
Adaptive Sequence Submodularity

Anonymous Author(s)
Affiliation
Address
email

Abstract

In many machine learning applications, one needs to interactively select a sequence1

of items (e.g., recommending movies based on a user’s feedback) or make se-2

quential decisions in a certain order (e.g., guiding an agent through a series of3

states). Not only do sequences already pose a dauntingly large search space, but we4

must also take into account past observations, as well as the uncertainty of future5

outcomes. Without further structure, finding an optimal sequence is notoriously6

challenging, if not completely intractable. In this paper, we view the problem of7

adaptive and sequential decision making through the lens of submodularity and8

propose an adaptive greedy policy with strong theoretical guarantees. Additionally,9

to demonstrate the practical utility of our results, we run experiments on Amazon10

product recommendation and Wikipedia link prediction tasks.11

1 Introduction12

The machine learning community has long recognized the importance of both sequential and adaptive13

decision making. The study of sequences has led to novel neural architectures such as LSTMs [26],14

which have been used in a variety of applications ranging from machine translation [51] to image15

captioning [55]. Similarly, the study of adaptivity has led to the establishment of some of the most16

popular subfields of machine learning including active learning [47] and reinforcement learning [52].17

In this paper, we consider the optimization of problems where both sequences and adaptivity are18

integral part of the process. More specifically, we focus on problems that can be modeled as selecting19

a sequence of items, where each of these items takes on some (initially unknown) state. The idea is20

that the value of any sequence depends not only on the items selected and the order of these items but21

also on the states of these items.22

Consider recommender systems as a running example. To start, the order in which we recommend23

items can be just as important as the items themselves. For instance, if we believe that a user will24

enjoy the Lord of the Rings franchise, it is vital that we recommend the movies in the proper order. If25

we suggest that the user watches the final installment first, she may end up completely unsatisfied with26

an otherwise excellent recommendation. Furthermore, whether it is explicit feedback (such as rating27

a movie on Netflix) or implicit feedback (such as clicking/not clicking on an advertisement), most28

recommender systems are constantly interacting with and adapting to each user. It is this feedback29

that allows us to learn about the states of items we have already selected, as well as make inferences30

about the states of items we have not selected yet.31

Unfortunately, the expressive modeling power of sequences and adaptivity comes at a cost. Not32

only does optimizing over sequences instead of sets exponentially increase the size of the search33

space, but adaptivity also necessitates a probabilistic approach that further complicates the problem.34

Without further assumptions, even approximate optimization is infeasible. As a result, we address35

this challenge from the perspective of submodularity, an intuitive diminishing returns condition that36

appears in a broad scope of different areas, but still provides enough structure to make the problem37

tractable.38

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Research on submodularity, which itself has been a burgeoning field in recent years, has seen39

comparatively little focus on sequences and adaptivity. This is especially surprising because many40

problems that are commonly modeled under the framework of submodularity, such as recommender41

systems [21, 58] and crowd teaching [48], stand to benefit greatly from these concepts.42

While the lion’s share of existing research in submodularity has focused on sets, a few recent lines43

of work extend the concept of submodularity to sequences. Tschiatschek et al. [53] were the first to44

consider sequence submodularity in the general graph-based setting that we will follow in this paper.45

They presented an algorithm with theoretical guarantees for directed acyclic graphs, while Mitrovic46

et al. [44] developed a more comprehensive algorithm that provides theoretical guarantees for general47

hypergraphs.48

In their experiments, both of these works showed that modeling the problem as sequence submodular49

(as opposed to set submodular) gave noticeable improvements. Their applications could benefit50

even further from the aforementioned notions of adaptivity, but the existing theory behind sequence51

submodularity simply cannot model the problems in this way. While adaptive set submodularity has52

been studied extensively [12, 20, 22, 24], these approaches still fail to capture order dependencies.53

Alaei and Malekian [1] and Zhang et al. [59] also consider sequence submodularity (called string-54

submodularity in some works), but they use a different definition, which is based on subsequences55

instead of graphs. On the other hand, Li and Milenkovic [38] have considered the interaction of56

graphs and submodularity, but not in the context of sequences.57

Other Related Work Amongst many other applications, submodularity has also been used for58

variable selection [35], data summarization [31, 39, 43], sensor placement [33], neural network59

interpretability [14], network inference [23], and influence maximization in social networks [28].60

Submodularity has also been studied extensively in a wide variety of settings, including distributed61

and scalable optimization [5–7, 17, 18, 37, 42, 43], streaming algorithms [3, 10, 11, 19, 34, 45,62

46], robust optimization [9, 27, 36, 49, 54], weak submodularity [13, 15, 16, 30], and continuous63

submodularity [2, 4, 25, 50, 57].64

Our Contributions The main contributions of our paper are presented in the following sections:65

• In Section 2, we introduce our framework of adaptive sequence submodularity, which brings66

tractability to problems that include both sequences and adaptivity.67

• In Section 3, we present our algorithm for adaptive sequence submodular maximization.68

We present theoretical guarantees for our approach and we elaborate on the necessity of69

our novel proof techniques. We also show that these techniques simultaneously improve70

the state-of-the-art bounds for the problem of sequence submodularity by a factor of e
e−1 .71

Furthermore, we argue that any approximation guarantee must depend on the structure of72

the underlying graph unless the exponential time hypothesis is false.73

• In Section 4, we use datasets from Amazon and Wikipedia to compare our algorithm against74

existing sequence submodular baselines, as well as state-of-the-art deep learning-based75

approaches.76

2 Adaptive Sequence Submodularity77

As discussed above, sequences and adaptivity are an integral part of many real-world problems. This78

means that many real-world problems can be modeled as selecting a sequence σ of items from a79

ground set V , where each of these items takes on some (initially unknown) state o ∈ O. A particular80

mapping of items to states is known as a realization φ, and we assume there is some unknown81

distribution p(φ) that governs these states.82

For example in movie recommendation, the set of all movies is our ground set V and our goal is to83

select a sequence of movies that a particular user will enjoy. If we recommend a movie vi ∈ V and84

the user likes it, we place vi in state 1 (i.e. oi = 1). If not, we put it into state 0. Naturally, the value85

of a movie should be higher if the user liked it, and lower if she did not.86

Formally, we want to select a sequence σ that maximizes f(σ, φ), where f(σ, φ) is the value of87

sequence σ under realization φ. However, φ is initially unknown to us and the state of each item in88

the sequence is revealed to us only after we select it. In fact, even if we knew φ perfectly, the set of89

2

The

Two

Towers

The

Fellowship

Of The

Ring

F T R

The

Return

Of The

King

(a)

The

Two

Towers

The

Fellowship

Of The

Ring

The

Return

Of The

King

(F, 1) (T, 0) (R, ?)

(b)

Figure 1: (a) shows an underlying graph for a movie recommendation problem. The vertices are
movies and edges denote the additional value of watching certain movies in certain orders. (b) extends
this to the adaptive case, where both the vertices and the edges take on a state. The user has reported
that she liked the Fellowship of the Ring (so it is placed in state 1), but she did not like The Two
Towers (so it is placed in state 0). The state of the last movie is still unknown. In this example, the
state of an edge is equal to the state of its starting vertex.

all sequences poses an intractably large search space. From an optimization perspective, this problem90

is hopeless without further structural assumptions.91

Our first step towards taming this problem is to follow the work of Tschiatschek et al. [53] and92

assume that the value of a sequence can be defined using a graph. Concretely, we have a directed93

graph G = (V,E), where each item in our ground set is represented as a vertex v ∈ V , and the94

edges encode the additional value intrinsic to picking certain items in certain orders. Mathematically,95

selecting a sequence of items σ will induce a set of edges E(σ):96

E(σ) =
{

(σi, σj) | (σi, σj) ∈ E, i ≤ j
}
.

For example, consider the graph in Figure 1a and consider the sequence σA = [F, T] where the user97

watched The Fellowship of the Ring, and then The Two Towers, as well as the sequence σB = [T, F]98

where the user watched the same two movies but in the opposite order.99

E(σA) = E
(
[F, T]

)
=
{

(F, F), (T, T), (F, T)
}

100

E(σB) = E
(
[T, F]

)
=
{

(T, T), (F, F)
}

101

Using the self-loops, this graph encodes the fact that there is certainly some intrinsic value to watching102

these movies regardless of the order. On the other hand, the edge (F, T) encodes the fact that watching103

The Fellowship of the Ring before The Two Towers will bring additional value to the viewer, and this104

edge is only induced if the movies appear in the correct order in the sequence.105

With this graph based set-up, however, we run into issues when it comes to adaptivity. In particular,106

the states of items naturally translate to states for the vertices, but it is not clear how to extend107

adaptivity to the edges. We tackle this challenge by assigning a state q ∈ Q to each edge strictly as a108

function of the states of its endpoints. That is, similarly to how a sequence σ induces a set of edges109

E(σ), a realization φ for the states of the vertices induces a realization φE for the states of the edges.110

As we will discuss later, the analysis for this approach will necessitate some novel proof techniques,111

but the resulting framework is very flexible and it allows us to fully redefine the adaptive sequence112

problem in terms of the underlying graph:113

f(σ, φ) = h
(
E(σ), φE

)
where σ induces E(σ) and φ induces φE .

The last necessary ingredient to bring tractability to this problem is submodularity. In particular,114

we will assume that h
(
E(σ), φE

)
is weakly adaptive set submodular. This is a relaxed version of115

standard adaptive set submodularity that can model an even larger variety of problems, and it is a116

natural fit for the applications we consider in this paper.117

In order to formally define weakly-adaptive submodularity, we need a bit more terminology. To start,118

we define a partial realization ψ to be a mapping for only some subset of items (i.e., the states of119

the remaining items are unknown). For notational convenience, we define the domain of ψ, denoted120

dom(ψ), to be the list of items v for which the state of v is known. We say that ψ is a subrealization121

of ψ′, denoted ψ ⊆ ψ′, if dom(ψ) ⊆ dom(ψ′) and they are equal everywhere in the domain of ψ.122

Intuitively, if ψ ⊆ ψ′, then ψ′ has all the same information as ψ, and potentially more.123

Given a partial realization ψ, we define the marginal gain of a set A as124

∆(A | ψ) = E
[
h
(
dom(ψ) ∪A, φ

)
− h
(
dom(ψ), φ

)
| ψ
]
,

3

where the expectation is taken over all the full realizations φ such that ψ ⊆ φ. In other words, we125

condition on the states given by the partial realization ψ, and then we take the expectation across all126

possibilities for the remaining states.127

Definition 1. A function h : 2E ×QE → R≥0 is weakly adaptive set submodular with parameter γ128

if for all sets A ⊆ E and for all ψ ⊆ ψ′ we have:129

∆(A | ψ′) ≤ 1

γ
·
∑
e∈A

∆(e | ψ).

This notion is a natural generalization of weak submodular functions [13] to adaptivity. The primary130

difference is that we condition on subrealizations instead of just sets because we need to account131

for the states of items. Note that in the context of this paper h is a function on the edges, so we132

will condition on subrealizations of the edges ψE . However, these concepts apply more generally to133

functions on any set and state spaces, so we use ψ in the formal definitions.134

Definition 2. A function h : 2E ×QE → R≥0 is adaptive monotone if ∆(e | ψ) ≥ 0 for all partial135

realizations ψ. That is, the conditional expected marginal benefit of any element is non-negative.136

Figure 1b is designed to help clarify these concepts. It includes the same graph as Figure 1a, but now137

we can receive feedback from the user. If we recommend a movie and the user likes it, we put the138

corresponding vertex in state 1 (green in the image). Otherwise, we put the vertex in state 0 (red in139

the image). Vertices whose states are still unknown are denoted by a dotted black line.140

Next, in our example, we need to define a state for each edge in terms of the states of its endpoints.141

In this case, we will define the state of each edge to be equal to the state of its start point. In Figure142

1b, the user liked The Fellowship of the Ring, which puts edges (F, F), (F, T), and (F,R) in state 1143

(green). She did not like The Two Towers, so edges (T, T) and (T,R) are in state 0 (red), and we do144

not know the state for The Return of the King, so the state of (R,R) is also unknown. We call this145

partial realization ψ1 for the vertices, and the induced partial realization for the edges ψE1 .146

Suppose our function h counts all induced edges that are in state 1. Furthermore, let us simply assume147

that any unknown vertex is equally likely to be in state 0 or state 1. This means that the self-loop (R,R)148

is also equally likely to be in either state 0 or state 1. Therefore, ∆
(
(R,R) | ψE1

)
= 1

2×0+ 1
2×1 = 1

2 .149

On the other hand, consider the edge (F,R). Under ψ1, we know F is in state 1, which means150

(F,R) is also in state 1, and thus, ∆
(
(F,R) | ψE1

)
= 1. However, if we consider a subrealization151

ψ2 ⊆ ψ1 where we do not know the state of F , then it is equally likely to be in either state and152

∆
(
(F,R) | ψE2

)
= 1

2 × 0 + 1
2 × 1 = 1

2 . Therefore, for this simple function we know that γ ≤ 0.5.153

3 Adaptive Sequence-Greedy Policy and Theoretical Results154

In this section, we introduce our Adaptive Sequence-Greedy policy and present its theoretical155

guarantees. We first formally define weakly adaptive sequence submodularity.156

Definition 3. A function f(σ, φ) defined over a graph G(V,E) is weakly adaptive sequence sub-157

modular if f(σ, φ) = h
(
E(σ), φE

)
where a sequence σ of vertices in V induces a set of edges E(σ),158

realization φ induces φE , and the function h is weakly adaptive set submodular. Note that if h is159

adaptive monotone, then f is also adaptive monotone.160

Formally, a policy π is an algorithm that builds a sequence of k vertices by seeing which states have161

been observed at each step, then deciding which vertex should be chosen and observed next. If σπ,φ162

is the sequence returned by policy π under realization φ, then we write the expected value of π as:163

favg(π) = E
[
f(σπ,φ, φ)

]
= E

[
h
(
E(σπ,φ), φE

)]
where again the expectation is taken over all possible realizations φ.164

Our Adaptive Sequence Greedy policy π (Algorithm 1) starts with an empty sequence σ. Throughout165

the policy, we define ψσ to be the partial realization for the vertices in σ. In turn this gives us the166

partial realization ψEσ for the induced edges.167

At each step, we define the valid set of edges E to be the edges whose endpoint is not already in σ.168

The main idea of our policy is that, at each step, we select the valid edge e ∈ E with the highest169

4

expected value ∆(e | ψEσ). For each such edge, the endpoints that are not already in the sequence σ170

are concatenated (⊕ means concatenate) to the end of σ, and their states are observed (updating ψσ).171

Algorithm 1 Adaptive Sequence Greedy Policy π

1: Input: Directed graph G = (V,E), weakly adaptive sequence submodular f(σ, φ) =
h
(
E(σ), φE

)
, and cardinality constraint k

2: Let σ ← ()
3: while |σ| ≤ k − 2 do
4: E = {eij ∈ E | vj /∈ σ}
5: if E 6= ∅ then
6: eij = arg maxe∈E ∆(e | ψEσ)
7: if vi = vj or vi ∈ σ then
8: σ = σ ⊕ vj and observe state of vj
9: else

10: σ = σ ⊕ vi ⊕ vj and observe states of vi, vj
11: end if
12: else
13: break
14: end if
15: end while
16: Return σ

Theorem 1. For adaptive monotone and weakly adaptive sequence submodular function f , the172

Adaptive Sequence Greedy policy π represented by Algorithm 1 achieves173

favg(π) ≥ γ

2din + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected174

value and din is the largest in-degree of the input graph G.175

As discussed by Mitrovic et al. [44], using a hypergraph H instead of a normal graph G allows us to176

encode more intricate relationships between the items. For example, in Figure 1a, the edges only177

encode pairwise relationships. However, there may be relationships between larger groups of items178

that we want to encode explicitly. For instance, if included, the value of a hyperedge (F, T,R) in179

Figure 1a would explicitly encode the value of watching The Fellowship of the Ring, followed by180

watching The Two Towers, and then concluding with The Return of the King.181

We can also extend our policy to general hypergraphs (see Algorithm 2 in Appendix B.3). Theorem 2182

guarantees the performance of our proposed policy for hypergraphs.183

Theorem 2. For adaptive monotone and weakly adaptive sequence submodular function f , the policy184

π′ represented by Algorithm 2 achieves185

favg(π
′) ≥ γ

rdin + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected186

value and r is the size of the largest hyperedge in the input hypergraph.187

In our proofs, we have to handle the sequential nature of picking items and the revelation of states in a188

combined setting. Unfortunately, the existing proof methods for sequence submodular maximization189

are not linear enough to allow for the use of the linearity of expectation that captures the stochasticity190

of the states. For this reason, we develop a novel analysis technique to guarantee the performance191

of our algorithms. Surprisingly, these new techniques improve the theoretical guarantees of the192

non-adaptive Sequence-Greedy and Hyper Sequence-Greedy [44] by a factor of e
e−1 . Proofs for193

both theorems are given in Appendix B.194

General Unifying Framework One more theoretical point we want to highlight is that weakly195

adaptive sequence submodularity provides a general unifying framework for a variety of common196

submodular settings including, adaptive submodularity, weak submodularity, sequence submodularity,197

and classical set submodularity. If we have γ = 1 and the state of all vertices is deterministic, then198

we have sequence submodularity. Conversely, if the vertex states are unknown, but our graph only199

5

has self-loops, then we have weakly adaptive set submodularity (and correspondingly adaptive set200

submodularity if γ = 1). Lastly, if we have a graph with only self-loops, full knowledge of all states,201

and γ = 1, then we recover the original setting of classical set submodularity.202

Tightness of Theoretical Results We acknowledge that the constant factor approximation we present203

depends on the maximum in-degree. While ideally the theoretical bound would be completely204

independent of the structure of the graph, we argue here that such a dependence is likely necessary.205

Indeed, getting a dependence better than O(n1/4) in the approximation factor (where n is the total206

number of items) would improve the state-of-the-art algorithm for the very well-studied densest k207

subgraph problem (DkS) [8, 32]. Moreover, if we could get an approximation that is completely208

independent of the structure of the graph, then the exponential time hypothesis would be proven false1.209

In fact, even an almost polynomial approximation would break the exponential time hypothesis [40].210

Next, we formally state this hardness relationship. The proof is given in Appendix C.211

Theorem 3. Assuming the exponential time hypothesis is correct, there is no algorithm that ap-212

proximates the optimal solution for the (adaptive) sequence submodular maximization problem213

within a n1/(log logn)c factor, where n is the total number of items and c > 0 is a universal constant214

independent of n.215

4 Experimental Results216

4.1 Amazon Product Recommendation217

Using the Amazon Video Games review dataset [41], we consider the task of recommending products218

to users. In particular, given the first g products that the user has purchased, we want to predict the219

next k products that she will buy. Full experimental details are given in Appendix D.1. Dataset and220

code are attached in the supplementary material.221

We start by using the training data to build a graph G = (V,E), where V is the set of all products222

and E is the set of edges between these products. The weight of each edge, wij , is defined to be the223

conditional probability of purchasing product j given that the user has previously purchased product i.224

There are also self-loops with weight wii that represent the fraction of users that purchased product i.225

We define the state of each edge (i, j) to be equal to the state of product i. The intuitive idea is226

that edge (i, j) encodes the value of purchasing product j after already having purchased product i.227

Therefore, if the user has definitely purchased i (i.e., product i is in state 1), then they should receive228

the full value of wij . On the other hand, if she has definitely not purchased i (i.e., product i is in state229

0), then edge (i, j) provides no value. Lastly, if the state of i is unknown, then the expected gain230

of edge (i, j) is discounted by wii, the value of the self-loop on i, which can be viewed as a simple231

estimate for the probability of the user purchasing product i. See Figure 2a for a small example.232

We use a probabilistic coverage utility function as our monotone weakly-adaptive set submodular233

function h. Mathematically,234

h(E1) =
∑
j∈V

[
1−

∏
(i,j)∈E1

(1− wij)
]
,

where E1 ⊆ E is the subset of edges that are in state 1.235

We compare the performance of our Adaptive Sequence-Greedy policy against Sequence-Greedy236

from Mitrovic et al. [44], the existing sequence submodularity baseline that does not consider states.237

To give further context for our results, we compare against Frequency, a naive baseline that ignores238

sequences and adaptivity and simply outputs the k most popular products.239

We also compare against a set of deep learning-based approaches (see Appendix D.3 for full details).240

In particular, we implement adaptive and non-adaptive versions of both a regular Feed Forward241

Neural Network and an LSTM. The adaptive version will update its inputs after every prediction to242

reflect whether or not the user liked the recommendation. Conversely, the non-adaptive version will243

simply make k predictions using just the original input.244

We use two different measures to compare the various algorithms. The first is the Accuracy Score,245

which simply counts the number of recommended products that the user indeed ended up purchasing.246

1If the exponential time hypothesis is true it would imply that P 6= NP, but it is a stronger statement.

6

.0001

.022

.069 0

.002

.005

0
.01

Wii
Olympics

Wii
Sports

Mario
Kart

Wii
Wheel

(a)

1 2 3 4 5 6
Number of Recommendations

0.2
0.4
0.6
0.8
1.0
1.2

Ac
cu

ra
cy

 S
co

re

Adaptive Sequence-Greedy
Sequence-Greedy
Frequency
Adaptive Feed Forward NN
Non-Adaptive Feed Forward NN
Adaptive LSTM
Non-Adaptive LSTM

(b)

1 2 3 4 5 6
Number of Recommendations

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Se
qu

en
ce

 S
co

re

Adaptive Sequence-Greedy
Sequence-Greedy
Frequency
Adaptive Feed Forward NN
Non-Adaptive Feed Forward NN
Adaptive LSTM
Non-Adaptive LSTM

(c)

A, B, C, D

J, A, M, D

Accuracy Score: 2

A, B
A, C
A, D

B, BA, A
B, C
B, D

C, D
C, C D, D

J, A
J, M
J, D

A, A
J, J

A, M
A, D M, D

M, M
D, D

Sequence Score: 3

{
{

True Sequence

Predicted Sequence

(d)

1 2 3 4 5 6
Number of Recommendations

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Ac
cu

ra
cy

 S
co

re

Adaptive Sequence-Greedy
Sequence-Greedy
Frequency
Adaptive Feed Forward NN
Non-Adaptive Feed Forward NN
Adaptive LSTM
Non-Adaptive LSTM

(e)

1 2 3 4 5 6
Number of Recommendations

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Se
qu

en
ce

 S
co

re

Adaptive Sequence-Greedy
Sequence-Greedy
Frequency
Adaptive Feed Forward NN
Non-Adaptive Feed Forward NN
Adaptive LSTM
Non-Adaptive LSTM

(f)

Figure 2: (a) shows a small subset of the underlying graph with states for a particular user. (b) and (c)
show our results on the Amazon product recommendation task. In all these graphs, the number of
given products g is 4. (d) gives an example illustrating the difference between the two performance
measures. (e) and (f) show our results on the same task, but using only 1% of the available training to
show that our algorithm outperforms deep learning-based approaches in data scarce environments.

While this is a sensible measure, it does not explicitly consider the order of the sequence. Therefore,247

we also consider the Sequence Score, which is a measure based on the Kendall-Tau distance [29]. In248

short, this measure counts the number of ordered pairs that appear in both the predicted sequence and249

the true sequence. Figure 2d gives an example comparing the two measures.250

Figures 2b and 2c show the performance of the various algorithms using the accuracy score and251

sequence score, respectively. These results highlight the importance of adaptivity as the adaptive al-252

gorithms consistently outperform their non-adaptive counterparts under both scoring regimes. Notice253

that in both cases, as the number of recommendations increases, our proposed Adaptive Sequence-254

Greedy policy is outperformed only by the Adaptive Feed Forward Neural Network. Although255

LSTMs are generally considered better for sequence data than vanilla feed-forward networks, we256

think it is a lack of data that causes them to perform poorly in our experiments.257

Another observation, which fits the conventional wisdom, is that deep learning-based approaches258

can perform well when there is a lot of data. However, when the data is scarce, we see that the259

Sequence-Greedy based approaches outperform the deep learning-based approaches. Figures 2e260

and 2f simulate a data-scarce environment by using only 1% of the available data as training data.261

Note that the difference between the adaptive algorithms and their non-adaptive counterparts is262

less obvious in this setting because the adaptive algorithms use correct guesses to improve future263

recommendations, but the data scarcity makes it difficult to make a correct guess in the first place.264

Aside from competitive accuracy and sequence scores, the Adaptive Sequence-Greedy algorithm265

provides several advantages over the neural network-based approaches. From a theoretical perspective,266

the Adaptive Sequence-Greedy algorithm has provable guarantees on its performance, while little267

is known about the theoretical performance of neural networks. Furthermore, the decisions made268

by the Adaptive Sequence-Greedy algorithm are easily interpretable and understandable (it is just269

picking the edge with the highest expected value), while neural networks are generally a black-box.270

On a similar note, Adaptive Sequence-Greedy may be preferable from an implementation perspective271

because it does not require any hyperparameter tuning. It is also more robust to changing inputs in272

the sense that we can easily add another product and its associated edges to our graph, but adding273

another product to the neural network requires changing the entire input and output structure, and274

thus, generally necessitates retraining the entire network.275

7

4.2 Wikipedia Link Prediction276

Using the Wikispeedia dataset [56], we consider users who are surfing through Wikipedia towards277

some target article. Given a sequence of articles the user has previously visited, we want to guide her278

to the page she is trying to reach. Since different pages have different valid links, the order of pages279

we visit is critical to this task. Formally, given the first g = 3 pages each user visited, we want to280

predict which page she is trying to reach by making a series of suggestions for which link to follow.281

In this case, we have G = (V,E), where V is the set of all pages and E is the set of existing links282

between pages. Similarly to before, the weight wij of an edge (i, j) ∈ E is the probability of moving283

to page j given that the user is currently at page i. In this case, there are no self-loops as we assume284

we can only move using links, and thus we cannot jump to random pages. We again define two states285

for the nodes: 1 if the user definitely visits this page and 0 if the user does not want to visit this page.286

This application highlights the importance of adaptivity because the non-adaptive sequence submodu-287

larity framework cannot model this problem properly. This is because the Sequence-Greedy algorithm288

is free to choose any edge in the underlying graph, so there is no way to force the algorithm to pick a289

link that is connected to the user’s current page. On the other hand, with Adaptive Sequence-Greedy,290

we can use the states to penalize invalid edges, and thus force the algorithm to select only links291

connected to the user’s current page. Similarly, we only have the adaptive versions of the deep292

learning baselines because we need information about our current page in order to construct a valid293

path (Appendix D.3 gives a more detailed explanation).294

Figure 3a shows an example of predicted paths, while Figure 3b shows our quantitative results.295

More detail about the relevance distance metric is given in Appendix D.2, but the idea is that the296

it measures the relevance of the final output page to the true target page (a lower score indicates297

a higher relevance). The main observation here is that the Adaptive Sequence Greedy algorithm298

actually outperforms the deep-learning based approaches. The main reason for this discrepancy is299

likely a lack of data as we have 619 pages to choose from and only 7,399 completed search paths.300

Electronics

Batman Science Computer
Science Microsoft

Chemistry Technology Computer
Programming Computer

Science Technology Computer

Science

Electronics

Technology

Biology

Physics

Adaptive Sequence Greedy

Adaptive Feed Forward
Neural Network

Real Path

(a)

1 2 3 4 5
Number of guesses

2.05

2.10

2.15

2.20

2.25

2.30

Re
le

va
nc

e
Di

st
an

ce Adaptive Sequence-Greedy
Adaptive Feed Forward NN
Adaptive LSTM

(b)

Figure 3: (a) The left side shows the real path a user followed from Batman to Computer. Given the
first three pages, the right side shows the path predicted by Adaptive Sequence Greedy versus a deep
learning-based approach. Green shows correct guesses that were followed, while red shows incorrect
guesses that were not pursued further. (b) shows the overall performance of the various approaches.

5 Conclusion301

In this paper we introduced adaptive sequence submodularity, a general framework for bringing302

tractability to the broad class of optimization problems that consider both sequences and adaptivity.303

We presented Adaptive Sequence-Greedy—a general policy for optimizing weakly adaptive sequence304

submodular functions. In addition to providing a provable theoretical guarantee for our algorithm305

(as well as a discussion about the tightness of this result), we also evaluated its performance on306

an Amazon product recommendation task and a Wikipedia link prediction task. Not only does our307

Adaptive Sequence-Greedy policy exhibit competitive performance with the state-of-the-art, but it308

also provides several notable advantages, including interpretability, ease of implementation, and309

robustness against both data scarcity and input adjustments.310

8

References311

[1] Saeed Alaei and Azarakhsh Malekian. Maximizing sequence-submodular functions and its312

application to online advertising. arXiv preprint arXiv:1009.4153, 2010.313

[2] Francis Bach. Submodular functions: from discrete to continous domains. arXiv preprint314

arXiv:1511.00394, 2015.315

[3] Ashwin Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming316

submodular maximization: Massive data summarization on the fly. In Knowledge Discovery317

and Data Mining (KDD), 2014.318

[4] Wenruo Bai, William Stafford Noble, and Jeff A. Bilmes. Submodular Maximization via319

Gradient Ascent: The Case of Deep Submodular Functions. In Advances in Neural Information320

Processing Systems, pages 7989–7999, 2018.321

[5] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular322

function. In Symposium on Theory of Computing, STOC, pages 1138–1151, 2018.323

[6] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An Exponential Speedup in Parallel324

Running Time for Submodular Maximization without Loss in Approximation. In Symposium325

on Discrete Algorithms (SODA), pages 283–302, 2019.326

[7] Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The power of randomization:327

Distributed submodular maximization on massive datasets. In International Conference on328

Machine Learning (ICML), 2015.329

[8] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.330

Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Symposium331

on Theory of Computing (STOC), pages 201–210, 2010.332

[9] Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, and Volkan Cevher. Robust Submodular333

Maximization: A Non-Uniform Partitioning Approach. In International Conference on Machine334

Learning (ICML), 2017.335

[10] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Online submodular maximization with336

preemption. In Symposium on Discrete Algorithms (SODA), 2015.337

[11] Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: Matchings,338

matroids, and more. IPCO, 2014.339

[12] Yuxin Chen and Andreas Krause. Near-optimal Batch Mode Active Learning and Adaptive340

Submodular Optimization. In International Conference on Machine Learning (ICML), 2013.341

[13] Abhimanyu Das and David Kempe. Submodular meets Spectral: Greedy Algorithms for Subset342

Selection, Sparse Approximation and Dictionary Selection. In International Conference on343

Machine Learning (ICML), pages 1057–1064, 2011.344

[14] Ethan Elenberg, Alexandros Dimakis, Moran Feldman, and Amin Karbasi. Streaming Weak345

Submodularity: Interpreting Neural Networks on the Fly. In Advances in Neural Information346

Processing Systems, 2018.347

[15] Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand N. Negahban. Restricted348

strong convexity implies weak submodularity. CoRR, abs/1612.00804, 2016.349

[16] Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, and Amin Karbasi. Stream-350

ing Weak Submodularity: Interpreting Neural Networks on the Fly. In Advances in Neural351

Information Processing Systems, pages 4047–4057, 2017.352

[17] Alina Ene and Huy L. Nguyen. Submodular Maximization with Nearly-optimal Approximation353

and Adaptivity in Nearly-linear Time. In Symposium on Discrete Algorithms (SODA), pages354

274–282, 2019.355

9

[18] Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Submodular Maximiza-356

tion with Nearly Optimal Approximation, Adaptivity and Query Complexity. In Symposium on357

Discrete Algorithms (SODA), pages 255–273, 2019.358

[19] Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do Less, Get More: Streaming Submodular359

Maximization with Subsampling. In Advances in Neural Information Processing Systems, pages360

730–740, 2018.361

[20] Kaito Fujii and Shinsaku Sakaue. Beyond Adaptive Submodularity: Approximation Guarantees362

of Greedy Policy with Adaptive Submodularity Ratio. In International Conference on Machine363

Learning (ICML), 2019.364

[21] Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S. Muthukrishnan. Adaptive365

submodular maximization in bandit settings. In Advances in Neural Information Processing366

Systems, 2013.367

[22] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in368

active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:369

427–486, 2011.370

[23] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion371

and influence. In Knowledge Discovery and Data Mining (KDD), 2010.372

[24] Alkis Gotovos, Amin Karbasi, and Andreas Krause. Non-monotone adaptive submodular373

maximization. In International Joint Conferences on Artificial Intelligence (IJCAI), 2015.374

[25] S. Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient Methods for Submodular375

Maximization. In Advances in Neural Information Processing Systems, pages 5843–5853, 2017.376

[26] Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory. In Neural Computation,377

1997.378

[27] Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. ”Scalable Deletion-Robust379

Submodular Maximization: Data Summarization with Privacy and Fairness Constraints. In380

International Conference on Machine Learning (ICML), 2018.381

[28] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a382

social network. In Knowledge Discovery and Data Mining (KDD), 2003.383

[29] Maurice Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.384

[30] Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Sahand N. Negahban, and Joydeep385

Ghosh. Scalable Greedy Feature Selection via Weak Submodularity. In Artificial Intelligence386

and Statistics (AISTATS), pages 1560–1568, 2017.387

[31] Katrin Kirchhoff and Jeff Bilmes. Submodularity for data selection in statistical machine388

translation. In Empirical Methods in Natural Language Processing (EMNLP), 2014.389

[32] Guy Kortsarz and David Peleg. On Choosing a Dense Subgraph (Extended Abstract). In390

Foundations of Computer Science (FOCS), pages 692–701, 1993.391

[33] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes:392

Theory, efficient algorithms and empirical studies. In Journal of Machine Learning Research,393

volume 9, 2008.394

[34] Andreas Krause and Ryan G Gomes. Budgeted nonparametric learning from data streams. In395

International Conference on Machine Learning (ICML), 2010.396

[35] Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical397

models. In Uncertainty in Artificial Intelligence (UAI), 2005.398

[36] Andreas Krause, H Brendan McMahon, Carlos Guestrin, and Anupam Gupta. Robust submodu-399

lar observation selection. Journal of Machine Learning Research, 2008.400

10

[37] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algo-401

rithms in mapreduce and streaming. In Symposium on Parallelism in Algorithms and Architec-402

tures (SPAA), 2013.403

[38] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. Ad-404

vances in Neural Information Processing Systems, 2017.405

[39] Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In406

Association for Computational Linguistics (ACL), 2011.407

[40] Pasin Manurangsi. Almost-polynomial Ratio ETH-hardness of Approximating Densest K-408

subgraph. In Symposium on Theory of Computing (STOC), pages 954–961, 2017.409

[41] J. McAuley, C. Targett, J. Shi, and A. van den Hengel. Image-based recommendations on styles410

and substitutes. In SIGIR Conference on Research and Development in Information Retrieval,411

2015.412

[42] Vahab Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for dis-413

tributed submodular maximization. In Symposium on Theory of Computing (STOC), 2015.414

[43] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodu-415

lar maximization: Identifying representative elements in massive data. In Advances in Neural416

Information Processing Systems, 2013.417

[44] Marko Mitrovic, Moran Feldman, Andreas Krause, and Amin Karbasi. Submodularity on418

hypergraphs: From sets to sequences. Artificial Intelligence and Statistics (AISTATS), 2018.419

[45] Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Data summa-420

rization at scale: A two-stage submodular approach. In International Conference on Machine421

Learning (ICML), 2018.422

[46] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat Mousav-423

ifar, and Ola Svensson. Beyond 1/2-Approximation for Submodular Maximization on Massive424

Data Streams. In International Conference on Machine Learning (ICML), pages 3826–3835,425

2018.426

[47] Burr Settles. Active learning. In Synthesis Lectures on Artificial Intelligence and Machine427

Learning, 2012.428

[48] Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, and Andreas Krause. Near-429

optimally teaching the crowd to classify. In International Conference on Machine Learning430

(ICML), 2014.431

[49] Matthew Staib and Stefanie Jegelka. Robust Budget Allocation via Continuous Submodular432

Functions. In International Conference on Machine Learning (ICML), pages 3230–3240, 2017.433

[50] Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally Robust Submodular434

Maximization. CoRR, abs/1802.05249, 2018.435

[51] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural436

networks. In Advances in Neural Information Processing Systems, 2014.437

[52] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, 2nd edition.438

In MIT Press, 2018.439

[53] Sebastian Tschiatschek, Adish Singla, and Andreas Krause. Selecting sequences of items via440

submodular maximization. In AAAI Conference on Artificial Intelligence, 2017.441

[54] Vasileios Tzoumas, Konstantinos Gatsis, Ali Jadbabaie, and George J. Pappas. Resilient442

monotone submodular function maximization. In Conference on Decision and Control (CDC),443

2017.444

[55] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural445

image caption generator. In Computer Vision and Pattern Recognition (CVPR), 2015.446

11

[56] Robert West, Joelle Pineau, and Doina Precup. An Online Game for Inferring Semantic447

Distances between Concepts. In International Joint Conferences on Artificial Intelligence448

(IJCAI), 2009.449

[57] Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering450

problem. Combinatorica, 1982.451

[58] Yisong Yue and Carlos Guestrin. Linear submodular bandits and its application to diversified452

retrieval. In Advances in Neural Information Processing Systems, 2011.453

[59] Zhenliang Zhang, Edwin K. P. Chong, Ali Pezeshki, and William Moran. String Submodular454

Functions with Curvature Constraints. IEEE Transactions on Automatic Control, 61(3):601–616,455

2016.456

12

A Table of Notations457

Table 1
E Ground set of elements.
e ∈ E An individual element from E.
φ A realization, i.e., a function from elements to states.
ψ A partial realization to encoding the current set of observations.
dom(ψ) Domain of a partial realization ψ is defined as dom(ψ) = {e : ∃o .s.t. (o, e) ∈ ψ}.
Φ,Ψ A random realization and a random partial realization, respectively.
∼ For a realization φ and a partial realization ψ: φ ∼ ψ means ψ(e) = φ(e) for all e ∈ dom(ψ).
p(φ) The probability distribution on realizations.
p(φ | ψ) The conditional distribution on realizations: p(φ | ψ) , Pr[Φ = φ | Φ ∼ ψ].
π A policy, which maps partial realizations to items.
E(π, φ) The set of all edges induced by π when run under realization φ.
h An objective function of type h : 2E ×OE → R≥0.
∆(e | ψ) The conditional expected marginal benefit of e conditioned on ψ.
k Budget on the number of selected items.

B Proofs458

In this section, we prove Theorems 1 and 2. Towards this goal, we first state some necessary459

definitions and notations, and present a few results regarding weakly adaptive submodular functions.460

B.1 Weakly Adaptive Sequence Submodular461

Notation The random variable Φ denotes a random realization with respect to the distribution462

p(Φ = φ) over the items (or equivalently vertices of the graph).2 For a set A, its partial realization463

(i.e., items in A and their corresponding states) is shown by ψA = {(e,O(e)) | e ∈ A}, where O(e)464

gives the state of e. For a partial realization ψ, we define dom(ψ) = {e : ∃ o s.t. (o, e) ∈ ψ}. We use465

ΨA to denote a random partial realization over a set A. Note that the distribution of random variable466

ΨA is uniquely defined by the distribution of random variable Φ. A partial realization ψ is consistent467

with a realization φ (we write φ ∼ ψ) if they are equal, i.e., they are in the same state, everywhere468

in the domain of ψ. For the ease of notation, we define h(ψ) , h(dom(ψ), O(ψ)), where O(ψ) is469

the state of items in the realization ψ. We also define havg(A) , EΦ(h(A)) , EΦ[h(ΦA)] which is470

the expected utility of set A (and states of its elements) over all possible realizations of A under the471

probability distribution p(Φ = φ). We define ∆(e | ψ) = EΦ∼ψ[h(Ψ{e} + ψ)− h(ψ)] which is the472

conditional expected marginal benefit of item e conditioned on having observed the subrealization ψ.473

Note that the random variable Ψ{e} is the state of item e with respect to the probability distribution474

p(Φ = φ | Φ ∼ ψ). Similarly, we define ∆(A | ψ) = EΦ∼ψ[h(ΨA + ψ) − h(ψ)] which is the475

expected marginal gain of setA to the partial realization ψ. AssumeE(πφ) is the set of edges induced476

by the set of items policy π selects under the realization φ. The expected utility of policy π is defined477

as favg(π) , havg(E(π)) = EΦ[h(E(πΦ)], where the expectation is taken with respect to p(Φ = φ).478

For a list of all the notations used in the paper refer to Table 1 in Appendix A.479

Next, we restate the definitions for weakly adaptive set submodular and adaptive monotone functions.480

Definition 1. A function h : 2E ×QE → R≥0 is weakly adaptive set submodular with parameter γ481

if for all sets A ⊆ E and for all ψ ⊆ ψ′ we have:482

∆(A | ψ′) ≤ 1

γ
·
∑
e∈A

∆(e | ψ).

Definition 2. A function h : 2E ×QE → R≥0 is adaptive monotone if ∆(e | ψ) ≥ 0 for all partial483

realizations ψ. That is, the conditional expected marginal benefit of any element is non-negative.484

2Note that there is a one to one correspondence between a realization φ over the vertices and a realization
φE over the edges.

13

Definition 1 is the generalization of both weak submodularity [13] and adaptive submodularity [22]485

concepts.486

Next, we state a few useful claims regarding weakly adaptive submodular functions.487

First note for all ψ and for every set A ⊆ E \ dom(ψ), from Definition 1 and the fact that ψ ⊆ ψ, we488

have489

∆(A | ψ) ≤ 1

γ
·
∑
e∈A

∆(e | ψ). (1)

Lemma 1. For all ψ and A ⊆ B ⊆ E \ dom(ψ), we have490

∆(B | ψ)−∆(A | ψ) ≤ 1

γ
·
∑

e∈B\A

∆(e | ψ).

Proof. We have491

∆(B | ψ)−∆(A | ψ) =
∑

Pr[ΨA = ψ′ | Φ ∼ ψ] ·
∑

Pr[ΨB\A = ψ′′ | Φ ∼ ψ + ψ′]

· (havg(ψ + ψ′ + ψ′′)− havg(ψ + ψ′))

=
∑

Pr[ΨA = ψ′ | Φ ∼ ψ] ·∆(B \A | ψ + ψ′) ≤ 1

γ
·
∑

e∈B\A

∆(e | ψ),

where the inequality is derived from the definition of weakly adaptive set submodular functions (see492

Definition 1) and the fact that
∑

Pr[ΨA = ψ′ | Φ ∼ ψ] = 1.493

Corollary 1. For all ψ, e∗ = arg maxe∈E ∆(e | ψ) and two random subsets A ⊆ B ⊆ E \ dom(ψ)494

whose randomness might depend on the realization, we have495

E[∆(B | ψ)−∆(A | ψ) | Φ ∼ ψ] ≤ E[|B \A| | Φ ∼ ψ]

γ
·∆(e∗ | ψ).

Proof. By taking expectation over the guarantee of Lemma 1, we get496

E[∆(B | ψ)−∆(A | ψ) | Φ ∼ ψ] ≤ 1

γ
· E

 ∑
e∈B\A

∆(e | ψ) | Φ ∼ ψ

≤ 1

γ
· E

 ∑
e∈B\A

∆(e∗ | ψ) | Φ ∼ ψ

=

E[|B \A| | Φ ∼ ψ]

γ
·∆(e∗ | ψ),

where the second inequality follows from the fact that e∗ is the element with the largest expected497

gain.498

The following observation is an immediate consequence of Definition 2.499

Observation 1. For any two (possibly random) subsets A ⊆ B ⊆ E, we have500

EΦ(h(A)) ≤ EΦ(h(B)).

Lemma 2. Assume h is adaptive monotone and weakly adaptive set submodular with a parameter γ501

with respect to the distribution p(φ), and π is a greedy policy which picks the item with the largest502

expected marginal gain at each step, then for all policies π∗ we have503

havg(π) ≥
(

1− e−1/γ
)
· havg(π∗).

Proof. The proof of this lemma follows the same line of argument as the proof of [22, Theroem 5].504

505

14

B.2 Proof of Theorem 1506

In this section, we first restate Theorem 1 and then prove it.507

Theorem 1. For adaptive monotone and weakly adaptive sequence submodular function f , the508

Adaptive Sequence Greedy policy π represented by Algorithm 1 achieves509

favg(π) ≥ γ

2din + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected510

value and din is the largest in-degree of the input graph G.511

We assume the function h is weakly adaptive set submodular (with a parameter γ) and monotone512

adaptive submodular. Furthermore, we assume π∗ is the optimal policy. It means π∗ maximizes the513

expected gain over the distribution Φ.514

Let ` = dk/2e. For every 0 ≤ s ≤ `, let πs be the set of items picked by the greedy policy π after s515

iterations (if the algorithm does not make that many iterations because the set E became empty at516

some earlier point, then we assume for the sake of the proof that the algorithm continues to make517

dummy iterations after the point in which E becomes empty, and in the dummy iterations it picks518

no items). The observed partial realization of edges after s iterations of the algorithm is represented519

by ψs. The random variable representing ψs is Ψs. We define favg(πs) , havg(E(πs)), i.e., it is520

the expected value of items picked by the greedy policy π after s iterations. For every 1 ≤ s ≤ `,521

we also denote by es and Es the values assigned to the variables eij and E , respectively, at iteration522

number s. Finally, we assume es is a dummy arc with zero marginal contribution to h if iteration523

number s is a dummy iteration (i.e., the algorithm makes in reality less than s iterations).524

Observation 2. For every 0 ≤ s1 ≤ s2 ≤ `, conditioned on the partial realization ψs1 , i.e., the525

policy has already made its first s1 iterations, we have Es1 ⊇ Es2 and E(πs1) ⊆ E(πs2).526

Proof. Both properties guaranteed by the observation follow from the fact that: for all possible527

realization φ ∼ ψs1 , we have that πs1 is a (possibly trivial) prefix of πs2 .528

Lemma 3. For every 1 ≤ s ≤ `, favg(πs)− favg(πs−1) ≥ EΨs−1
[∆(es | Ψs−1)].529

Proof. Consider a fixed sub-realization ψs−1. If es is a dummy arc, then πs = πs−1, and the530

observation is trivial. Otherwise, notice that the membership of es in Es−1 guarantees that it does531

not belong to E(πs−1) = dom(ψs−1), but does belong to E(σs). Together with the fact that532

E(πs−1) ⊆ E(πs) by Observation 2, we get E(πs−1) + es ⊆ E(πs); which implies, by the adaptive533

monotonicity of h,534

favg(πs)− f(πs−1) = EΦ∼ψs−1
[favg(πs)]− h(ψs−1)

≥ EΦ∼ψs−1
[h(ψs−1 + es)]− h(ψs−1)

= ∆(es | ψs−1).

Note that we condition on the fact that the first s− 1 steps of the policy π are performed, therefore we535

have favg(πs−1) = h(ψs−1). By taking expectation over all the possible realizations of the random536

variable Ψs−1 the lemma is proven.537

Lemma 4. Conditioned on any arbitrary partial realization ψ, we have EΦ∼ψ[|E(π∗)|] ≤ (k−1)din.538

Proof. The optimal policy under each realization of the random variable Φ chooses at most k items.539

Each one of these k items (except the first one) will have at most din incoming edges. Therefore, the540

expected number of edges is at most (k − 1)din.541

Lemma 5. For every 1 ≤ s ≤ `, we have542

EΦ[h((E(π∗) ∩ Es−1) ∪ E(πs−1))] ≤

EΦ[h((E(π∗) ∩ Es) ∪ E(πs))] +
1

γ
· EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))].

Note that the expectation is taken over all the possible realizations of the random variable Φ.543

15

Proof. The lemma follows by combining the two inequalities of Eq. (2) and Eq. (3).544

EΦ[∆(E(π∗) ∩ Es−1 | E(πs−1))]− EΦ[∆(E(π∗) ∩ Es | E(πs−1))] (2)

=
∑

Pr[Ψs−1 = ψs−1] ·
[
EΦ∼ψs−1

[∆(E(π∗) ∩ Es−1 | ψs−1)−∆(E(π∗) ∩ Es | ψs−1)]
]

(a)

≤ 1

γ

∑
Pr[Ψs−1 = ψs−1] · EΦ∼ψs−1 [|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | ψs−1)]

=
1

γ
· EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))].

To see why inequality (a) is true, note that for every given sub realization ψs−1 we have: (i) if es is a545

dummy edge, then (E(π∗) ∩ Es−1) ∪ E(πs−1) = (E(π∗) ∩ Es) ∪ E(πs), which makes (a) trivial,546

or (ii) when es is not dummy, (a) results from Corollary 1.547

EΦ[h((E(π∗) ∩ Es−1) ∪ E(πs−1))]− EΦ[h((E(π∗) ∩ Es) ∪ E(πs))] (3)
≤ EΦ[h((E(π∗) ∩ Es−1) ∪ E(πs−1))]− EΦ[h((E(π∗) ∩ Es) ∪ E(πs−1))])

=
∑

Pr[Ψs−1 = ψs−1] · EΦ∼ψs−1 [h((E(π∗) ∩ Es−1) ∪ ψs−1)− h(E(π∗) ∩ Es) ∪ ψs−1)]

=
∑

Pr[Ψs−1 = ψs−1] · EΦ∼ψs−1
[∆((E(π∗) ∩ Es−1) | ψs−1)−∆(E(π∗) ∩ Es) | ψs−1)]

= EΦ[∆(E(π∗) ∩ Es−1 | E(πs−1))]− EΦ[∆(E(π∗) ∩ Es | E(πs−1))].

Lemma 6. EΦ[h((E(π∗) ∩ E`) ∪ E(π`))]] ≤
1

γ
· EΦ[|E(π∗) ∩ E`| ·∆(e` | Ψ`−1)] + favg(π`).548

Proof. We have549

EΦ[h((E(π∗) ∩ E`) ∪ E(π`))− h(π`)]

=
∑

Pr[Ψ` = ψ`] · EΦ∼ψ` [h(E(π∗) ∩ E`) ∪ ψ`)− h(ψ`)]

(a)

≤ 1

γ

∑
Pr[Ψ` = ψ`] · EΦ∼ψ` [|E(π∗) ∩ E`| ·∆(e` | ψ`−1)] =

1

γ
· EΦ[|E(π∗) ∩ E`| ·∆(e` | Ψ`−1)].

To see why inequality (a) is true, note that for every given sub realization ψ` we have: (i) if e` is a550

dummy edge, then E` = ∅, which makes inequality (a) trivial, and (ii) if e` is not a dummy edge551

then we conclude inequality (a) from the definition of weakly adaptive set submodular functions (see552

Definition 1).553

The lemma follows by combining this inequality with the observation that favg(π`) = EΦ[h(π`)].554

To combine the last two lemmata, we need the following observation.555

Observation 3. For every 2 ≤ s ≤ `, EΦ[∆(es−1 | E(πs−2))] ≥ γ · EΦ[∆(es | E(πs−1))].556

We are now ready to prove Theorem 1.557

Proof of Theorem 1. Combining Lemmata 5 and 6, we get558

favg(π
∗)− favg(π`) =EΦ[h((E(π∗) ∩ E1) ∪ E(π0))]− favg(π`)

≤ 1

γ
·
∑̀
s=1

EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))]

+ EΦ[∆((E(π∗) ∩ Es) ∪ E(πs))]− favg(π`)

≤ 1

γ

∑̀
s=1

EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))]

+
1

γ
· EΦ[|E(π∗) ∩ E`| ·∆(e` | Ψ`−1)]

16

=
1

γ
·
`−1∑
s=1

EΦ[|E(π∗) ∩ (E0 \ Es)| · [∆(es | E(πs−1))−∆(es+1 | E(πs))]]

+
1

γ
· EΦ[|E(π∗) ∩ E0| ·∆(e` | E(π`−1))], (4)

where the first equality holds since the fact that σ0 is an empty sequence implies E(σ0) = ∅ and559

E0 = E, and the second equality holds since Es ⊆ Es−1 by Observation 2 for every 1 ≤ s ≤ `. We560

now observe that for every 1 ≤ s ≤ `, πs contains at most 2s vertices. Since each one of these561

vertices can be the end point of at most din arcs, we get562

|E(σ∗) ∩ (E0 \ Es)| ≤ |E0 \ Es| ≤ 2sdin

Additionally, by Lemma 4,563

|E(σ∗) ∩ E0| ≤ |E(σ∗)| ≤ (k − 1)din ≤ 2`din.

Plugging the last two inequalities into Inequality (4) yields564

favg(π
∗)− favg(π`) ≤

`−1∑
s=1

2sdin

γ
· EΦ[∆(es | E(πs−1))−∆(es+1 | E(πs))]+

2`din

γ
· EΦ[∆(e` | E(σ`−1))]

=
∑̀
s=1

2din

γ
· EΦ[∆(es | E(πs−1))] ≤ 2din

γ
·
∑̀
s=1

[favg(πs)− favg(πs−1)]

=
2din

γ
· [favg(π`)− favg(π0)] ≤ 2din

γ
· favg(π`),

where the second inequality holds due to Lemma 3 and the last inequality follows from the non-565

negativity of f . Rearranging the last inequality, we get566

favg(π`) ≥
γ

2din + γ
· favg(π∗),

which implies the theorem since favg(π`) is a lower bound on the expected value of the output567

sequence of Algorithm 1 because σ` is always a prefix of this sequence.568

B.3 Proof of Theorem 2569

In this section, we first restate and then prove Theorem 2 which guarantees the performance of our570

proposed policy applied to hypergraphs.571

Theorem 2. For adaptive monotone and weakly adaptive sequence submodular function f , the policy572

π′ represented by Algorithm 2 achieves573

favg(π
′) ≥ γ

rdin + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected574

value and r is the size of the largest hyperedge in the input hypergraph.575

In the proof of this theorem we use the same notation that we used in Section B.2 for analyzing Algo-576

rithm 1, with the exception of Es, which is now defined as Es = {e ∈ E | σs ∩ V (e) is a prefix of e},577

and `, which is now defined as bk/rc.578

The following lemma is a counterpart of Lemma 4.579

Lemma 7. |E(σ∗)| ≤ (k − r + 1)din.580

Proof. For a realization φ, every arc of π∗ must end at a vertex of π∗ which is not one of the first581

r − 1 vertices. The observation follows since π∗ contains at most k − r + 1 vertices of this kind, and582

at most din arcs can end at each one of them.583

17

Algorithm 2 Adaptive Hyper Sequence Greedy

1: Require: Directed hypergraph H(V,E) , γ-adaptive and adaptive-monotone function h : 2E ×
OE → R≥0 and cardinality parameter k

2: Let σ ← ()
3: while |σ| ≤ k − r do
4: E = {e ∈ E | σ ∩ V (e) is a prefix of e}
5: if E 6= ∅ then
6: e∗ = arg maxe∈E ∆(e | ψσ)
7: for every v ∈ e∗ in order do
8: if v /∈ σ then
9: σ = σ ⊕ v

10: end if
11: end for
12: Identify the state of all edges in E ′ = {e ∈ E | all elements of V (e) belong to σ and appear

in the same order}
13: ψσ = ψE′
14: else
15: break
16: end if
17: end while
18: Return σ

One can observe that the proofs of all the other observations and lemmata of Section B.2 are unaffected584

by the differences between Algorithm 1 and Algorithm 2, and thus, these observations and lemmata585

can be used towards the proof of Theorem 2.586

Proof of Theorem 2. The proof of this theorem is identical to the proof of Theorem 1 up to two587

changes. First, instead of getting an upper bound of 2sdin on |E0 \ Es| for every 1 ≤ s ≤ `, we now588

get an upper bound of rsdin on this expression because σs might contain up to rs vertices rather than589

only 2s. Second, instead of getting an upper bound of 2`din on |E(σ∗)|, we now use Lemma 7 to get590

an upper bound of (k − r + 1)din ≤ r`din on this expression.591

C Proof of Theorem 3592

The approximability of the sequence submodular maximization, as a generalization of the densest k593

subgraph problem (DkS) [32], is an open theoretical question with important implications. In this594

section, we prove Theorem 3.595

In the DkS problem the goal is to find a subgraph on exactly k vertices that contains the maximum596

number of edges. DkS as a generalization of the k-clique problem is NP-hard and the best polynomial597

algorithm for DkS achieves a n1/4+ε approximation factor3 for an arbitrary ε > 0 [8]. Furthermore,598

there exists no polynomial time algorithm that approximates DkS within an O(n1/(log logn)c) factor599

unless 3-SAT has a subexponential time algorithm [40].600

Lemma 8. Any algorithm with an α approximation factor to the sequence submodular maximization601

problem solves the densest k subgraph problem (DkS) with at most an α approximation factor.602

Proof. To prove this lemma, we show that for each instance of DkS over a directed graph G(V,E)603

we can build an instance of the sequence submodular maximization problem over a directed graph604

H(V,E′) such that solving the latter problem also solves the former one. We assume all vertices and605

edges have a single state. Therefore, the problem translates to the non-adaptive sequence submodular606

scenario.607

Graph H is built from graph G by replacing each edge e = (u, v) in E by two directed edges (u, v)608

and (v, u). We define h(S) = |S|, which is linear and therefore submodular. Finally, the sequence609

3Note that in this section we define the approximation factor as the ratio of the the optimal solution to the
solution provided by the algorithm.

18

submodular function f is defined as f(σ) = h(E(σ)) = |E(σ)|. It remains to show that for every610

subset of vertices S the value of function f for an arbitrary permutation σS of S is equivalent to611

the size of subgraph GS induced by those vertices in graph G. This is true because for every edge612

(u, v) ∈ GS we have two corresponding edges in the directed graph H and based on the order of u613

and v exactly one of them is considered in E(σS).614

As a result, maximizing the function f with a cardinality constraint k is equivalent to solving the615

DkS problem. Thus, any algorithm with an α approximation factor to the sequence submodular616

maximization problem solves DkS with at least an α approximation factor.617

Manurangsi [40] showed that any algorithm with an O(n1/(log logn)c) approximation factor to the618

DkS problem (for a constant c > 0) would prove the exponential time hypothesis is false. Next, we619

directly state the result of [40].620

Theorem 4 (Manurangsi [40], Theorem 1). There is a constant c > 0 such that, assuming the621

exponential time hypothesis, no polynomial-time algorithm can, given a graph G on n vertices and a622

positive integer k ≤ n, distinguish between the following two cases:623

• There exist k vertices of G that induce a k-clique.624

• Every k-subgraph of G has density at most n−1/(log logn)c .625

To sum-up, Theorem 3 is proved from the combination of the two following facts:626

1. If there is an algorithm with an approximation within a n1/(log logn)c factor to the sequence627

submodular maximization problem, from the result of Lemma 7, we know that it would628

solve the DkS problem with at most the same factor.629

2. If there is an algorithm with a n1/(log logn)c approximation factor to the DkS problem,630

it could distinguish the two cases of Theorem 4 and would prove the exponential time631

hypothesis to be false.632

D Additional Experimental Details633

D.1 Amazon Product Recommendation634

In this application, we consider the task of recommending products to users. In particular, we use635

the Amazon Video Games review dataset [41], which contains 10,672 products, 24,303 users, and636

231,780 confirmed purchases. We furthered focused on the products that had been purchased at least637

50 times each, leaving us with a total of 958 unique products.638

Although we are using a different dataset, the experimental set-up closely follows that of the movie639

recommendation task in Tschiatschek et al. [53] and Mitrovic et al. [44]. We first group and sort640

all the data so that each user u has an associated sequence σu of products that they have purchased.641

These user sequences are then randomly partitioned into a training set and a testing set using a 80/20642

split. Note that we 5 trials to average our results.643

Using the training set, we build a graph G = (V,E), where V is the set of all products and E is the644

set of edges between these products. Each product i ∈ V has a self-loop (i, i), where the weight645

(denoted wii) is the fraction of users in the training set that purchased product vi. Similarly, for each646

edge (i, j), the corresponding weight wij is defined to be the conditional probability of purchasing647

product j given that the user has previously purchased product i.648

For each sequence σu in the test set, we are given the first g products that user u purchased, and then649

we want to predict the next k products that she will purchase. After each product is recommended650

to the user, the state of the product is revealed to be 1 if the user has indeed purchased that product,651

and 0 otherwise. At the start, the g given products are known to be in state 1, while the states of the652

remaining products are initially unknown.653

As described in Section 2, the states of the edges are determined by the states of the nodes. In this654

case, the state of each edge (i, j) is equal to the state of product i. The intuitive idea is that edge (i, j)655

encodes the value of purchasing product j after already having purchased product i. Therefore, if656

19

the user has definitely purchased product i (i.e., product i is in state 1), then they should receive the657

full value of wij . On the other hand, if she has definitely not purchased product i (i.e., product i is658

in state 0), then edge (i, j) provides no value. Lastly, if the state of product i is unknown, then the659

expected gain of edge (i, j) is discounted by wii, the value of the self-loop on i, which can be viewed660

as a simple estimate for the probability of the user purchasing product i. See Figure 2a for a small661

example.662

We use a probabilistic coverage utility function as our monotone adaptive submodular function h.663

Mathematically,664

h(E1) =
∑
j∈V

[
1−

∏
(i,j)∈E1

(1− wij)
]
,

where E1 ⊆ E is the subset of edges that are in state 1.665

D.2 Wikipedia Link Prediction666

We use the Wikispeedia dataset [56], which consists of 51,138 completed search paths on a condensed667

version of Wikipedia that contains 4,604 pages and 119,882 links between them. We further condense668

the dataset to include only articles that have been visited at least 100 times, leaving us with 619669

unique pages and 7,399 completed search paths.670

One natural idea for scoring each algorithm would be to look at the length of the shortest path671

between the predicted target and the true target. However, the problem with this metric is that all the672

popular pages have relatively short paths to most potential targets (primarily since they have so many673

available links to begin with). Hence, under this scoring, just choosing a popular page like “Earth”674

would be competitive with many more involved algorithms.675

Instead, we define a measure we call the Relevance Distance. The relevance distance of a page i to676

a target page j is calculated by taking the average shortest path length to j across all neighboring677

pages of i. A lower distance indicates a higher relevance. For example, if our target page is Computer678

Science, both Earth→ Earth Science→ Computer Science and University→ Education→ Computer679

Science have a shortest path of length 2. However, the relevance distance of Earth to Computer680

Science is 2.68, while the relevance distance of University to Computer Science is 2.41, which fits681

better with the intuition that University is logically closer to Computer Science.682

D.3 Deep Learning Baseline Details683

D.3.1 Feed Forward Neural Network684

For both experiments, the input to the Feed Forward Neural Network is a size |V | vector X . That is,685

there is one input for each item in the ground set. In the Amazon product recommendation task in686

Section 4.1, Xi = 1 if the user is known to have purchased product i and 0 otherwise. Similarly, for687

the Wikipedia link prediction task in Section 4.2, Xi = 1 if the user is known to have visited page i688

and 0 otherwise.689

The output in both cases is a size |V | soft-maxed vector Y . In Section 4.1, Yi can be viewed as the690

probability that product i will be the user’s next purchase. In Section 4.2, Yi can be viewed as the691

probability that user will visit page i next.692

For the Amazon product recommendation task in Section 4.1, each user u in the training set has693

an associated sequence σu of products she purchased. Each such sequence was split into |σu| − 2694

training points by taking the first g products as input and the (g + 1)-th product as the output for695

g = 1, . . . , |σu| − 1. For each user u in the testing set, we would take the first g = 4 products she696

purchased and encode them in the vector X as described above. We would then input this vector into697

our trained network and output the vector Y . In the non-adaptive case we cannot get any feedback698

from the user, so we simply output the products corresponding to the k highest values in Y .699

In the adaptive case, we would look at the largest value Yj in our output vector and output this as our700

first recommendation. We then check if the corresponding product appeared somewhere later in the701

user’s sequence σu. If yes, then we would update our input X so that Xj = 1 and re-run the network702

to get our next recommendation. If not, we would simply use the next highest value in Yj as our next703

recommendation (since the input doesn’t change). This was repeated for k recommendations. This is704

supposed to mimic interaction with the user where we would recommend a product, and then see705

20

whether or not the user actually purchases this product. Note that we only considered values Yj such706

that Xj = 0 because we did not want to recommend products that we knew the user had already707

purchased.708

The main difference for the Wikipedia task in Section 4.2 is that, in the testing phase, we cannot709

simply output the top k values in Y as we did above because they likely will not constitute a valid710

path. Instead, we only have an adaptive version that is similar to what was described above. We find711

the highest value Yj such that Xj = 0 (i.e. the user had not already been to this page) and a link to712

page j actually exists from our current page. We output this page j as our recommendation for the713

user’s next page. We then check if the user actually visited our predicted page j at some point in their714

sequence of pages. If yes, we would update X so that Xj = 1 and re-run the network. If not we715

would look to the next highest value in the output Y . This was repeated for k guesses. Note that if716

we reached the true target page, we would stop making guesses.717

In terms of architecture, we used a single hidden layer of 256 nodes with ReLU activations. We use a718

batch size of 1024 at first and then go down to a batch size of 32 when we are in the low data regime719

(i.e. only using 1% of the available training data). We used an 80/20 training/validation split to guide720

our early stopping criterion during training (with minimum improvement of 0.01 and patience of 1).721

We used categorical cross-entropy as our loss function.722

D.3.2 LSTM723

The main difference between the LSTM and the feed forward network is in the input. The input to724

the LSTM is a sequence of one-hot encoded vectors instead of just a single vector. That is, for the725

LSTM, each vector in the sequence had exactly one index with value 1.726

We experimented with using a long sequence of input vectors and padding with all-zero vectors,727

but we found better results using a fixed small sequence length g and then “pushing” the sequence728

back when updating. For example, if our current input was a sequence of vectors [v1, v2, v3] and we729

wanted to update it with a new vector v4, the updated input would be [v2, v3, v4].730

The adaptive LSTM followed the same set-up as the non-adaptive LSTM, but with the same adaptive731

update rules described above for the feed-forward neural network.732

For all experiments, we used a single hidden layer of 8 LSTM nodes. The other hyperparameters are733

all the same as described for the Feed Forward network above, except we start at a batch size of 256734

instead of 1024 (before also going down to a batch size of 32 in the low data regime).735

21

