this makes the modified GP method highly competitive with state-of-the-art methods.

There are many avenues for future work. First, GP methods scale poorly with data size and there has
been extensive research on scalable alternatives, including sparse GP approximations, variational
Bayes and distributed computing approaches. Since in the GP case our approach simply returns a
GP with modified covariance kernel, all these existing methods should be directly applicable and
can be investigated. Second, it would be particularly interesting to see if our prior correction can be
efficiently implemented to improve the already excellent performance of BART and its derivatives in
causal inference problems [15, 18]. Third, it is unclear if and how one can perform higher order bias
corrections using Bayes for especially difficult problems as has been done using estimating equations
[28, 29].
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