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Abstract

This manuscript contributes a general and practical framework for casting a Markov
process model of a system at equilibrium as a structural causal model, and carry-
ing out counterfactual inference. Markov processes mathematically describe the
mechanisms in the system, and predict the system’s equilibrium behavior upon
intervention, but do not support counterfactual inference. In contrast, structural
causal models support counterfactual inference, but do not identify the mechanisms.
This manuscript leverages the benefits of both approaches. We define the structural
causal models in terms of the parameters and the equilibrium dynamics of the
Markov process models, and counterfactual inference flows from these settings.
The proposed approach alleviates the identifiability drawback of the structural
causal models, in that the counterfactual inference is consistent with the counter-
factual trajectories simulated from the Markov process model. We showcase the
benefits of this framework in case studies of complex biomolecular systems with
nonlinear dynamics. We illustrate that, in presence of Markov process model mis-
specification, counterfactual inference leverages prior data, and therefore estimates
the outcome of an intervention more accurately than a direct simulation.

1 Introduction
Many complex systems contain discrete components that interact in continuous time, and maintain
interactions that are stochastic, dynamic, and governed by natural laws. For example, molecular
systems biology studies molecules (e.g., gene products, proteins) in a living cell that interact according
to biochemical laws. An important aspect of studying these systems is predicting the equilibrium
behavior of the system upon an intervention, and selecting high-value interventions. For example,
we may want to predict the effect of a drug intervention on a new equilibrium of gene expression
[1, 27]. The intervention may have a high value if reduces the expression of a specific gene, while
minimizing changes to the other genes.

Recent work in the reinforcement learning community has highlighted the utility of counterfactual
policy evaluation for evaluating and comparing interventions. Counterfactual policy evaluation uses
data from past experimental interventions to ask whether a higher value could have been achieved
under an alternative intervention [7, 16, 8, 19]. Counterfactual inference answers this question by
predicting the outcome of the alternative intervention, conditional on the outcome of the intervention
for which the data were observed [7, 21].

Predicting the outcome of an intervention requires us to model the system. In particular, discrete-state
continuous-time Markov process models unambiguously describe the changes of system components
across all the system states (i.e., not only at equilibrium) in term of hazard functions [11, 28]. A
Markov process model predicts the equilibrium upon an intervention by applying the intervention to
the initial conditions, performing multiple direct stochastic simulations to reach post-intervention
equilibriums, and averaging over these equilibriums. Markov process modeling is one way of
modeling complexity in biological systems, particularly in systems that are intrinsically stochastic
[1]. The Markov process models are called stochastic kinetic models in this context.
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Unfortunately, Markov process models do not support counterfactual inference. Moreover, it is often
impossible to correctly specify a Markov process model of a complex system such as a biological
system, where many aspects of the underlying mechanism are unknown. Direct simulations from an
incorrectly specified model may incorrectly predict the outcomes of interventions.

An alternative class of models are structural causal models (SCMs). These probabilistic generative
causal models are attractive, in that they enable both interventional and counterfactual inference
[20]. Recent work used SCMs to model the transition functions in simple Markov decision process
models and apply counterfactual policy evaluation to the decisions (i.e. interventions) at each time
step [8, 19]. Unfortunately, these approaches require outcome data at each time point. This limits
their use in situations where we are only interested in the outcome at equilibrium, and only collect
data once the equilibrium is reached.

Defining SCM models at equilibrium directly is non-trivial, because multiple SCMs may be consis-
tent with the equilibrium distribution of the system components upon an intervention, but provide
contradictory answers to the same counterfactual query [20, 23]. Recent work [6, 18, 5] connected a
broader class of dynamic models and SCMs, and established the conditions under which interventions
in dynamic simulations correspond to SCM’s predictions of equilibrium upon the interventions.
However, researchers lack practical examples that leverage this connection, and combine the benefits
of these two approaches for counterfactual inference.

This manuscript builds on these prior results, and contributes a general and practical framework for
casting the equilibrium distribution Markov process model as an SCM model of equilibrium behavior.
The SCMs are defined in terms of the structure and the hazard rates parameters of the Markov process
model, and counterfactual inference flows from these settings. The proposed approach alleviates
the identifiability drawback of the SCMs, in that their counterfactual inference is consistent with
the counterfactual trajectories simulated from the Markov process model. We showcase the benefits
of this approach in two studies of cell signal transduction with nonlinear dynamics. The first is a
canonical model of the MAPK signaling pathway [17]. The second is a larger model that connects
the MAPK pathway to stimulus from growth factors [3]. We illustrate that, when the underlying
Markov process model is misspecified, counterfactual inference anchors intervention predictions to
past observed data, and makes selection of interventions more robust to model misspecification.

2 Background
Discrete-state continuous-time Markov process models Discrete-state continuous-time Markov
process models describe the temporal interactions between the system components in terms of
abstract or physical processes, called rate laws, with real-valued parameters rates [11]. The rate laws
determine hazard functions, which provide instantaneous probabilities of state transitions.

A place invariant is a set of system components with an invariant sum. A minimal place invariant can
not be further reduced to smaller place invariants [9]. Define random variables X(t) = {Xi(t) : i ∈
1...J} representing the states of J minimal place invariant components in a Markov process model.
We use capital letters to refer to random variables, lower case letters to refer to instances of random
variables, normal font for a single variable, and boldface for a tuple of variables. Denote PM(t) the
probability distribution of X(t), and PM

Xi
(t) the marginal probability of Xi(t). A Markov process

model M is defined by master equations, i. e. a coupled set of ordinary differential equations that
describe the rate of change of the probabilities of the states X(t) over time [29]:

dPM
Xi

(t)

dt
= hi (t, vi,PAM,i(t)) , Xi(0) = (x0)i ∀i ∈ J (1)

The function hi is the hazard function that determines the probability of a state change between
Xi(t) and Xi(s), s > t. Here vi is a set of parameters of the rate laws, and x0 is an initial
condition. PAM,i(t) ⊆ X(t) \ Xi(t) is the set of parents of variable Xi(t), i.e. variables that
regulate Xi(t). Here we consider only Markov process models that converge to unique equilibrium

stationary distributions. If equilibrium exists, then limt→∞
dPM

Xi
(t)

dt = 0. We denote X∗i the random

variable to which Xi(t) converges in distribution X∗i
d
:= limt→∞Xi. We denote PM the equilibrium

distribution of X∗, and PM
X∗i

the marginal probability of X∗i .

Equilibrium distribution of a Markov process model as a generative model In the equilibrium
distribution the place invariants in a Markov process model factorizes into a set of conditional
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probability distributions, with a causal ordering based on the solutions to the master equations (see
Supplementary materials for details). Based on this, the equilibrium distribution can be cast as a
causal generative model G that consists of [20, 23]:

1. Random variables X = {Xi; i ∈ 1...J}: the states of the system

2. A directed acyclic graph D with nodes {i ∈ J} that impose an ordering on X.

3. A set of probabilistic generative functions for each variable Xi, p = {pi, i ∈ J} such that
Xi ∼ pi(PAD,i, Ni),∀i ∈ J where PAD,i ⊆ X \Xi are the parents of Xi in D.

G is a generative model that entails an observational distribution PG. This means that a procedure
that first samples from each pi along the ordering in D generates samples from PG. This is viewed
as the generating process for the observed X. A primary contribution of this work is a method for
transforming G into and structural causal model.

Structural causal models (SCMs) A structural causal model C of the same system has the same
causal directed graph D, ordering the same random variables X. The model consists of [20, 23]:

1. A distribution PC
N on independent noise random variables N = {Ni; i ∈ J}

2. A set of functions f = {fi, i ∈ J} called structural assignments, such that
Xi = fi(PAC,i, Ni),∀i ∈ J where PAC,i ⊆ X \Xi are the parents of Xi in D.

C is a generative model that entails PG, the same observational distribution as G. For consistency, we
refer to this distribution as PC when discussed in the context of C. This means that a procedure that
first samples noise values from PC

N, and then sets the values of X deterministically with f , generates
samples from PC. This is viewed as the generating process for the observed X.

Interventions in Markov process models and in SCMs An SCM C uses ideal interventions, which
replace a random variable with a fixed point value. These are represented with Pearl’s “do” notation
do(Xi = x) [10, 22], denoted. The intervention that sets Xi to x replaces the structural assignment
Xi = fi(PAC,i, Ni) with Xi = x. The intervention distribution PC;do(Xi=x) is entailed by C under
the intervention and is generally different from the equilibrium distribution PM of X∗.

In the context of a Markov process model, a typical intervention definition is that an intervention
increases a reaction rate (catalyzation) or decreases a reaction rate (inhibition). We define a type
of soft intervention [10] for Markov process models that make this rate manipulation comparable
to the SCM’s ideal intervention. We define a fixed post-equilibrium expected value for a variable
that we want to achieve, then find a change to the variables rate parameter values that achieve that
outcome. For example, an intervention that sets the equilibrium value of Xi to x does so by finding
manipulating Xi’s rate parameters to achieve this result. Borrowing the “do” notation, denote this
as do(X∗i = x). Let the equilibrium distribution under intervention be PM;do(X∗i =x). We compare
intervention queries on PM;do(X∗i =x) to PC;do(Xi=x). For both Markov process models and SCMs,
the intervention queries are answered by sampling from these distributions. See Supplementary
materials for contrasts to related intervention modeling approaches.

Counterfactual inference in SCMs Counterfactual inference is the process of observing a random
outcome, making inference about the unseen causes of the outcome, and then inferring the outcome
that would have been observed under an intervention [23, 26]. For example, an SCM C helps
answer the query “Having observed Xi = x, what would have happened under the intervention
do(Xi = ¬x)?". SCMs support the following algorithm for counterfactual inference [2]: (1) having
observed X = x, infer the noise distribution conditional on the observation PC;X=x

N , (2) replace
PC
N with PC;X=x

N in C, (3) apply the intervention do(X = ¬x), and (4) sample from the resulting
mutated model. The intuition is that in (2) we infer the latent initial conditions (values of N ) that
could have lead to the outcome X = x, this information is encoded in PC;X=x

N , the posterior of N
given X = x. We then pass that encoded information to the counterfactual world where X is set to
¬x and play out scenarios in that world by sampling from PC;X=x

N and deriving downstream variables
given those noise values. Thus the algorithm mutates C into an SCM entailing the counterfactual
distribution PC;X=x,do(X=¬x).
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3 Methods

3.1 Motivating example

This manuscript contributes a practical framework for casting Markov process models of a system
observed at equilibrium as an SCM, for the purposes of conducting counterfactual inference. As a
motivating example, we consider a system of three biomolecules (i.e., components) X1, X2 and Y.
Each component takes two states: active (“on") and inactive (“off"). Component X1 in the “on" state
activates Y; component X2 in the “on" state deactivates Y, as shown in the causal diagram [1] below:

Xon
1 + Yoff v1→ Xon

1 + Yon and Xon
2 + Yon v2→ Xon

2 + Yoff (2)

Let X1(t), X2(t), and Y (t) be the total number of active-state particles of X1, X2, and Y at time t.
Assume that each component has T = 100 particles in total, such that T − Y (t) is the number of
inactive particles of Y at time t, and that each component is initialized with 100 off-state particles.

To ensure that the equilibrium distribution of the Markov process model M has a closed-form
solution, we limit this work to M with zero or first-order hazard functions (i.e. hazard functions
for which outputs are either constant or directly proportional to a product of the inputs) [15, 29].
In this example, the hazard functions assume mass action kinetics [13], a common assumption in
biochemical modeling. Let h1(Y (t)) and h2(Y (t)) denote stochastic rate laws for the activation and
deactivation of Y, expressing the probabilities that the reactions occur in the instant (t, t+ dt]. Then,
according to a first-order stochastic kinetic assumption of chemical reactions [28], h1 and h2 are

h1(Y (t)) = v1X1(t)(T − Y (t)) and h2(Y (t)) = v2X2(t)Y (t) (3)

The hazard functions are parameterized by v = {v1, v2} regulating X1 and X2, and by the initial
states.

The Kolmogorov forward equations determine the change in PM
Y (t) as the system evolves in time:

dPM
Y (t)

dt =
(
h1(Y (t)− 1)PM

Y (t)−1 − h1(Y (t))PM
Y (t)

)
+

(
h2(Y (t) + 1)PM

Y (t)+1 − h2(Y (t))PM
Y (t)

)
(4)

We pose a counterfactual query “Having observed X1 = 34, X2 = 45, Y = 56, what would Y have
been if X1 was set to 50"?

3.2 Converting a Markov process model into an SCM

Algorithm 1 summarizes the proposed steps of converting the Markov process model into an SCM.
The steps are a series of mathematical derivations (as opposed to a pseudocode for a computational
implementation). Below we illustrate these steps for the component Y in the motivating example.
Additional mathematical details are available in Supplementary materials.

Algorithm 1 Convert Markov process into SCM
Inputs: Markov process model M
Output: Structural causal model C
1: procedure GETSCM(M)
2: I Solve master equation
3: PM(t) :=

∫
t

dPM(t)
dt

)dt
4: I Find the equilibrium distribution
5: PM = limt→∞ PM(t)
6: I Use PM to define generative model G
7: G := {x ∼ PM}
8: I Convert the generative model to an SCM
9: I that entails PM

10: C :=

{
N ∼ PC

N

X = f(X,N)
: PC ≈ PM

11: return C

Algorithm 2 Counterfactual inference on SCM
Inputs: Prior distribution on exogenous noise NPrior

Structural causal model C
Observed endogenous variables X = x
Counterfactual interventions X = ¬x
Desired sample size ssize

Output: ssize samples from PC;X=x,do(X:=¬x)

1: procedure CFQUERY(C, NPrior, x, ¬x, ssize)
2: I Create “observation" and “intervention" models
3: obsModel← Condition(C, X = x)
4: intModel← Do(C, X = ¬x)
5: I Infer noise distribution with observation model
6: NPosterior← Infer(obsModel, NPrior)
7: I Simulate from intervention model w/ updated

noise
8: samples = array(ssize)
9: for i in (0:ssize) do

10: samples[i]← intModel(NPosterior)
11: return samples
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Solve the master equation (Algo. 1 line 3). We can arrive at the solution for PM
Y (t) in Eq. (4)

indirectly by solving the ordinary differential equation on the expectation of Y (t) over PM
Y (t):

d

dt
E(Y (t)) = v1X1(t)T − (v1X1(t) + v2X2(t))E(Y (t)) (5)

This has an analytical solution, where:
E(Y (t))

T
= e−t(v1X1(t)+v2X2(t)) +

v1X1(t)

v1X1(t) + v2X2(t)
(6)

Finally, Y (t) is a count of binary state variables with the same probability of being activated at a
given instant. Then PM

Y (t) must be Binomial distribution with T trials, and trial probability E(Y (t))
T .

Find the equilibrium distribution (Algo. 1 line 5). Taking the limit in time of Eq. (6):
E(Y )

T
= lim

t→∞

E(Y (t))

T
=

v1X1(t)

v1X1(t) + v2X2(t)
(7)

Thus at equilibrium Y follows the Binomial probability distribution with parameter v1X1(t)
v1X1(t)+v2X2(t)

.

Use PM to define generative model G (Algo. 1 line 7). Let θX1
and θX1

be the probability
parameters for the equilibrium Binomial distributions PM

X1
and PM

X2
. Let θY (X1, X2) =

E(Y )
T be the

probability parameter for the equilibrium Binomial distribution PM
Y . Define a generative model G:

G := {X1 ∼ Binom(T, θX1); X2 ∼ Binom(T, θX2); Y ∼ Binom(T, θY (X1, X2))} (8)

Convert the generative model to an SCM that entails PM (Algo. 1 line 10). We rely on a method
of monotonic conversion, which restricts the class of possible SCMs to those with a common set
of identifiable counterfactual quantities (such as the probability of necessity, i.e. the probability
that Y would not have been activated without X1) [20]. For each structural assignment Xi =
fi(PAC,i, Ni),∀i ∈ J the method enforces the property E[Xi | do(PAC,i = y)] ≥ E[Xi |
do(PAC,i = y′)]⇒ fi(y, ni) ≥ fi(y′, ni)∀ni.
For this example we selected a monotonic conversion by means of the inverse CDF transform. Denote
F−1(u, n, p) the inverse CDF of the Binomial distribution, where 0 < u < 1, and n (number of
trials) and p (success probability) are the parameters of the Binomial distribution. Then the SCM C
that entails PM is defined as

NX1
, NX2

, NY
ind∼ Uniform(0, 1); (9)

C :=
{
X1 = F−1(NX1

, T, θX1
); X2 = F−1(NX2

, T, θX2
); Y = F−1(NY , T, θY (X1, X2))

}
For larger models such as in Case studies 1 and 2 thereafter, it may be desirable to work with alternative
transforms that are more amenable to gradient-based inference such as stochastic variational inference.

3.3 Counterfactual inference and evaluation

Algorithm 2 details the counterfactual inference on C. Algorithms 3 and 4 in Supplementary materials
detail the evaluation. The evaluation stems from the insight that noise at the equilibrium captures
the stochasticity in the Markov process trajectories. Therefore, we repeatedly simulate pairs of the
trajectories with and without the counterfactual intervention, with a same random seed in a pair, such
that each pair has an identical stochastic component. We then compare the differences in the values
of these pairs at equilibrium to the differences between the original and the intervened-upon values
projected by the SCM. These differences estimate the respective causal effects. The algorithms differ
in choosing a deterministic or a stochastic approach for the estimation of causal effects. To ensure
scalability to large models and the ability to do inference over a broad set of structural assignments,
we implemented the algorithms in PyTorch and the probabilistic programming language Pyro [4].
The code and the runtime data are in Supplementary materials.

4 Case studies

4.1 Case Study 1: The MAPK signaling pathway

The system The mitogen-activated protein kinase (MAPK) pathway is important in many biological
processes, such as determination of cell fate. It is a cascade of three proteins, a MAPK, a MAPK
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MAP3K MAP2K MAPK
activation hazard vactK3E1(TK3 − K3(t)) vactK2K3(TK2 − K2(t)) vactK K2(TK − K(t))
deactivation hazard vinhK3 K3(t) vinhK2 K2(t) vinhK K(t)

Table 1: The hazard functions in Case study 1 (MAPK), specified according to mass action enzyme kinetics.

kinase (MAP2K), and a MAPK kinase kinase (MAP3K), represented with a causal diagram [14, 24]

E1→ MAP3K→ MAP2K→ MAPK (10)

Here E1 is an input signal to the pathway. The cascade relays the signal from one protein to the next
by changing the count of proteins in an active state.

The biochemical reactions A protein molecule is in an active state if it has one or more attached
phosphoryl groups. Each arrow in Eq. (10) combines the reactions of phosphorylation (i.e., activation)
and dephosphorylation (i.e., desactivation). For example, E1→ MAP3K combines two reactions

E1 + MAP3K
vact
K3→ E1 + P-MAP3K and P-MAP3K

vinh
K3→ MAP3K (11)

In the first reaction in Eq. (11), a particle of the input signal E1 binds (i.e., activates) a molecule
of MAP3K to produce MAP3K with an attached phosphoryl. The rate parameter associated with
this reaction is vact. In the second reaction, phosphorylated MAP3K loses its phosphoryl (i.e.,
deactivates), with the rate vinh. The remaining arrows in Eq. (10) aggregate similar reactions and
rate pairs.

The mechanistic model Let K3(t), K2(t) and K(t) denote the counts of phosphorylated MAP3K,
MAP2K, and MAPK at time t. Let TK3, TK2, and TK represent the total amount of each of the three
proteins, and E1 the total amount of input, which we assume are constant in time. We model the
system as a continuous-time discrete-state Markov process M with hazard rates functions in Table 1.

The data We simulated the counts of protein particles using the Markov process model with rate
parameters vactK3, vactK2, vactK and deactivation rate parameters vinhK3 , vinhK2 , vinhK . We conducted three
simulation experiments with three sets of rates, all consistent with a low concentration in a cell-sized
volume (see Supplementary materials). The initial conditions assumed 1 particle of E1, 100 particles
of the unphosphorylated form of each protein, and 0 particles of the phosphorylated form.

The counterfactual of interest Let K3, K2 and K denote the observed counts of phosphorylated
MAP3K, MAP2K, and MAPK at 100 seconds, the time corresponding to an equilibrium for all the
rates. Let K3′ be the count of phosphorylated MAP3K generated by a 3 times smaller vactK3. Thus
v′ = [vactK3/3, v

inh
K3 , v

act
K2, v

inh
K2 , v

act
K , vinhK ]. We pose the counterfactual question: “Having observed

the equilibrium particle counts K3, K2 and K, what would have been the count of K if we had K3′?”.

The evaluation We derive the SCM C of the Markov process model and evaluate the counterfactual
distribution PC;K3=x,K2=y,K=z,do(K3=x′)

K3 where x′ is the expected equilibrium value associated with
v′. We evaluate this counterfactual statement as described in Algorithms 3 and 4 (with 500 seeds). If
the counterfactuals from the converted SCMs are consistent with the Markov process models, their
histograms from Algorithms 3 and 4 should overlap.

The evaluation under model misspecification We consider the Markov process model M with the
first set of rates (see Supplementary materials). Let [x,y, z] be sampled from M. Next, instead of the
correct model we consider a misspecified model M′, where vactK2 is perturbed with noise sampled from
Uniform(0.1, 0.5). We denote as C′ the SCM corresponding to M′, and evaluate the counterfactual
distribution PC′;K3=x,K2=y,K=z,do(K3=x′)

K3 . We expect that, since the counterfactual distribution from
C′ incorporates the data from the correct model, it should be closer to the true causal effect simulated
from M than the direct simulation from the misspecified M′. We repeat this experiment 50 times.

4.2 Case Study 2: The IGF signaling system

The system The growth factor signaling system is involved in growth and development of tissues.
When external stimuli activate the epidermal growth factor (EGF) or the insulin-like growth factor
(IGF), this triggers a cascade [3] in Fig. (1)(a). The Raf-Mek-Erk pathway is equivalent to Eq. (10),
renamed to follow the convention adopted by the biological literature in this context.

The biochemical reactions All the edges in Fig. (1)(a) represent enzyme reactions E + S v→ E +
P, where the change of substrate S to product P is catalyzed by enzyme E. As in Case study 1, the
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pointed edges combine activation and deactivation. The flat-headed edges only represent deactivation.
The mechanistic model is built similarly to Case study 1.

The data We simulated the counts of protein particles using the Markov process model with rates
in Supplemental Tables 2 and 3. The other settings are as in Case study 1. The initial condition
assumed 37 particles of EGFR, 5 particles of IGFR, 100 particles of the unphosphorylated form of
other proteins, and 0 particles of the phosphorylated form.

The counterfactual of interest Let R′ be the number of phosphorylated particles of Ras at equilib-
rium, achieved with v′act

Ras-SOS = vact
Ras-SOS/6. We pose the counterfactual: Having observed the number

of phosphorylated particles of each protein before the intervention, what would be the number of
particles of Erk if the intervention had fixed Ras = R′? Unlike the MAPK pathway, where the
intervention on MAP3K affects the counterfactual target MAPK through a direct path, this system
has two paths from Ras to Erk. One path goes directly through Raf, and the other through a mediating
path PI3K→ AKT. This challenges the algorithm to address multiple paths of influence.

The evaluation We consider the rates vact
Ras-SOS/6, the counterfactual distribution PC;Xi=xi,do(Ras=R′)

Erk ,
and the Algorithms 3 and 4 (with 300 seeds).

The evaluation under model misspecification We consider Markov process model M with the same
rates and initial conditions as above. Let xi be sampled from M. We then introduce a misspecified
model M′, where vactAKT-PI3K is perturbed with noise sampled from Uniform(0.01, 0.1). We denote as
C′ the SCM corresponding to M′, and evaluate the counterfactual distribution PC′;Xi=xi,do(Ras=R′)

Erk .
The resulting counterfactual distribution from C′ should be closer to the true causal effect simulated
from M than the direct simulation from the misspecified M′. We repeat this experiment 50 times.

EGF IGF

nucleus

RafPP

Raf Akt

PP2A
Mek

Erk

RasSOS PI3K

p90

RasGap

cell wall

(a) (b) (c)
Figure 1: Case study 2 (IGF). (a) IGF signaling. The top nodes are receptors for the epidermal growth factor
(EGF) and the insulin growth factor (IGF). Downstream of the receptors are several canonical signaling pathways
(including Raf-Mek-Erk, a renamed equivalent of Eq. (10)). Each reaction has a single rate parameter. The
auto-deactivation reactions are not pictured. (b) Deterministic and stochastic trajectories of the active-state
proteins in the system. Horizontal lines are the expected values at equilibrium. (c) Histogram of causal effects,
defined as differences between the “observed" and the “counterfactual" trajectories of ERK at equilibrium.

5 Results
5.1 Case Study 1: The MAPK signaling pathway

Solve stochastic process’s master equation (Algorithm 1 line 3). As in the motivating example, we
indirectly solve dPM(t)

dt by way of the solving the forward equations for the expectation. For K3(t)
this is dE(K3(t))

dt = vactK3 E1(TK3 − E(K3(t))− vinhK3 E(K3(t))) (Added Expectation in RHS, please
review). We derive similar forward equations for K2(t) and K(t). We solve the ODE above:

E(K3(t))
TK3

= e−t(v
act
K3 E1+vinh

K3 ) +
vactK3 E1

vactK3 E1 + vinhK3
(12)

and obtain the equilibrium by taking the limit t→∞. The first term in Eq. (12) goes to 0:

E(K3)
TK3

=
vactK3 TK3E1

vactK3 E1 + vinhK3
(13)
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Find the equilibrium distribution (Algorithm 1 line 5) As in Sec. 3.2), the each active-state MAPK
protein has a Binomial marginal distribution. Let θK3(E1) denote the probability that a MAP3K
particle is active at equilibrium given E1. After solving the master equation,

θK3(E1) =
E(K3)
TK3

=
vactK3 E1

vactK3 E1 + vinhK3
(14)

Extending this solution to MAP2K and MAPK leads to probabilities

θK3(E1) =
vactK3 E1

vactK3 E1 + vinhK3
; θK2(K3) =

vactK2 K3
vactK2 K3 + vinhK2

; θK(K2) =
vactK K2

vactK K2 + vinhK
(15)

and the following equilibrium distributions:
PM

K3 ≡ Binomial(TK3, θK3(E1)); PM
K2 ≡ Binomial(TK2, θK2(K3)); PM

K ≡ Binomial(TK, θK(K2)) (16)

Use PM to define generative model G (Algorithm 1 line 7). From here it is straightforward to create
a generative model that entails PM

K3:

G := {K3 ∼ Binom(TK3, θK3(E1)); K2 ∼ Binom(TK2, θK2(K3)); K ∼ Binom(TK, θK(K2))} (17)

Convert the generative model to an SCM that entails PM (Algorithm 1 line 10). Here the
challenge is in expressing the stochasticity in G, while defining K3, K2, K as deterministic functions
of the noise variables NK, NK2, NK3. Instead of using the inverse binomial CDF, we demonstrate the
use of a differentiable monotonic conversion, so that we can validate approximate counterfactual
inference with stochastic gradient descent. We achieve this by first applying a Gaussian approximation
to the Binomial distribution, and then applying the “reparameterization trick" used in variational
autoencoders [25] (combined in helper function q in Eq. (18)).

NK, NK2, NK3
ind∼ N(0, 1); q(θ, T,N) = N · (Tθ(1− θ))1/2 + θT (18)

C := {K3 = q(θK3(E1), TK3, NK3); K2 = q(θK2(K3), TK2, NK2); K = q(θK(K2), TK, NK)} (19)

The Gaussian approximation facilitates the gradient-based inference in line 6 of Algorithm 2. Despite
the approximation, the resulting SCM is still defined in terms of θ. In this manner the SCM retains
the biological mechanisms and the interpretation of the Markov process model.

Create “observation" and “intervention" models (Algorithm 2 lines 3-4) In a probabilistic pro-
gramming language, the deterministic functions in Eq. (19) are specified with a Dirac Delta dis-
tribution. However, at the time of writing, gradient-based inference in Pyro produced errors when
conditioning on a Dirac sample. We relaxed the Dirac Delta to allow a small amount of density.

(a) (b)
Figure 2: Case study 1 (MAPK). (a) Deterministic and stochastic trajectories of the active-state MAPK
proteins. Horizontal lines are the expected values at equilibrium. (b) Histograms of causal effects, defined as
differences between the “observed" and the “counterfactual" trajectories of MAP3K at equilibrium.

Infer noise distribution with observation model (Algorithm 2 line 6) We use stochastic variational
inference ([12]) to infer and update NK3, NK2 and NK from the observation model, and independent
Normal distributions as approximating distributions.

Simulate from intervention model with updated noise (Algorithm 2 line 10) After updating the
noise distributions, we generate the target distribution of the intervention model.

Deterministic and stochastic counterfactual simulation and evaluation (Algorithms 3 and 4 in
Supplementary materials). Fig. (2)(a) illustrates that the simulated trajectories converge in steady state.
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