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Appendix 1: Proof of detailed balance

Proof. We prove that the SA-MCMC Markov chain satisfies the detailed balance condition. Let
S = (θ1, θ2, . . . , θN ), and let T denote the transition kernel of the chain. To show the detailed
balance condition, we need to show that π⊗N (S)T(S′|S) = π⊗N (S′)T(S|S′) for S′ 6= S. Consider
the case where S′ = (θ′1, θ2, . . . , θN ) for θ′1 6= θ1:

π⊗N (S)T(S′|S) =

[
π(θ1)

∏N
n=2 π(θn)

]
[q(θ′1|µ(S),Σ(S))] q(θ1|µ(S−1),Σ(S−1))

p(θ1)

q(θ1|µ(S−1),Σ(S−1))
p(θ1) +

q(θ′1|µ(S),Σ(S))
p(θ′1) +

∑N
j=2

q(θj |µ(S−j),Σ(S−j))
p(θj)

π⊗N (S′)T(S|S′) =

[
π(θ′1)

∏N
n=2 π(θn)

]
[q(θ1|µ(S′),Σ(S′))]

q(θ′1|µ(S′−1),Σ(S′−1))

p(θ′1)

q(θ′1|µ(S′−1),Σ(S′−1))

p(θ′1) + q(θ1|µ(S′),Σ(S′))
p(θ1) +

∑N
j=2

q(θj |µ(S′−j),Σ(S′−j))

p(θj)

Since S′ = S−1 and S′−1 = S and µ(S′−j) = µ(S−j) and Σ(S′−j) = Σ(S−j) for j = 2, ..., N , the
detailed balance condition is satisfied for S ↔ S′. By symmetry, the same argument holds when any
one of the θn’s is updated. Since at most one θn can be updated in one iteration, we are done.

Appendix 2: Proof of ergodicity

We first restate a theorem from Athreya et al. (1996) that we will use to prove Theorem 1. Our
statement of the theorem is also based on Robert and Casella (2004, p. 263).

Theorem (Athreya et al., 1996). Suppose that the time-homogenous Markov Chain {X(k)} has
invariant probability density p. Denote the conditional density ofX(k) givenX(0) by fk(·|·). Let g(x)
be any function satisfying

∫
|g(x)| p(x)dx <∞. Suppose that there is a set A with

∫
A
p(x)dx > 0

that satisfies the following properties:

(B1)
∑∞
k=1

∫
A
fk(x|x0)dx > 0 for [p]-almost all x0, and

(B2) gcd {m: infx,y∈A fm(y|x) > 0} = 1.

Then the Markov chain is ergodic, and

(1) limK→∞ supC
∣∣∫
C
fK(x|x0)dx−

∫
C
p(x)dx

∣∣ = 0 for [p]-almost all x0, and

(2) Px0

[
limK→∞

1
K

∑K
k=1 g(X(k)) =

∫
g(x)p(x)dx

]
= 1 for [p]-almost all x0.

Proof of Theorem 1. From Proposition 1, we know that {S(k)} has invariant density π⊗N . We will
first show that assumption (B1) of the Theorem of Athreya et al. (1996) is satisfied for any set
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A ⊆ E⊗N with
∫
A
π⊗N (s)ds > 0. Consider any s(0) = (θ

(0)
1 , . . . , θ

(0)
N ) with positive probability

π⊗N (s(0)) > 0 and not all θ(0)
i identical to each other. Consider any s = (θ1, . . . , θN ) ∈ A with

not all θi identical to each other and θi 6= θ
(0)
j for any i, j. s can be reached from s(0) in N steps

by proposing θi and replacing θ(0)
i with θi in step i. Since the proposal densities and the target

densities are positive by assumption, the substitution probabilities in each step are positive, so∫
A
fN (s|s0)ds > 0.

We now show that assumption (B2) is satisfied. Without loss of generality, we can choose our
coordinate system so that there exists some δ > 0 such that [−6δ, 6δ]

d ⊆ E . Consider the case
where N ≥ 4 is even. Let A be the set [−4δ,−3δ]

dN/2 × [3δ, 4δ]
dN/2. For any s ∈ A, our

construction ensures that θ1 [j] , . . . , θN/2 [j] ∈ [−4δ,−3δ] and θN/2+1 [j] , . . . , θN [j] ∈ [3δ, 4δ] for
any dimension j ∈ 1, . . . , d. To bound all of the substitution probabilities during the substitution
procedure for our proof, we will also need to consider the cases where there are (N2 + 1) θn [j]’s
in [−4δ,−3δ] and (N2 − 1) θn [j]’s in [−4δ,−3δ] with the remaining θn [j]’s in [3δ, 4δ]. In any of
these 3 cases, we have that |µj | ≤ 1

N

(
4δ(N2 + 1)− 3δ(N2 − 1)

)
= δ

2 + 7δ
N ≤

9δ
4 for N ≥ 4 and

3δ
4 ≤ σj ≤ 8δ. For any θ′ ∈ [−4δ, 4δ]

d, we have that
∣∣θ′j − µj∣∣ ≤ 8δ, so by assumption (A2), there

exist constants ε1, ε2 > 0 such that ε1 < q(θ′ | µ,diag(σ2)) < ε2. By assumption (A1), there exist
constants ε3, ε4 > 0 such that ε3 < π(θ) < ε4 for all θ in [−4δ, 4δ]

d.

We are now ready to prove that infs(0),s∈A fN (s|s(0)) > 0. Let s(0) = (θ
(0)
1 , . . . , θ

(0)
N ) ∈ A and

s = (θ1, . . . , θN ) ∈ A. Since s can be reached from s(0) in N steps by proposing θi and replacing
θ

(0)
i with θi in step i, we need only show that this N -step transition probability is bounded from

below. Making use of the bounds proved earlier, the probability of proposing θi and replacing θ(0)
i

with θi in step i is at least ε21ε3
(N+1)ε4ε2

. Combining the N steps proves that infs(0),s∈A fN (s|s(0)) ≥(
ε21ε3

(N+1)ε4ε2

)N
. The same argument can be used to prove infs(0),s∈A fm(s|s(0)) > 0 for any m ≥ N

which establishes (B2).

Result (1) follows immediately from result (1) of the Theorem of Athreya et al. (1996). To conclude
result (2), note that we can define g(s) = 1

N

∑N
n=1 h(θn), and

∫
|h(θ)|π(θ)dθ < ∞ implies∫

|g(s)|π⊗N (s)ds ≤ 1
N

∑N
n=1

∫
|h(θn)|π⊗N (s)ds =

∫
|h(θ)|π(θ)dθ < ∞, so result (2) follows

from result (2) of the Theorem of Athreya et al. (1996).

In the case where N ≥ 5 is odd, we can let A be the set [−4δ,−3δ]
d(N−1)/2 × [3δ, 4δ]

d(N+1)/2.
Following the same argument above, we have that |µj | ≤ 1

N

(
4δ(N+1

2 + 1)− 3δ(N−1
2 − 1)

)
=

δ
2 + 21δ

2N ≤
26δ
10 for N ≥ 5 and 4δ

10 ≤ σj ≤ 8δ, and the rest of the proof follows.

In the case where N = 3, we can let A be the set I1×I2×I3 = [−6δ,−5δ]
d× [−δ, δ]d× [5δ, 6δ]

d.
We now analyze the different cases. When we have one θn in each of I1, I2, I3, then |µj | ≤
1
3 (−5δ + δ + 6δ) = 2δ

3 and σ2
j ≥ 2

3 (4δ)2. When we have two θn’s in I1 and one θn in either I2

or I3, then µj ≤ 1
3 (−10δ + 6δ) = −4δ

3 and σ2
j ≥ 1

3 ( δ3 )2. Finally, when we have two θn’s in I2

and one θn in I3, then µj ≤ 1
3 (2δ + 6δ) = 8δ

3 and σ2
j ≥ 1

3 (2δ)2. In any case, we have the upper
bound σ2

j ≤ (12δ)2. For any θ′ ∈ [−6δ, 6δ]
d, we have that

∣∣θ′j − µj∣∣ ≤ 12δ, and the rest of the proof
follows.
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Appendix 3: Proof of uniform ergodicity

Proof. For notational convenience, let p denote the target density. Let Ψ be the linear operator
onM[=M(ΘN )], the space of finite signed-measures on ΘN , such that Ψ(δθ) is the probability
measure of (θ

(k+1)
1 , . . . , θ

(k+1)
N ), conditioned on (θ

(k)
1 , . . . , θ

(k)
N ) = θ.

Let q0(θ) = infγ∈Γ q(θ|γ). Since λ(θ|γ) is bounded by assumption, q0 ≥ ap (i.e. q0 − ap is a
non-negative measure). We will first show that

ΨN (δθ) ≥ C0q
N
0 ≥ CpN , (1)

where C0 = N !( a
(N+1)b )

N and C = C0a
N . This is because ΨN includes the special case of

substitutions of each θn (1 ≤ n ≤ N ) in N consecutive operations. For a particular sequence of
substitutions, say θ1 followed by θ2 up to θN , the probability of this occurring is at least ( a

(N+1)b )
N .

We multiply by N ! to take into account all possible orders of substitutions.

We shall prove by induction that for ` = 0, 1, 2, . . .,

Ψ`N (δθ) ≥ [1− (1− C)`]pN . (2)

Indeed (2) is trivial for ` = 0. Now suppose (2) holds for some `. We can rewrite

Ψ(`+1)N (δθ) = ΨN ([1− (1− C)`]pN ) + Ψ(`+1)N (δθ)−ΨN ([1− (1− C)`]pN )

= ΨN ([1− (1− C)`]pN ) + (1− C)`ΨN (ν∗)

where ν∗ = (1−C)−`{Ψ`N (δθ)− [1− (1−C)`]pN} is a probability measure. Since Ψ(pN ) = pN

and ΨN (ν∗) ≥ CpN by (1), hence

Ψ(`+1)N (δθ) ≥ [1− (1− C)` + C(1− C)`]pN ,

so (2) holds for `+ 1, and the induction is complete.

By (2), for k ≥ 1 and ` = bk/Nc,

‖fk − pN‖TV ≤ ‖f`N − pN‖TV ≤ 2(1− C)` = 2(1− C)bk/Nc. (3)

The first inequality in (3) follows from ‖Ψ(ν)‖TV ≤ ‖ν‖TV for ν ∈M.

Appendix 4: Experiments with t-distributions

Table 1: Comparison of minimum ESS/iteration for SA-MCMC (diag) with N = 50 when using
the proposal distribution specified by the row to sample from the target distribution specified by
the column in a 10 dimensional space. The proposal family for the t-distribution with ν degrees of
freedom is given by q(·|µ(S),Σ(S)) = Tν(·|µ(S), ν−2

ν diag(Σ(S))) where ν is fixed. 100 chains
with 100k burn-in iterations and 1 million estimation iterations each were used to compute ESS. “—”
indicates non-convergence as detected by ESS and R_hat.

T(ν = 3) T(ν = 5) T(ν = 10) T(ν = 50) T(ν = 100) Normal

T(ν = 3) 0.257 0.248 0.189 0.137 0.131 0.125
T(ν = 5) 0.067 0.326 0.299 0.233 0.223 0.212
T(ν = 10) — — 0.345 0.310 0.297 0.287
T(ν = 50) — — — 0.350 0.350 0.347
T(ν = 100) — — — 0.339 0.346 0.349
Normal — — — — 0.340 0.347
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Appendix 5: Discussion of Independent Metropolis-Hastings and Adaptive
Independent Metropolis-Hastings

Algorithm 1 Independent Metropolis-Hastings
1: Generate an initial state x0 from the density q0(·)
2: for t = 1 to κ+K do
3: Generate a state z from the proposal q(·)
4: Calculate the acceptance probability

α(z, xt−1) = min

{
1,
π(z)q(xt−1)

π(xt−1)q(z)

}
.

5: If it is accepted, set xt = z. Otherwise, set xt = xt−1.
6: end for

Algorithm 2 Adaptive Independent Metropolis-Hastings (with no local steps)

1: Initialize ỹ(0) ← ∅
2: Generate an initial state x0 from the density q0(·)
3: for t = 1 to κ+K do
4: Generate a state z from the proposal qt(· | ỹ(t−1)).
5: Calculate the acceptance probability

α(z, xt−1, ỹ
(t−1)) = min

{
1,
π(z)qt(xt−1 | ỹ(t−1))

π(xt−1)qt(z | ỹ(t−1))

}
.

6: If it is accepted, set xt = z and ỹ(t) = ỹ(t−1) ∪ {xt−1}. Otherwise, set xt = xt−1 and
ỹ(t) = ỹ(t−1) ∪ {z}.

7: end for

The Independent Metropolis-Hastings algorithm uses a fixed proposal distribution, and the proposed
point is drawn independently of the current state of the Markov chain. The efficiency of the IMH
sampler depends crucially on how well the proposal distribution matches the target distribution, and
the IMH algorithm requires that the proposal distribution be specified by the user. Robert and Casella
(2004, p. 284) make the following remark: “A final note about independent Metropolis-Hastings
algorithms is that they cannot be omniscient: there are settings where an independent proposal does
not work well because of the complexity of the target distribution. Since the main purpose of MCMC
algorithms is to provide a crude but easy simulation technique, it is difficult to imagine spending a
long time on the design of the proposal distribution. This is specially pertinent in high-dimensional
models where the capture of the main features of the target distribution is most often impossible.
There is therefore a limitation of the independent proposal, which can be perceived as a global
proposal, and a need to use more local proposals that are not so sensitive to the target distribution.”

Visualizations of the marginal posterior distribution for the Bayesian logistic regression examples are
shown in Figure 1 and Figure 2. Note that the marginal posterior distribution in each dimension is
sharply peaked with the peaks concentrated far away from one another, so that the design of a global
proposal is difficult. In addition, the posterior parameters can be correlated with each other, as shown
in Figure 3 for the MNIST example, further complicating the design of a global proposal distribution
that matches the target distribution. Given these challenges in high-dimensional spaces, we view
adaptivity of the proposal distribution as crucial for effective sampling.

The Adaptive Independent Metropolis-Hastings algorithm allows the proposal distribution to depend
on a history vector, so the algorithm can adapt based on the past samples. The specific form of the
algorithm is chosen to preserve the invariant distribution. However, the adaptivity can be limited and
crucially depends on the design of a good initial proposal distribution at the start of the algorithm.
Note that if the initial proposal distribution is bad so that very few proposed points are accepted, then
the history vector is appended with all of the rejected points. Since the history vector consists mostly
of rejected points sampled from the initial proposal distribution, then the adaptivity that can occur
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is limited. This is in sharp contrast to SA-MCMC which can adapt even when the initial proposal
distribution is a bad match for the target distribution.

Appendix 6: Optimized implementation

We now develop an optimized implementation that is numerically stable and can be vectorized. For
numerical stability, all calculations with probabilities are done in the log domain. To avoid repeated
evaluation of p(θ), we cache p(θ) so that p(θ) only needs to be evaluated once for each new point θ.
Most of the computation required for SA-MCMC occurs in the calculation of q(θn|µ(S−n),Σ(S−n))
for n = 1, . . . , N + 1, and we now present a more efficient implementation.

Diagonal covariance

Recall that S−n is (S with θn replaced by θN+1). The idea is to use the identity Var [X] =

E
[
X2
]
− E [X]

2
= 1

n

∑n
i=1 x

2
i −

(
1
n

∑n
i=1 xi

)2
so that we can incrementally compute the

variance σ2(S−n) without iterating over N points for each n. However, the naive use of
this formula can be numerically unstable in certain cases. Instead, we will utilize the transla-
tion invariance property of the variance by translating all points by µ(S) in all of the calcu-
lations. For any n, we have µ∗(S−n) = 1

N (θN+1 − θn). Let sqr denote the element-wise
square function. Given s∗ =

∑N+1
n=1 sqr (θn − µ(S)), we can compute σ2(S−n) = σ2

∗(S−n) =
1
N (s∗ − sqr (θn − µ(S))) − sqr (µ∗(S−n)). All of these calculations as well as the calculation of
the log proposal densities log q(θn|µ(S−n),diag(Σ(S−n))) can be vectorized across n, giving us an
efficient CPU implementation that can scale to reasonably sized problems.

Full covariance

We apply a similar technique as in the diagonal case to the covariance formula. Let Θ = [θ1, . . . , θN ]
be a d×N matrix where the nth column is the vector θn. Let µ = µ(S) be the mean of the N points.
The unscaled covariance matrix Σ(S) can be calculated as Σ(S) = (Θ− µ1T )(Θ− µ1T )T where 1
is the vector of ones. Now consider S−n which is (S with θn replaced by θN+1). We can compute
Σ(S−n) from Σ(S) by 3 rank-one updates, corresponding to adding (θN+1 − µ)(θN+1 − µ)T ,
subtracting (θn − µ)(θn − µ)T , and subtracting 1/N times (θN+1 − θn)(θN+1 − θn)T . Since the
first update above is independent of n, we need to do 2 rank-one updates for each n.

When the proposal distribution is the Gaussian distribution, the computation can be further accelerated.
The proposal density log q(θn|µ(S−n),Σ(S−n)) when q is multivariate Gaussian can be computed
directly from the Cholesky factorization of Σ(S−n) which is more efficient than starting with Σ(S−n).
Using this idea, the procedure above of computing Σ(S−n) from Σ(S) by 2 rank-one updates can be
improved. We first compute the Cholesky factorization of Σ(S) + (θN+1 − µ)(θN+1 − µ)T . Then
for each n, we apply the 2 rank-one updates (specifically downdates because of the negative sign)
directly to the Cholesky factorization of Σ(S) to get the Cholesky factorization of Σ(S−n), which
we can then use to evaluate the density log q(θn|µ(S−n),Σ(S−n)). The runtime complexity of this
procedure is O(Nd2) for each iteration.
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Appendix 7: Visualizations of the posterior distribution for the Bayesian
logistic regression examples

Figure 1: Marginal posterior distribution (blue histogram) for the MNIST logistic regression example.
For reference, the density of the standard normal distribution is in green.
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Figure 2: Marginal posterior distribution (blue histogram) for the census income logistic regression
example. For reference, the density of the standard normal distribution is in green.

Figure 3: Bivariate posterior distribution of dimension 3 vs every other dimension in the MNIST
logistic regression example.
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Figure 4: Plot of minimum ESS/s for SA-MCMC
versus N (solid lines) and plot of minimum
ESS/s for NUTS (horizontal dashed lines) for
different dimensions (different colors).
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Figure 5: Plot of median ESS/s for SA-MCMC
versus N (solid lines) and plot of median ESS/s
for NUTS (horizontal dashed lines) for different
dimensions (different colors).
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Figure 6: Plot of acceptance rate for SA-MCMC
(full) versus N on MNIST for different dimen-
sions.
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Figure 7: Plot of running time for SA-MCMC
(full) versus N on MNIST for different dimen-
sions.

Appendix 8: Results for SA-MCMC and NUTS on MNIST in higher
dimensions

To study the performance of SA-MCMC (full) and NUTS across different dimensions, we run the
following experiment on the MNIST dataset. We reduce the dimensionality of the image from 784
to 20, 30, 40, and 50 using PCA, resulting in 21, 31, 41, and 51 dimensions total respectively after
adding a column of ones. We then run NUTS and SA-MCMC (full) with different values of N . For
SA-MCMC, we use 200k burn-in iterations followed by 1 million estimation iterations. We use q0=1
which is the same initialization distribution that we used in all of our other experiments. Note that
SA-MCMC is able to adapt to the target distribution in higher dimensions and for larger values of
N . The minimum ESS/second results are in Figure 4, and the median ESS/second results are in
Figure 5. When comparing minimum ESS/second, we note that SA-MCMC outperforms NUTS up
to dimension 50 on MNIST. For SA-MCMC, we plot the acceptance rates and running times versus
N in Figure 6 and Figure 7.
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