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A Motivation of Algorithms

In this section, we provide rigorous theoretical results on the motivation of algorithms presented in
Section 2.3. The first result (Lemma A.1) is a standard one-step progress bound which quantifies how
the iterate would move towards w∗ with a single update. The second result (Lemma A.2) shows that
the time index T ∗ in Algorithm 1 can be always found. Therefore, the algorithm is well defined.

Lemma A.1. Let the sequence {wt}t∈N be generated by (2.2), then the following inequality holds
for any w ∈ Rd independent of zt

Ezt [DΨ(w,wt+1)]−DΨ(w,wt) ≤ ηt
[
φ(w)− φ(wt)

]
+ σ−1

Ψ η2
t

[
Aφ(wt) + 2B

]
− ηt

[
σFDΨ(w,wt) + σrEzt [DΨ(w,wt+1)]

]
. (A.1)

Proof. According to the first-order optimality condition in (2.2), there exists an r′(wt+1) ∈ ∂r(wt+1)
satisfying

ηtf
′(wt, zt) + ηtr

′(wt+1) +∇Ψ(wt+1)−∇Ψ(wt) = 0,

from which and the identity [1]

DΨ(w,wt+1) +DΨ(wt+1,wt)−DΨ(w,wt) = 〈w −wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉

we derive

DΨ(w,wt+1)−DΨ(w,wt) = DΨ(w,wt+1) +DΨ(wt+1,wt)−DΨ(w,wt)−DΨ(wt+1,wt)

= 〈w −wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉 −DΨ(wt+1,wt)

= ηt〈w −wt+1, f
′(wt, zt) + r′(wt+1)〉 −DΨ(wt+1,wt)

≤ ηt〈w −wt+1, f
′(wt, zt)〉+ ηt

[
r(w)− r(wt+1)− σrDΨ(w,wt+1)

]
−DΨ(wt+1,wt)

= ηt〈w −wt, f
′(wt, zt)〉+ ηt〈wt −wt+1, f

′(wt, zt)〉+ ηt[r(w)− r(wt)]

+ ηt[r(wt)− r(wt+1)]− σrηtDΨ(w,wt+1)−DΨ(wt+1,wt). (A.2)
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Here, we have used the σr-strong convexity of r (3.2) in the inequality. From the convexity of r, the
definition of dual norm and the strong convexity of Ψ, it follows that

ηt
[
〈wt −wt+1, f

′(wt, zt)〉+ r(wt)− r(wt+1)
]
−DΨ(wt+1,wt)

≤ ηt‖wt −wt+1‖‖f ′(wt, zt)‖∗ + ηt〈wt −wt+1, r
′(wt)〉 − 2−1σΨ‖wt −wt+1‖2

≤ ηt‖wt −wt+1‖
[
‖f ′(wt, zt)‖∗ + ‖r′(wt)‖∗

]
− 2−1σΨ‖wt −wt+1‖2

≤ 2−1σΨ‖wt −wt+1‖2 + 2−1σ−1
Ψ η2

t

[
‖f ′(wt, zt)‖∗ + ‖r′(wt)‖∗

]2 − 2−1σΨ‖wt −wt+1‖2

≤ σ−1
Ψ η2

t

[
‖f ′(wt, zt)‖2∗ + ‖r′(wt)‖2∗

]
≤ σ−1

Ψ η2
t

[
Af(wt, zt) +Ar(wt) + 2B

]
,

where we have used the elementary inequality (a + b)2 ≤ 2(a2 + b2) and (3.1) in the last two
inequalities. Plugging the above inequality back into (A.2), we get

DΨ(w,wt+1)−DΨ(w,wt) ≤ ηt〈w −wt, f
′(wt, zt)〉+ ηt[r(w)− r(wt)]

+ σ−1
Ψ η2

t

[
Af(wt, zt) +Ar(wt) + 2B

]
− σrηtDΨ(w,wt+1).

Taking conditional expectations with respect to zt over both sides and using the σF -strong convexity
of F (3.2) then give (note both w and wt are independent of zt)

Ezt [DΨ(w,wt+1)]−DΨ(w,wt) + σrηtEzt [DΨ(w,wt+1)]

≤ ηt〈w −wt, F
′(wt)〉+ ηt[r(w)− r(wt)] + σ−1

Ψ η2
t

[
AF (wt) +Ar(wt) + 2B

]
≤ ηt

[
F (w)− F (wt)− σFDΨ(w,wt)

]
+ ηt[r(w)− r(wt)] + σ−1

Ψ η2
t

[
Aφ(wt) + 2B

]
.

This gives the stated inequality and completes the proof.

Lemma A.2. There exists an t ∈ {T, T + 1, . . . , 2T − 1} such that

DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1) ≤ T−1DΨ(w̄T ,wT ).

Proof. We prove this lemma by contradiction. Suppose that

DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1) > T−1DΨ(w̄T ,wT ), ∀t ∈ {T, T + 1, . . . , 2T − 1}.

Taking a summation of the above inequality from t = T to t = 2T − 1 gives

DΨ(w̄T ,wT )−DΨ(w̄T ,w2T ) =

2T−1∑
t=T

[
DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1)

]
> T−1

2T−1∑
t=T

DΨ(w̄T ,wT ) = DΨ(w̄T ,wT ),

which contradicts with the non-negativity of the Bregman distance. The proof is complete.

B Proofs of Convergence Rates for Convex Objectives

In this section, we give proofs of Theorem 1, Theorem 2 and Corollary 3 on the performance of
Algorithm 1 for convex objectives.

Proof of Theorem 1. Choosing w = w∗ in (A.1) and using σr, σF ≥ 0, we derive

Ezt [DΨ(w∗,wt+1)]−DΨ(w∗,wt) ≤ ηt
[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
Aφ(wt) + 2B

]
.

Taking expectations over both sides then gives

E
[
DΨ(w∗,wt+1)−DΨ(w∗,wt)

]
≤ ηtE

[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
AE[φ(wt)] + 2B

]
= ηtE

[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
AE[φ(wt)]−Aφ(w∗) +Aφ(w∗) + 2B

]
=
(
ηt − σ−1

Ψ η2
tA
)
E
[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
Aφ(w∗) + 2B

]
≤ 2−1ηtE

[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
Aφ(w∗) + 2B

]
, (B.1)
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where we have used the inequality ηt ≤ σΨ(2A)−1 and φ(w∗) ≤ φ(wt). The above inequality can
be rewritten as

2−1E
[
φ(wt)− φ(w∗)

]
≤ η−1

t E
[
DΨ(w∗,wt)−DΨ(w∗,wt+1)

]
+ σ−1

Ψ ηt(Aφ(w∗) + 2B).

Taking a summation of the above inequality from t = 1 to t = T gives

2−1
T∑
t=1

E
[
φ(wt)− φ(w∗)

]
≤

T∑
t=1

η−1
t E

[
DΨ(w∗,wt)−DΨ(w∗,wt+1)

]
+ σ−1

Ψ (Aφ(w∗) + 2B)

T∑
t=1

ηt

≤
T∑
t=2

E[DΨ(w∗,wt)][η
−1
t − η−1

t−1] + η−1
1 DΨ(w∗,w1) + σ−1

Ψ (Aφ(w∗) + 2B)

T∑
t=1

ηt (B.2)

≤ Dη−1
T + 2σ−1

Ψ µ(Aφ(w∗) + 2B)
√
T ,

where we have used ηt ≤ ηt−1 and the elementary inequality
∑T
t=1 t

− 1
2 ≤ 2

√
T in the last step. Let

w̄T = 1
T

∑T
t=1 wt be defined in Algorithm 1 with σφ = 0. The convexity of φ then gives

E[φ(w̄T )]− φ(w∗) ≤
2µ−1D + 4σ−1

Ψ µ(Aφ(w∗) + 2B)√
T

. (B.3)

According to Lemma A.2 and the definition of T ∗ in Algorithm 1, we know
DΨ(w̄T ,wT∗)−DΨ(w̄T ,wT∗+1) ≤ T−1DΨ(w̄T ,wT ). (B.4)

Choosing w = w̄T in (A.1) followed with expectations over both sides implies (w̄T is independent
of zt for any t ≥ T )

ηtE
[
φ(wt)−φ(w̄T )

]
≤ E[DΨ(w̄T ,wt)−DΨ(w̄T ,wt+1)]+σ−1

Ψ η2
t

[
AE[φ(wt)]+2B

]
, ∀t ≥ T.

Choosing t = T ∗ in the above inequality and using (B.4) then give

ηT∗E
[
φ(wT∗)− φ(w̄T )

]
≤ E[DΨ(w̄T ,wT∗)−DΨ(w̄T ,wT∗+1)] + σ−1

Ψ η2
T∗

[
AE[φ(wT∗)] + 2B

]
≤ T−1E[DΨ(w̄T ,wT )] + σ−1

Ψ η2
T∗

[
AE[φ(wT∗)] + 2B

]
. (B.5)

Plugging the step size ηt = µ/
√
t into the above inequality and using T ≤ T ∗ ≤ 2T , we derive

E
[
φ(wT∗)− φ(w̄T )

]
≤
√

2E[DΨ(w̄T ,wT )]

µ
√
T

+
µ
[
AE[φ(wT∗)] + 2B

]
σΨ

√
T

,

from which and (B.3) it further follows that

E
[
φ(wT∗)− φ(w∗)

]
= E

[
φ(wT∗)− φ(w̄T )

]
+ E

[
φ(w̄T )− φ(w∗)

]
≤
√

2E[DΨ(w̄T ,wT )]

µ
√
T

+
µA
(
E[φ(wT∗)]− φ(w∗)

)
σΨ

√
T

+
µ[Aφ(w∗) + 2B]

σΨ

√
T

+
2µ−1D + 4σ−1

Ψ µ(Aφ(w∗) + 2B)√
T

(B.6)

≤
√

2D

µ
√
T

+
E[φ(wT∗)]− φ(w∗)

2
+
µ[Aφ(w∗) + 2B]

σΨ

√
T

+
2µ−1D + 4σ−1

Ψ µ(Aφ(w∗) + 2B)√
T

,

where the last inequality is due to µ ≤ σΨ(2A)−1 and φ(wT∗) ≥ φ(w∗). The above inequality can
be written as the stated inequality. The proof is complete.

Proof of Theorem 2. Taking a summation of (B.1) from t = 1 to t = t̃, we derive the following
inequality for any t̃ = 0, . . . , T − 1

E
[
DΨ(w∗,wt̃+1)

]
= DΨ(w∗,w1) +

t̃∑
t=1

E
[
DΨ(w∗,wt+1)−DΨ(w∗,wt)

]
≤ DΨ(w∗,w1) +

1

2

t̃∑
t=1

ηtE
[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ

[
Aφ(w∗) + 2B

] t̃∑
t=1

η2
t

≤ Dt̃, (B.7)
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where we have used φ(w∗) ≤ φ(wt) and Dt̃ is defined in Theorem 2. According to the Young’s
inequality

ab ≤ as

s
+
bs̃

s̃
for all a, b, s, s̃ > 0 satisfying

1

s
+

1

s̃
= 1,

the following inequality holds for all t = 1, 2, . . . , T

DΨ(wt,wT ) ≤ LΨ‖wt −wT ‖α ≤ LΨ

[
2−1α‖wt −wT ‖α·

2
α + 1− 2−1α

]
= LΨ

[
2−1α‖wt −w∗ + w∗ −wT ‖2 + 1− 2−1α

]
≤ LΨ

[
α‖wt −w∗‖2 + α‖w∗ −wT ‖2 + 1− 2−1α

]
≤ LΨ

[
2σ−1

Ψ αDΨ(w∗,wt) + 2σ−1
Ψ αDΨ(w∗,wT ) + 1− 2−1α

]
,

which, coupled with the convexity of g(·) := DΨ(·,wT ) as a function on Rd and (B.7), then implies

E[DΨ(w̄T ,wT )] ≤ 1

T

T∑
t=1

E[DΨ(wt,wT )] ≤ LΨ

[
4σ−1

Ψ αDT + 1− 2−1α
]
, (B.8)

where w̄T is defined in Algorithm 1 with σφ = 0. Analyzing analogously to (B.2) excepting using
E[DΨ(w∗,wt)] ≤ DT for all t ≤ T (ηt is a non-increasing sequence), we derive

E[φ(w̄T )]− φ(w∗) ≤
2(Aφ(w∗) + 2B)

∑T
t=1 ηt

TσΨ
+

2DT

TηT
. (B.9)

Eq. (B.5) implies further

E
[
φ(wT∗)− φ(w̄T )

]
≤ (TηT∗)−1E[DΨ(w̄T ,wT )] + σ−1

Ψ ηT∗
[
AE[φ(wT∗)] + 2B

]
.

Combining the above inequality, (B.8), (B.9) together and using T ≤ T ∗ ≤ 2T , we get

E
[
φ(wT∗)− φ(w∗)

]
= E

[
φ(wT∗)− φ(w̄T )

]
+ E

[
φ(w̄T )− φ(w∗)

]
≤ E[DΨ(w̄T ,wT )]

Tη2T

+
AηT

(
E[φ(wT∗)]− φ(w∗)

)
σΨ

+
ηT (Aφ(w∗) + 2B)

σΨ
+

2(Aφ(w∗) + 2B)
∑T
t=1 ηt

TσΨ
+

2DT

TηT

≤
LΨ

(
4σ−1

Ψ αDT + 1
)

+ 2DT

Tη2T
+

E[φ(wT∗)]− φ(w∗)

2
+
Aφ(w∗) + 2B

σΨ

(
ηT +

2

T

T∑
t=1

ηt

)
,

where the last inequality is due to 2AηT ≤ σΨ. The above inequality can be written as (3.3). The
proof is complete.

Proof of Corollary 3. (a) Since {ηt} is a non-increasing sequence, we know

0 ≤ lim
t→∞

ηt = lim
t→∞

tη2
t

tηt
≤ lim
t→∞

1

tηt

t∑
t̃=1

η2
t̃ = 0.

This in turn shows that the sequence of arithmetic mean also converges to 0, i.e.,
limt→∞

1
t

∑t
t̃=1 ηt̃ = 0. Also, limt→∞

1
tηt

∑t
t̃=1 η

2
t̃

= 0 immediately implies limt→∞ tηt =

∞. Then, all the terms on the right-hand side of (3.3) converges to zero as T tends to∞ and
therefore limT→∞ E[φ(wT∗)]− φ(w∗) = 0.

(b) For the step size sequence ηt = µ/
√
T , (3.3) translates to

E[φ(wT∗)]−φ(w∗) ≤ 1√
T

[
2LΨµ

−1(4σ−1
Ψ αDT + 1) + 6µσ−1

Ψ (Aφ(w∗) + 2B) + 4µ−1DT

]
,

which is of the stated form since in this case DT = DΨ(w∗,w1) + σ−1
Ψ [Aφ(w∗) + 2B]µ2 is a

constant independent of T .

The proof is complete.
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Remark 1. If we consider polynomially decaying step sizes ηt = µ√
t

for all t = 1, 2, . . . , 2T , then

there exists a constant C̃ > 0 independent of T such that

E[φ(wT∗)]− φ(w∗) ≤ C̃ log(eT )√
T

.

Indeed, for the step size sequence ηt = µ/
√
t, we have

∑T
t=1 ηt ≤ 2µ

√
T and

∑T
t=1 η

2
t ≤

µ2 log(eT ). Plugging these inequalities back into (3.3) gives

E[φ(wT∗)]−φ(w∗) ≤ 1√
T

[
2
√

2LΨµ
−1(4σ−1

Ψ αDT+1)+10µσ−1
Ψ (Aφ(w∗)+2B)+4

√
2µ−1DT

]
,

which is of the stated form since in this case DT ≤ DΨ(w∗,w1) + σ−1
Ψ [Aφ(w∗) + 2B]µ2 log(eT ).

C Proofs of Convergence Rates for Strongly Convex Objectives

In this section, we present proofs of convergence rates (Theorem 4, Theorem 5, Theorem 6 and
Theorem 7) for strongly convex objectives.

Proof of Theorem 4. Choosing w = w∗ in (A.1) and taking expectation over both sides, we derive
the following inequality for any t ∈ N

(1 + σrηt)E[DΨ(w∗,wt+1)] ≤
(1− σF ηt)E[DΨ(w∗,wt)] + ηtE

[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
AE[φ(wt)] + 2B

]
. (C.1)

For any t ≥ t0 := max{d 8A−2σFσΨ

σΨσφ
e, 1} (dae denotes the smallest integer not less than a), we have

ηt ≤ σΨ(4A)−1 and therefore derive

(1 + σrηt)E[DΨ(w∗,wt+1)]

≤ (1− σF ηt)E[DΨ(w∗,wt)] +
(
ηt − σ−1

Ψ η2
tA
)
E
[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
Aφ(w∗) + 2B

]
≤ (1− σF ηt)E[DΨ(w∗,wt)] +

3ηt
4

E
[
φ(w∗)− φ(wt)

]
+ σ−1

Ψ η2
t

[
Aφ(w∗) + 2B

]
, ∀t ≥ t0.

Combining the above inequality and (C.1) together, we derive

(1+σrηt)E[DΨ(w∗,wt+1)] ≤ (1−σF ηt)E[DΨ(w∗,wt)]+
3ηt
4

E
[
φ(w∗)−φ(wt)

]
+η2

t C̃4 ∀t ∈ N,
(C.2)

where
C̃4 = σ−1

Ψ

[
Amax
t≤t0

E[φ(wt)] + 2B
]

is a constant independent of T . From (C.2), it then follows that

3ηt
4(1 + σrηt)

E[φ(wt)−φ(w∗)]+E[DΨ(w∗,wt+1)] ≤ 1− σF ηt
1 + σrηt

E[DΨ(w∗,wt)]+η
2
t C̃4, ∀t ∈ N.

(C.3)
Since ηt = 2

σφt+2σF
, we know

1− σF ηt
1 + σrηt

=
σφt+ 2σF − 2σF
σφt+ 2σF + 2σr

=
t

t+ 2

and
1

1 + σrηt
≥ 1

1 + σrη1
=
σφ + 2σF

3σφ
≥ 1

3
.

Plugging the above two inequalities into Eq. (C.3), we derive

4−1ηtE[φ(wt)− φ(w∗)] + E[DΨ(w∗,wt+1)] ≤ t

t+ 2
E[DΨ(w∗,wt)] + η2

t C̃4, ∀t ∈ N.
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Multiplying both sides by (t+ 1)(t+ 2) gives

4−1(t+ 1)(t+ 2)ηtE[φ(wt)− φ(w∗)] + (t+ 1)(t+ 2)E[DΨ(w∗,wt+1)]

≤ t(t+ 1)E[DΨ(w∗,wt)] + (t+ 1)(t+ 2)η2
t C̃4, ∀t ∈ N.

Taking a summation of the above inequality from t = 1 to t = T gives

4−1
T∑
t=1

[
(t+ 1)(t+ 2)ηtE[φ(wt)− φ(w∗)]

]
+ (T + 1)(T + 2)E[DΨ(w∗,wT+1)]

≤ 2DΨ(w∗,w1) + C̃4

T∑
t=1

(t+ 1)(t+ 2)η2
t ≤ 2DΨ(w∗,w1) +

4C̃4

σ2
φ

T∑
t=1

(t+ 1)(t+ 2)

t2

≤ 2DΨ(w∗,w1) +
4C̃4

σ2
φ

[
T + 3 log(eT ) + 4

]
≤ σ−2

φ

[
4C̃4(T + 3e−1T + 7) + 2DΨ(w∗,w1)σ2

φ

]
≤ C̃2σ

−2
φ T,

where we have used the elementary inequality log(T ) ≤ e−1T for any T ∈ N and introduced

C̃2 = 4C̃4(3e−1 + 8) + 2DΨ(w∗,w1)σ2
φ.

It then follows that
E[DΨ(w∗,wT+1)] ≤ C̃2σ

−2
φ (T + 2)−1

and

E[φ(w̄T )− φ(w∗)] ≤
∑T
t=1(t+ 1)(t+ 2)ηtE[φ(wt)− φ(w∗)]∑T

t=1(t+ 1)(t+ 2)ηt

≤ 4C̃2T

σ2
φ

∑T
t=1(t+ 1)(t+ 2)ηt

≤ 4C̃2

(T + 1)σφ
.

Here we have used the inequality

T∑
t=1

(t+ 1)(t+ 2)ηt ≥
T∑
t=1

2(t+ 1)(t+ 2)

σφt
≥ 2

σφ

T∑
t=1

t =
T (T + 1)

σφ
.

The proof is complete.

We will use the following lemma to prove sufficient conditions for the convergence of SCMD
established in Theorem 5. The following lemma is known in the literature (see, e.g., [3, 5]).

Lemma C.1. Let {ηt}t∈N be a sequence of non-negative numbers such that limt→∞ ηt = 0 and∑∞
t=1 ηt =∞. Let a > 0 and t1 ∈ N such that ηt < a−1 for any t ≥ t1. Then we have

lim
T→∞

T∑
t=t1

η2
t

T∏
k=t+1

(1− aηk) = 0.

Proof of Theorem 5. Since limt→∞ = 0, there exists a t̃0 ∈ N such that ηt ≤ σΨ(4A)−1 and
ηt ≤ σ−1

r for all t ≥ t̃0. From (C.2) and ηtσr ≤ 1 it follows that

E[DΨ(w∗,wt+1)] ≤ 1 + σrηt − σφηt
1 + σrηt

E[DΨ(w∗,wt)] + η2
t C̃5

≤
(
1− 2−1σφηt

)
E[DΨ(w∗,wt)] + η2

t C̃5, ∀t ≥ t̃0,

where
C̃5 = σ−1

Ψ

[
Amax
t≤t̃0

E[φ(wt)] + 2B
]
.
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Applying this inequality iteratively for t = T, . . . , t̃0 yields

E[DΨ(w∗,wT+1)] ≤
T∏
t=t̃0

(1−2−1σφηt)E[DΨ(w∗,wt̃0
)]+C̃5

T∑
t=t̃0

η2
t

T∏
k=t+1

(1−2−1σφηk), (C.4)

where we denote
∏T
k=t+1(1− 2−1σφηk) = 1 for t = T . The first term of the above inequality can

be controlled by the standard inequality 1− a ≤ exp(−a), a > 0 together with
∑∞
t=1 ηt =∞

lim
T→∞

T∏
t=t̃0

(1− 2−1σφηt)E[DΨ(w∗,wt̃0
)] ≤ lim

T→∞

T∏
t=t̃0

exp
(
− 2−1σφηt

)
E[DΨ(w∗,wt̃0

)]

= lim
T→∞

exp
(
− 2−1σφ

T∑
t=t̃0

ηt

)
E[DΨ(w∗,wt̃0

)] = 0.

Applying Lemma C.1 with a = 2−1σφ, we get

lim
T→∞

T∑
t=t̃0

η2
t

T∏
k=t+1

(1− 2−1σφηk) = 0.

Plugging the above two expressions into (C.4) completes the proof.

Proof of Theorem 6. According to the strong convexity of φ given in (3.2) and the optimality condi-
tion 0 ∈ ∂φ(w∗), we get

E[φ(w̄T )− φ(w∗)] = E
[
φ(w̄T )− φ(w∗)− 〈w̄T −w∗, 0〉

]
≥ σφE[DΨ(w̄T ,w

∗)],

which, together with the strong convexity of Ψ and the first inequality of (3.4), gives

E[‖w̄T −w∗‖2] ≤ 2E[φ(w̄T )− φ(w∗)]

σφσΨ
≤ 8C̃2

(T + 1)σ2
φσΨ

.

It then follows from the LΨ-strong smoothness of Ψ, E[‖w∗ −wT ‖2] ≤ 2
σΨ

E[DΨ(w∗,wT )] and
the second inequality of (3.4) that

E[DΨ(w̄T ,wT )] ≤ 2−1LΨE[‖w̄T −wT ‖2] = 2−1LΨE
[
‖w̄T −w∗ + w∗ −wT ‖2

]
≤ LΨE

[
‖w̄T −w∗‖2 + ‖w∗ −wT ‖2

]
≤ 10LΨC̃2

(T + 1)σ2
φσΨ

.

Plugging the above inequality back into (B.5) and using T ≤ T ∗ ≤ 2T − 1 give

E
[
φ(wT∗)− φ(w̄T )

]
≤ T−1η−1

T∗E[DΨ(w̄T ,wT )] + σ−1
Ψ ηT∗

[
AE[φ(wT∗)] + 2B

]
≤ σφ(T ∗ + 2)

2T

10LΨC̃2

(T + 1)σ2
φσΨ

+
2
[
AE[φ(wT∗)] + 2B

]
σΨσφT ∗

=
10LΨC̃2

TσφσΨ
+

2
[
AE[φ(wT∗)] + 2B

]
σΨσφT

. (C.5)

Plugging the first inequality in (3.4) and (C.5) back into the error decomposition (2.5) gives

E
[
φ(wT∗)− φ(w∗)

]
≤

10LΨC̃2σ
−1
Ψ + 4C̃2

Tσφ
+

2A
[
E[φ(wT∗)]− φ(w∗)

]
σΨσφT

+
2
[
Aφ(w∗) + 2B

]
σΨσφT

≤
10LΨC̃2σ

−1
Ψ + 4C̃2

Tσφ
+

E[φ(wT∗)]− φ(w∗)

2
+

2
[
Aφ(w∗) + 2B

]
σΨσφT

,

where we have used the inequality 2A
σΨσφT

≤ 1
2 and φ(wT∗)− φ(w∗) ≥ 0 in the last step. The above

inequality can be written as stated inequality with

C̃3 = 4C̃2(5LΨσ
−1
Ψ + 2) + 4σ−1

Ψ

[
Aφ(w∗) + 2B

]
.

The proof is complete.
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Finally, we give the proof of Theorem 7 on lower bounds of convergence rates under a lower-bound
assumption on the variance of∇f(w, z) as an unbiased estimate of ∇F (w).

Proof of Theorem 7. If Ψ(w) = 1
2‖w‖

2
2 and r(w) = 0, then (2.2) becomes

wt+1 = wt − ηt∇f(wt, zt),

from which we know

‖wt+1 −w∗‖22 = ‖wt −w∗‖22 + η2
t ‖∇f(wt, zt)‖22 − 2ηt〈wt −w∗,∇f(wt, zt)〉.

Taking expectations over both sides, we get

E[‖wt+1 −w∗‖22] = E[‖wt −w∗‖22] + η2
tE[‖∇f(wt, zt)‖22]− 2ηtE[〈wt −w∗,∇φ(wt)〉]. (C.6)

According to the lower bound assumption on variances, we know

Ezt [‖∇f(wt, zt)‖22] = Ezt
[
‖∇f(wt, zt)−∇F (wt)‖22

]
+ ‖∇F (wt)‖22 ≥ σ2.

We can combine the above inequality and (C.6) to derive

E[‖wt+1 −w∗‖22] ≥ E[‖wt −w∗‖22] + η2
t σ

2 − 2ηtE[〈wt −w∗,∇φ(wt)〉]. (C.7)

Since φ is Lφ-smooth, we know

〈w∗ −wt,∇φ(wt)〉 ≥ −Lφ‖w∗ −wt‖22,
which, plugged into (C.6) with the assumption 2Lφηt ≤ 1, implies the following inequality

E[‖wt+1 −w∗‖22] ≥ (1− 2Lφηt)E[‖wt −w∗‖22] + 2Lφηt(ηtσ
2/(2Lφ)),

from which we know

E[‖wt+1 −w∗‖22] ≥ min{E‖wt −w∗‖22, ηtσ2/(2Lφ)}.
We can apply the above inequality iteratively to show

E[‖wt+1 −w∗‖22] ≥ min{‖w1 −w∗‖22, η1σ
2/(2Lφ), . . . , ηtσ

2/(2Lφ)}.
The proof is complete.

Table C.1: Description of the datasets used in the experiments.

datasets # inst # feat datasets # inst # feat datasets # inst # feat datasets # inst # feat
diabetes 768 8 german 1000 24 splice 1000 60 usps 7291 256

mnist 60000 780 w8a 49749 300 letter 15000 16 satimage 4456 36
ijcnn1 141691 22 mushrooms 8124 112 a9a 32561 123 connect 67557 126
cover 286048 10 webspam_u 350000 254 real-sim 72309 20958 rcv1 20242 47236

D Additional Experimental Results

In this section, we give the description of datasets used in the experiments and report more experi-
mental results.

D.1 Description of Datasets

In this subsection, we provide in Table C.1 the information for the datasets used in Section 5.1.
Webspam_u is a subset used in the Pascal Large Scale Learning Challenge [4] to detect malicious
web pages. The remaining datasets can be downloaded from the LIBSVM homepage [2].

D.2 Testing errors versus iteration numbers

In this subsection, we compare the behavior of several variants of SGD and SPGD on testing datasets.
In Figure D.1, we plot the objective function values on testing datasets versus iteration numbers for
SPGD (mean±0.5std). In Figure D.2, we plot the objective function values on testing datasets versus
iteration numbers for SGD applied to different datasets.
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(a) diabetes (b) german (c) splice (d) usps

(e) mnist (f) w8a (g) letter (h) satimage

(i) ijcnn1 (j) mushroom (k) a9a (l) connect

(m) cover (n) webspam_u (o) real-sim (p) rcv1

Figure D.1: Objective function values on test datasets versus iteration numbers for SPGD.

D.3 Training errors versus iteration numbers

In this section, we report more experimental results on training errors. In Figure D.3 and Figure
D.4, we report the objective function values on training examples versus the number of iterations for
SPGD and SGD, which behave analogously to testing errors.

D.4 Additional experimental results for tomography reconstruction

In this section, we report more experimental results for tomography reconstruction. In Figure D.5, we
compare the behavior of our method with several baseline methods for the tomography reconstruction
problem with N = 32, n = 11520 and 5% relative noise.
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(a) diabetes (b) german (c) splice (d) usps

(e) mnist (f) w8a (g) letter (h) satimage

(i) ijcnn1 (j) mushroom (k) a9a (l) connect

(m) cover (n) webspam_u (o) real-sim (p) rcv1

Figure D.2: Objective function values on test datasets versus iteration numbers for SGD.
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(a) diabetes (b) german (c) splice (d) usps

(e) mnist (f) w8a (g) letter (h) satimage

(i) ijcnn1 (j) mushroom (k) a9a (l) connect

(m) cover (n) webspam_u (o) real-sim (p) rcv1

Figure D.3: Objective function values on training datasets versus iteration numbers for SPGD.
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(a) diabetes (b) german (c) splice (d) usps

(e) mnist (f) w8a (g) letter (h) satimage

(i) ijcnn1 (j) mushroom (k) a9a (l) connect

(m) cover (n) webspam_u (o) real-sim (p) rcv1

Figure D.4: Objective function values on training datasets versus iteration numbers for SGD.

(a) True Image. (b) Reconstructed Image. (c) Error vs. T . (d) NNCs vs. T

Figure D.5: Tomography reconstruction with N = 32, n = 11520 and 5% relative noise. Panel (a)
and (b) are the true image and the reconstructed image by OCMDI, respectively. Panel (c) and (d)
plot the errors and NNCs versus iteration numbers.
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