
A Appendix

This section contains the proofs of theorems mentioned in the main text, as well as efficient versions
of algorithms for instrumental sets and sets of auxiliary variables. We also include a brief discussion
of the difficulties of adding conditioning to instrumental cutsets.

A.1 Definitions & Theorems from Previous Works

The proofs will make extensive use of a couple important results in the literature, which are stated
here. Also given are the full definitions of certain concepts which were only briefly mentioned in the
main text due to space constraints.
Definition A.1. (Sullivant et al., 2010) A path π from nodes v to w is a trek if it has no colliding
arrowheads, that is, π is of the form:

v ← ...←↔→ ...→ w v ← ...← k → ...→ w v ← ...← w v → ...→ w

Definition A.2. (Foygel et al., 2012) A half-trek from v, is a trek which either starts from a bidirected
edge (v ↔ ...→ w) or is a directed path (v → ...→ w)
Definition A.3. (Sullivant et al., 2010) A trek monomial π(Λ,Ω) for trek π is defined as the product
of the structural parameters along the trek, multiplied by the trek’s top error term covariance.

We define tr(v) and htr(v) as the sets of nodes reachable from v with a trek and half-trek respectively.
There are two variants of trek monomial, one where π does not take a bidirected edge, and instead
has a top node k6 (1), and one where the trek contains a bidirected edge εab (2). We can write the
covariance between v and w, σvw, as the sum of the trek monomials of all treks between v and w
(Tvw) (3):

(1) π(Λ,Ω) = ε2k
∏

x→y∈π
λxy (2) π(Λ,Ω) = εab

∏
x→y∈π

λxy (3) σvw =
∑
π∈Tvw

π(Λ,Ω)

We can reason about the determinants of covariance matrix minors by looking at the flow graph:
Definition A.4. (Sullivant et al., 2010; Foygel et al., 2012; Weihs et al., 2017) The flow graph of
G = (V,D,B) is the graph with vertices V ∪ V ′ containing the edges:

• j → i and i′ → j′ with weight λij if i→ j ∈ V

• i→ i′ with weight εii for all i ∈ V

• i→ j′ with weight εij if i↔ j ∈ B

This graph is referred to as Gflow. The nodes without ′ are called “source”, or “top” nodes, and the
nodes with ′ are called “sink” or “bottom” nodes.
Lemma A.1. (Gessel-Viennot-Lindström Gessel & Viennot (1989); Sullivant et al. (2010); Draisma
et al. (2013)) Given DAG G = (V,E), with E defined as a weighted adjacency matrix, and vertex
sets A,B ⊆ V , where |A| = |B| = l,

det
[
(I − E)−1

]
A,B

=
∑

P∈N(A,B)

(−1)P
∏
p∈P

e(p)

Here, N(A,B) is the the set of all collections of nonintersecting systems of l directed paths in G
from A to B. P = (p1, ..., pl) is a collection of these nonintersecting paths. e(p) is the product of the
coefficients of e ∈ E along path p, and (−1)P is the sign of the induced permutation of elements
from A to B.

The above lemma means that a covariance matrix minor’s determinant can be found by looking at
nonintersecting path sets between top and bottom nodes in the flow graph (Fig. 1b). We will use
ΣS,T to represent the covariance matrix minor with rows of S and columns of T . While the flow
graph has repeated edge weights, this does not affect the rank of the minor:

6Note also that we can have a trek from v to v, including a trek that takes no edges at all, which would be
simply εvv
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Lemma A.2. (Weihs et al. (2017) corrolary 3.3) Let S = {s1, ..., sk}, T = {t1, ..., tm} ⊂ X , then
ΣS,T has generic rank r if and only if the max-flow from s1, ..., sk to t′1, ..., t

′
m in Gflow is r

We can therefore say the determinant of a covariance minor from S to T is nonzero iff there is a full
nonintersecting path set from S to T in the flow graph.

A.1.1 Existing Identification Criterions

This subsection contains an unordered list of identification criteria we reference when developing our
algorithms.
Definition A.5. (Brito & Pearl, 2002) The set Z is said to be a generalized instrumental set relative
to X and y in G if there exists a set Z ⊂ V with |Z| = |X| = k and set W = {Wz1 , ...,Wzk} with
all Wzi ⊂ V \De(y) such that

1. There is a path set Π = {π1, ..., πk} without sided intersection between the Z and X ,

2. Wzi d-separates zi from y in G with edges X → y removed, but does not block the path
from Π starting from zi

Theorem A.1. (Brito & Pearl, 2002) If there exists a generalized instrumental set to X , then the
structural parameters λxiy are identifiable for xi ∈ X .

A simple conditional instrumental set is defined as:
Definition A.6. (Van der Zander & Liskiewicz, 2016) The set Z is said to be a simple conditional
instrumental set relative to X and y in G if there exist sets Z ⊂ V and W ⊂ V such that:

1. There exists a set of paths Π = {π1, ..., πk} of size k without sided intersection from Z to X

2. W d-separates all Z from y in G with the edges X → y removed, but does not block any
path in Π

Lemma A.3. If a simple conditional instrumental set exists for a set X , then all parameters λx1y

with xi ∈ X are identifiable.

Proof. If there exists a simple conditional instrumental set, can directly construct a generalized
instrumental set (Definition A.5), which makes the parameters identifiable by Theorem A.1.

Auxiliary variables were defined as:
Definition A.7. (Chen et al., 2017) Let M = (Λ,Ω) be a linear SCM with variables X , and
Λ∗ be a set of identified structural parameters. An auxiliary variable for xi ∈ X is defined as
x∗i = xi −

∑
λxjxi

∈Λ∗ λxjxixj .

An auxiliary instrumental set is defined as
Definition A.8. (Chen et al., 2016) A Markovian linear SCM with graph G and set of directed edges
Λ∗ whose coefficient values are known is known as an auxiliary instrumental set for edgesE ⊆ Pa(y)
if Z∗ is an instrumental set for E where any paths through edges incoming to zi ∈ Z through edge
λwzi ∈ Λ∗ are considered blocked.

The corresponding conditional auxiliary variable has the following definition:
Definition A.9. (Chen et al., 2017) Given graph G and set of directed edges Λ∗ whose coefficient
values are known, a variable z is called a conditional auxiliary instrument relative to λxy, if z
is a conditional instrument for λxy in the graph with edges wi → z and xi → y removed where
λwiz, λxiy ∈ Λ∗, and no element of conditioning set W is a descendant of z.

A compressed definition of tsIV was given in Definition 2.2. We include the full version here for
completeness:
Theorem A.2. (Weihs et al., 2017) Let G = (V,D,B) be a mixed graph, w0 → v ∈ G, and suppose
that the edges w1 → v, ..., wl → v ∈ G are known to be generically (rationally) identifiable. Let
G∗flow be Gflow with the edges w′0 → v′, ..., w′l → v′ removed. Suppose there are sets S ⊂ V and
T ⊂ V \ {v, w0} such that |S| = |T |+ 1 = k and
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1. De(v) ∩ (T ∪ {v}) = ∅,

2. the max-flow from S to T ′ ∪ {w′0} in Gflow equals k, and

3. the max-flow from S to T ′ ∪ {v′} in G∗flow is < k,

then w0 → v is rationally identifiable by the equation

λw0v =

∣∣ΣS,T∪{v}∣∣−∑l
i=1

∣∣ΣS,T∪{wi}
∣∣∣∣ΣS,T∪{w0}

∣∣
A.2 Match-Blocking

The matchblock definition is restated here for convenience:
Definition 3.1. Given a directed acyclic graph G = (V,D), a set of source nodes S and sink nodes
T , the sets Sf ⊆ S and Tf ⊆ T , with |Sf | = |Tf | = k, are called match-blocked iff for each
si ∈ Sf , all elements of T reachable from si are in the set Tf , and the max flow between Sf and Tf
is k in G where each vertex has capacity 1.

The algorithm for finding a match-block (Algorithm 1) relies on the following theorem:
Theorem 3.1. Given a directed acyclic graph G = (V,D), a set of source nodes S, sink nodes T ,
and a max flow F from S to T in G with vertex capacity 1, if a node ti ∈ T has 0 flow crossing it in
F , then there do not exist subsets Sm ⊆ S, Tm ⊆ T where Sm, Tm are match-blocked and ti ∈ Tm.
Furthermore, for any match-block (Sm, Tm), we have |Sm ∩An(ti)| = 0.

Proof. Suppose not. That is, suppose that ∃ti ∈ T such that a max-flow F gives 0 flow through it,
yet there exist subsets Sm ⊆ S, Tm ⊆ T with ti ∈ Tm, such that De(Sm) ∩ T ⊆ Tm, and there is a
full flow Fm from Sm to Tm in the graph where each vertex has capacity 1 (|Sm| = |Tm| = |Fm|).
We reason about the intersection of the two flows F and Fm. Our goal is to show that we can modify
F to include the paths of Fm, without intersecting paths in F to T \ Tm, thus creating a new flow
larger than F - which is a contradiction, since F is a max-flow.

Suppose that F has non-zero flow from Sf ⊆ S to Tf ⊂ T . For any tj ∈ Tm ∩ Tf we can simply
remove the original path in F to tj , resulting in a new flow F ′, which is of size |F| − |Tm ∩ Tf |.
Next, we show that the flow paths in Fm cannot intersect with any flow paths from F ′. This is
because De(Sm) ∩ T ⊆ Tm requires that all matching descendants of elements in Sm are in Tm,
meaning that any flow-path pk ∈ F ′ intersecting flow-path p′l ∈ Fm must have an endpoint on an
element in Tm - but all such paths were removed in F ′.
We combine the paths of F ′ and Fm, giving a new flow F ′′ from S to T . Finally, since ti /∈ Tf ,
|Tm ∩ Tf | < |Tm|, so:

|F| − |Tm ∩ Tf |+ |Tm| = |F ′′|
|F| < |F ′′|

A contradiction (F is a max-flow). There cannot be any satisfied subset Tm containing ti.

Finally, no ancestor of ti can be part of a satisfied subset, since they all have paths to ti, which
completes the proof.

Corollary A.1. Given directed acyclic graph G = (V,D) and sets of source nodes S,T , their
maximal match-blocked subsets Sm,Tm can be found in polynomial time.

Proof. See Algorithm 1. At each iteration, at least one node is eliminated from the feasibility
set, meaning that given n nodes, the algorithm runs at most n max-flow queries, each of which is
computable in polynomial time.

Corollary A.2. Suppose that Sm,Tm constitute a match-block. The match-block S′m, T
′
m found using

Algorithm 1 is such that Sm ⊆ S′m and Tm ⊆ T ′m.
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Proof. At each step of the algorithm, only nodes ti, ...tj that have 0 flow crossing through them are
removed from T . These nodes cannot be part of Tm by Theorem 5.2. Similarly, only ancestors to
ti, ..., tj are removed from S, which likewise cannot be part of Sm. Therefore, no elements of Sm
nor Tm were removed by the algorithm, meaning that Sm ⊆ S′m and Tm ⊆ T ′m.

Corollary A.3. Given mixed graph G = (V,D,B), there exists a valid instrumental subset Sm ⊆
V \De(Sib(y)) to Tm ⊆ Pa(y) if and only if Sm, Tm is a match-block between V \De(Sib(y))
and Pa(y) in Gflow.

Proof. ⇒: Given a valid instrumental subset, it is also a match-block, because there are an equal
number of instruments and parents of y, and there exists a system of nonintersecting paths from Sm
to Tm. Furthermore, if any of the Sm has paths to Pa(y) \ Tm, then they are dependent on y in the
graph with the edges Tm → y removed, which means that they are not an IS. Finally, the IS can’t
have elements of De(Sib(y)), since it would mean that y is not-d-separated from the instruments.
As such, the sets satisfy the requirements of a match-block.

⇐: Suppose there is a valid match-block, then there is a valid instrumental set. The match-block
guarantees the requirements of an IS directly. The restriction of S to elements without back-paths to
y forces all paths to y to go through Pa(y).

The corresponding algorithm is given in Algorithm 3

Algorithm 3 Find Maximal Instrumental Subsets given graph G, target variable y

function MAXIS(G,y)
Gflow ← FLOWGRAPH(G)
Z ← (An(y,Gflow) ∩ SOURCENODES(Gflow)) \ SOURCENODESOF(De(Sib(y)))
(Zf , Xf )← MAXMATCHBLOCK(Gflow, Z, Pa(y)′)
return (Zf , Xf )

end function

A.2.1 Auxiliary Flow Graph

This section develops results that show the auxiliary flow graph can be used instead of Gflow, and
that it encodes treks through auxiliary variables. For reference, Gaux is defined as:
Definition 3.2. (Auxiliary Flow Graph) Given a linear SCM (Λ,Ω) with causal graph G =
(V,D,B), and set of known structural parameters Λ∗, the auxiliary flow graph is a weighted DAG
with vertices V ∪ V ∗ ∪ V ′ ∪ V ′∗ and edges

1. j → i and i′ → j′ both with weight λij if (i→ j) ∈ D, and λij ∈ Λ∗

2. j∗ → i and i′ → j′∗ both with weight λij if (i→ j) ∈ D, and λij /∈ Λ∗

3. i→ i∗ and i′∗ → i′ with weight 1, and i∗ → i′ with weight εii for i ∈ V

4. i∗ → j′∗ with weight εij if (i↔ j) ∈ B

This graph is referred to as Gaux. The nodes without ′ are called “source”, or “top” nodes, and the
nodes with ′ are called “sink” or “bottom” nodes. The nodes with ∗ are called “auxiliary" nodes.
Lemma A.4. Given a linear SCM (Λ,Ω) with causal graphG = (V,D,B), a set of known structural
parameters Λ∗, and defining V ∗ = {v∗1 , ..., v∗k} as

v∗i = vi −
∑

λvjvi
∈Λ∗

λvjvivj

the sum over each path of products of weights along the path from s ∈ V ∪ V ∗ to t ∈ V ′ in the
auxiliary flow graph Gaux encodes the covariance σst.

Proof. We already know that Gflow encodes treks in the graph (Sullivant et al., 2010). If s ∈ V , we
notice that the sum of paths can be constructed by combining the paths from s that are not passing s∗,
and the paths from s∗ multiplied by 1 - which results in the treks, identically to Gflow.
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If s∗ ∈ V ∗, we notice that the set of treks from s∗ to a variable y can be seen as a subset of the treks
from s

σsy =
(
treks not starting from any λajs ∈ Λ∗

)
+
(
treks starting from one of the λajs ∈ Λ∗

)
σsy =

(
treks not starting from any λajs ∈ Λ∗

)
+
∑
j

λajsσajy

σsy −
∑
j

λajsiσajy =
(
treks not starting from any λajs ∈ Λ∗

)
σs∗y =

(
treks not starting from any λajs ∈ Λ∗

)
Using this result, we can conclude that the covariance of s∗i with any variable behaves as if the edges
from s to aj in Gflow did not exist, but all other paths were identical to Gflow. This is exactly the
construction given in Gaux.

Next, we show directly that the Gessel-Viennot-Lindrström Lemma still holds for the auxiliary graph.
While the statement is lengthy, it simply states that we can just use the nonintersecting path sets in
the new graph to determine values of determinants of minors of the covariance matrix where each
variable also has an “auxiliary” version of itself, where known effects are removed.
Lemma A.5. (Auxiliary Gessel-Viennot-Lindström) Given a linear SCM (Λ,Ω) with causal graph
G = (V,D,B), a set of known structural parameters Λ∗, and defining V ∗ = {v∗1 , ..., v∗k} as
v∗i = vi −

∑
λvjvi

∈Λ∗ λvjvivj , for any vertex sets A ⊆ V ∪ V ∗ and B ⊆ V , where |A| = |B| = l,

det ΣA,B =
∑

P∈N(A,B)

(−1)P
∏
p∈P

e(p)

Here, N(A,B) is the the set of all collections of nonintersecting systems of l directed paths in the
auxiliary flow graphGaux fromA toB. P = (p1, ..., pl) is a collection of these nonintersecting paths.
e(p) is the product of the weights along path p, and (−1)P is the sign of the induced permutation of
elements from A to B.

Proof. This is a direct consequence of Lemma A.1 and Lemma A.4.

Corollary A.4. Auxiliary Instrumental Sets can be found in polynomial time

Proof. The proof is identical to Corollaries A.1 and A.3, with the only difference being that the
auxiliary flow graph is used in place of Gflow. The full algorithm is shown in Algorithm 4.

Algorithm 4 Finds all edges identifiable using AVS in polynomial time

function AVS(G,y,Λ∗)
Gaux ← AUXILIARYFLOWGRAPH(G,Λ∗)
T ← all sink-node parents of y′∗ in Gaux
Gyaux ← Gaux with edges ti ∈ T to y′∗ removed
S ← Source nodes in Gyaux which are not ancestors of y′∗
return MAXMATCHBLOCK(Gaux, S, T )

end function
function AVSID(G)

Λ∗ ← ∅
do

for all y ∈ G do
(_, Tm)← AVS(G, y,Λ∗)
Λ∗ ← Λ∗ ∪ {λty|t ∈ Tm}

end for
while at least one parameter was identified in this iteration
return Λ∗

end function
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A.3 NP-Hardness of tsIV and scIV

We first relate scIV to tsIV, then we construct a supporting lemma used within our main NP-hardness
proof, and finally, we prove that tsIVs and scIVs are NP-Hard, and therefore NP-Complete.

Theorem A.3. If there exists a simple conditional instrumental set usable to solve for λxy , then there
exists a tsIV that can be used to solve for λxy

Proof. Suppose there is a simple instrumental set described by Z,X,W , whereW is the conditioning,
X is a set of y’s parents, and Z is the set of instruments. We claim that the corresponding tsIV has
S = Z ∪W and T = W ∪X \ {x} for any x ∈ X .

To witness, observe that condition 1 of Theorem A.2 is satisfied, since X and W are non-descendants
of y, and condition 2 is also satisfied, since we can construct a full flow between S and T ∪ {x} by
adding a path from each wi to w′i, and using the paths Π from Definition A.6 from Z to X . If a path
from z to x crosses a collider wi, we construct the path z to w′i and wi continuing on the path to x′.

Finally, we can focus on condition 3 of Theorem A.2. We will prove it holds by contradiction.
Suppose that there exists a full flow from S to T ∪ {y} in the flow graph with edge x′ → y′ removed.

We know W d-separates Z from y when the edges λxiy, xi ∈ X are removed. Since T contains all
xi ∈ X except x itself, none of the edges x′i → y′ can be taken, since their corresponding vertex x′i
is already part of a path. Likewise, since x′ → y′ is removed, none of the paths can take that edge
either.

Nevertheless, the S must have a valid matching to T ∪ {y} for a full flow to exist. We now show that
this is impossible by induction.

Let s0 ∈ S be the element matched to y′ in the full flow. Either s0 ∈ Z or s0 ∈W .

We know that s1 /∈ Z, since by d-separation, all treks from zi to y′ that don’t pass the removed edges
are intersected by elements of W , which corresponds to blocking both the top and bottom nodes of
the flow graph. This means that s1 ∈W .

Suppose that for s1, ..., si, each sk ∈ W . Let si+1 ∈ S be matched to s′i in the full flow. Suppose
si+1 ∈ Z. Then it means that there is a path si+1, si, ..., s1, y across v-structures to y, making the
element of z not d-separated from y, a contradiction. Therefore si+1 must be in W . But there is a
finite number of W , meaning that the only possible elements to match to s′n after all W are already
matched to something will be elements of Z, a contradiction.

This proof showed that any full matching of S to T ∪ {y} has a confounding path across v-structures,
which means that zi was not d-separated from y, a contradiction.

Lemma A.6. Given sets S and T , and a full flow Fx of size k between S and T ∪ {x}, if Fx has an
si ∈ S matched to x, then if the bidirected edge si ↔ y exists, there exists a flow of size k between S
and T ∪ {y}, and there does not exist a tsIV for λxy .

Proof. We can construct a flow Fy of size k by replacing the path si to x with si ↔ y, which is a
flow of size k from S to T ∪ {y}, and means that no tsIV exists.

Theorem 4.1. Given a boolean formula F in conjunctive normal form, if a graph G is constructed
as follows, starting from a target node y:

1. For each clause ci ∈ F , a node xi is added with edges xi → y and xi ↔ y

2. For ci ∈ F , take each literal lj ∈ ci, and add nodes zij , wij , with edges wij → zij ,
wij ↔ y, and zij → xk ∀xk

3. For ci ∈ F , lj , lk ∈ ci where j 6= k add bidirected edge zij ↔ wik

4. ∀ci, cm ∈ F, lj ∈ ci, ln ∈ cm with i 6= m, add a bidirected edge zij ↔ wmn if

(a) lj = ¬ln, or
(b) ∃lq ∈ cm with q 6= n and lj = lq , or
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(c) ∃lp ∈ ci, lq ∈ cm with p 6= j and q 6= n where lp = ¬lq

Then a tsIV exists for λx1y in G if and only if there is a truth assignment to the variables of F such
that there is exactly one true literal in each clause of F .

Proof. First, we convert the formula into a version without repeated literals in any clause by removing
variables of repeated literals from all clauses where they appear (a repeated literal must be false,
since otherwise the clause would have 2 trues, and would also force the remaining literal to be true).
Similarly, we simplify out formulae with a literal and its negation in a single clause. We can simplify
the formula such that each clause does not have any repeated statements. We operate upon this
converted formula.

Consider F being made up of k clauses c1, ..., ck, where clause i has literals li1, li2, li3.

⇒: We prove that there exists a tsIV in G if F is satisfiable, by constructing a simple condi-
tional instrumental set (Definition A.6) for the X variables, and using Theorem A.3 to show that a
corresponding tsIV exists.

Let lis ∈ ci be the true literal of a satisfying assignment. We construct W =
⋃
ci∈F {wis} and

Z =
⋃
ci∈F {zis}. We now show that these sets describe a simple conditional instrumental set.

Let G′ be the graph where all edges X → y are removed. Each zi ∈ Z has the correspoding wi
conditioned. None of the bidirected edges between z and w are between elements of Z,W , since that
would mean that the assignments are incompatible (either two literals true in a single clause, or a
literal in a different clause being incompatible with the assignment implied by lis). This means that
each zi ∈ Z is d-separated from y in G′, and therefore Z,W,X is a simple instrumental set (Figs. 6g
and 6h).

⇐: We show that if there does not exist a valid assignment to F , then there do not exist sets S
and T that can be used as a tsIV for λx1y . We will exploit conditions 2 and 3 of Theorem A.2 to
show that whenever there is a flow of size k between S and T ∪ {x1}, then there is also a flow of size
k between S and T ∪ {y} in the graph with x′1 → y′ removed.

This is easiest to prove through contradiction. Suppose that there exists a valid tsIV despite there
being no satisfying 1-in-3SAT assignment to F . This means that there exists a flow Fx of size k
between S and T ∪ {x1} but no flow of size k between S and T ∪ {y}.
Since flows correspond to nonintersecting path sets, then Fx represents a matching of nonintersecting
paths, one of which is from some si ∈ S to x1. We know that this si cannot be any of the X or W
nodes, since they have bidirected edges to y in G (Lemma A.6).

This means that the only possibility for generating a valid tsIV is for si ∈ Z to match with x1 in Fx.

We now know that any valid tsIV has an element si = zi ∈ Z matched with x1. Notice that zi has
paths to y through all of the x′2, ..., x

′
n. We could construct a flow Fy e.g. with the path zi → z′i → x′1

replaced with a path zi → z′i → x′j → y, which once again corresponds to a full flow, meaning that
no such tsIV exists (see Figs. 7a and 7b). Since zi is matched with x1, in must have an unblocked
path to x1 through one of the z′j , so all x′i must be in T to disallow constructing such a Fy .

Next, we require that each of the xi ∈ X \ {x1} added to T has a corresponding matched variable in
S. None of the X can be used for this function, since they have bidirected edges to y, which could be
used to construct a full flow to y as shown in Figs. 7c and 7d.

Likewise, none of the W can match to these X , because, once again, if there was an x′j matched
to a wl, we could construct a new flow of size k, Fy, which has zi matched with x′j , and uses the
wl ∈W ’s bidirected edge to y to create a full flow.

This means that we must have at least k elements of Z in S. Each of these zj ∈ S ∩ Z which is
matched to elements of X has an open path to x1, meaning that all of them need to have wj ∈ S to
block the back-path from zj that could match with y through w’s bidirected edge.

At this point, we have shown that any tsIV in a graph constructed as given in Theorem 4.1 must
have in S a set of k Z variables, called Zk which all have unblocked paths to the X , and a set
Wk = W ∩ Pa(Zk), meaning Zk ∪Wk ⊆ S and X \ {x} ⊂ T .

17



Next, we need to add nodes that match to Wk to T , since the flow must be of full size from S to
T ∪ {x}.
We first claim that the corresponding nodes cannot be elements of Z ′k. Suppose not, that is, suppose
that ∃wi ∈Wk matched to z′i. The only possible way for this to be true is for zi’s path to xi to be as
shown in Figs. 6e and 6f. However, any such matching can be flipped so that it is wi matching to x′j
and zi to z′i, which would mean the existence of a full flow, and therefore no tsIV (Lemma A.6).

Furthermore, building upon this result, we will claim that any zi matched with xj must have a valid
matching through zi → z′i → x′j . That is, we claim that z′i cannot be blocked. This can be seen
by contradiction. Suppose z′i ∈ T . Then there must be a wj , zj , or even xj which matches with z′i
(i 6= j). However, we can then take the flow Fx, and match zi with z′i, and have the node originally
matched with z′i take the bidirected edge wj ↔ y instead. This means we can construct a full flow
Fy, meaning that a tsIV cannot exist. We can therefore assume that all k matchings from the zi to
xj go through the nodes z′i instead of taking bidirected edges (if Fx has a flow from zi through a
bidirected edge to xj , can replace it with the flow through z′i to create another full flow F ′x).

Recap: We know that the k nodes that match with the k x nodes must all be z nodes, and each of
those nodes zi must have its associated wi ∈ S to block the possible path to y (Fig. 5a). Finally, the
wi cannot be matched to z′i, and zi must have its matching path be zi → z′i → x′j .

Claim: We now claim that if a tsIV exists, with sets S and T , then it must have a full flow where all
k z nodes matching to the x have their corresponding wi matched to w′i, meaning that the wi does
not match through a bidirected edge, but rather matches to itself. That is, we claim that there exists a
flow that has k matching substructures of the form zi → z′i → x′i and wi → w′i (Figs. 6c and 6d).
We will call these “active literals”.

We will prove that there must be k active literals in this flow by contradiction. Suppose not. That is,
suppose that the maximal number of active literals is m < k. Choose the flow F with all m active
literals. Next, choose one of the remaining zj that is matched to xj , which is not part of an active
literal. zj must have wj ∈ S, because the path in Fig. 5b must be blocked. The wj must be matched
to an element other than w′j , since it would be an active literal, a contradiction. The matched edge
must be a descendant of wi in Gflow, meaning that the only candidate is zj with j 6= i (xj was
already matched to the k zi values (Fig. 5c), and zi was already shown to be impossible).

We know zj is not an active literal, so we have the paths shown in Fig. 5d, which means that w′j must
be blocked by adding w′j as a sink (otherwise we could create a full flow Fy). We now observe the
source matched to w′j in Fx. wj cannot be the source (Fig. 5e), and same is true of zj , due to the the
same reason: wj ↔ y gives a way to match to y (Fig. 5f). Finally, once again, no value of x can be
part of the matching, due to its bidirected edge to y (Fig. 5g)

This means that the only possible matching is with another zm connected to wj with bidirected edge,
which would then need to have wm blocked (Fig. 5h), and can’t be an active literal, since those are
already matched to x. Now, we have returned to the situation in Fig. 5a, where the options are using
wm to match, or having a match through a bidirected edge.

The matches in F can continue through further bidirected edges, but due to the finite amount of
literals in the full formula, at some point the chain will end with a wn matched to w′n. We can then
reorder this matching to create a new active literal (Fig. 5i). This means that we have constructed a
matching that will have the same total flow asF , but has 1 more active literal, which is a contradiction,
since F already has the maximal number of active literals.

We therefore conclude that there must be k active literals in the tsIV.

Recap: We know that any tsIV has a full flow F which includes k active literals, meaning that there
are k substructures where zi ∈ Zk has zi → z′i → xj and wi → w′i are in F
We exploit the knowledge that there is no satisfying 1-in-3SAT assignment to show that there must
exist at least two of the zi, zj ∈ Zk and corresponding wi, wj ∈ Wk such that there are bidirected
edges wi ↔ zj and wj ↔ zi, allowing us to construct a full flow including y as shown in Figs. 7e
and 7f.

With this, we have ensured that there is no possible tsIV if there is no satisfying truth assignment
where exactly one literal is true in each clause.
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Corollary 4.1. Given an SCM and target structural parameter λxy , determining whether there exists
a tsIV which can be used to solve for λxy in G is an NP-Complete problem.

Proof. 1-in-3SAT was shown to be NP-complete by Schaefer (1978). By Theorem 4.1, we can solve
1-in-3SAT with an algorithm for tsIV. The corresponding graph is computable from the boolean
formula in polynomial time. Likewise, Theorem A.2 describes a polynomial-time procedure for
determining whether a given set can be used as a tsIV. Therefore, the problem is NP-complete.

Corollary A.5. Given an acyclic DAG G and edge λxy, finding a simple conditional instrumental
set which can be used to solve for λxy in G is an NP-Complete problem.

Proof. 1-in-3SAT was shown to be NP-complete by Schaefer (1978). The proof of Theorem 4.1,
constructed a simple conditional instrumental set for X whenever there was a satisfying assignment.
The corresponding graph is computable from the boolean formula in polynomial time. Likewise,
(Van der Zander & Liskiewicz, 2016) describes a polynomial-time procedure for determining whether
a given set can be used as a simple instrumental set. Finally, since a tsIV does not exist whenever
there is no satisfying assignment in Theorem 4.1, and whenever a simple conditional isntrumental
set exists, a corresponding tsIV also exists (Theorem A.3), no simple instrumental set exists if there
is no satisfying assignment. Therefore, finding simple conditional instruments is an NP-complete
problem.
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Figure 5: Graphs used to demonstrate elements of the proof of Theorem 4.1

A.4 Instrumental Cutsets

Theorem 5.1. (Instrumental Cutset) LetM = (Λ,Ω) be a linear SCM with associated causal graph
G = (V,D,E), a set of identified structural parameters Λ∗, and a target structural parameter λxy.
Define Gaux as the auxiliary flow graph for (G,Λ∗). Suppose that there exist subsets S ⊂ V ∪ V ∗,
with V ∗ representing the set of AVs, and T ⊆ Pa(y∗) \ {x} with |S| = |T | − 1 = k such that

1. There exists a flow of size k in Gaux from S to T ∪ {x}

2. There does not exist a flow of size k from S to T ∪ {y} in Gaux with x′ → y′∗ removed

3. No element of {y} ∪ Sib(y) has a directed path to si ∈ S in G

then λxy is generically identifiable by the equation:

λxy =
det ΣS,T∪{y∗}

det ΣS,T∪{x}

Proof. Our proof mirrors the work of Weihs et al. (2017), except with the auxiliary flow graph instead
of Gflow. We construct the auxiliary flow graph Gaux. Condition 1 guarantees that Gaux has a set of
nonitersecting paths from S∗ to T ′ ∪ {x′}, which means that Σs∗,T∪{x} is full rank (Lemma A.5).

20



w
•
•

z

•

x
•

y

(a)

w

w′

z

z′

x

x′ y′

(b)

w
•
•

z

•

x y
•

(c)

w

w′

z

z′

x

x′ y′

(d)

w

•

z
•
•

x
•

y

w2 z2

(e)

w

w′

z

z′

x

x′ y′

w2

w′2

z2

z′2

(f)

w
•
•

z

•

x y
•

w2

•
•

z2

•

x2

•

(g)

w

w′

z

z′

x

x′
y′

w2

w′2

z2

z′2

x2

x′2

(h)

Figure 6: Graphs used to illustrate elements of the proof of Theorem 4.1
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Figure 7: Graphs used to illustrate elements of the proof of Theorem 4.1
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Then, condition 2 and 3 guarantees that there is no set of nonintersecting paths from S∗ to T ′ ∪ {y′}
that does not go through the edge x′. Each set of paths from S∗ to T ′ ∪ {x′} can be extended to a
path from S∗ to T ′ ∪ {y′} by adding x′ → y′ to the path that ends at x′. Using Lemma A.5 we have

det ΣS∗,T∪{y} = λxy det ΣS∗,T∪{x}

which gives an equation for λxy after division.

If edge from wi incoming to y is known, then all treks to y through λwiy can be observed with
λwiyΣS∗,T∪{x} (once again, due directly to the interpretation of determinants of minors in the
covariance matrix as sets of nonintersecting paths due to Lemma A.5), giving all paths not passing
any of the known edges with:

det ΣS∗,T∪{y} −
∑

λwiy
∈Λ∗

det ΣS∗,T∪{wi}

This leads to the full statement of the formula, mirroring the original equation of Theorem A.2.

Lemma 5.1. If a structural parameter λxy of linear SCM M is identifiable using the gHTC or AVS
then λxy is identified using IC. There also exists a model M ′ such that λxy is identifiable using IC,
but cannot be identified using gHTC or AVS.

Proof. First, neither gHTC nor AVS can identify λx1y in Fig. 2b, but it is identifiable with IC.

Let S be a set of auxiliary variables that satisfies the requirements of an AVS to a set of edges X
where X ⊆ Pa(y).

Then there is a full flow between S∗ and X (there are paths with no sided intersection), and since
all Pa(y) reachable from S∗ are in X , and |X| = |S|, they correspond to a match-block, meaning
that the minimal cutset will also have a matchblock, so by Theorem 5.2, it satisfies the rules of
Theorem 5.1.

Finally, AVS subsumes gHTC, so ICs subsume both.

Theorem A.4. (Auxiliary tsIV) Let G = (V,D,B) be a mixed graph, w0 → v ∈ G, and suppose
that the edges w1 → v, ..., wl → v ∈ G are known to be generically (rationally) identifiable. Let
G′aux be Gaux with the edges w′0 → v′, ..., w′l → v′ removed. Suppose there are sets S ⊂ V and
T ⊂ V \ {v, w0} such that |S| = |T |+ 1 = k and

1. De(v) ∩ (T ∪ {v}) = ∅,

2. the max-flow from S to T ′ ∪ {w′0} in G′aux equals k, and

3. the max-flow from S to T ′ ∪ {v′} in G′aux is < k,

then w0 → v is rationally identifiable by the equation

λw0v =

∣∣ΣS,T∪{v}∣∣−∑l
i=1

∣∣ΣS,T∪{wi}
∣∣∣∣ΣS,T∪{w0}

∣∣
Proof. Identical to Theorem 5.1.

A.4.1 A Discussion of Conditonal IC Complexity

Many models previously only identifiable with conditional cAVs are identifiable with IC, such as the
one in Fig. 8a. The key here is that in many situations, the back paths can be removed through edges
identifiable in previous iterations of the algorithm, and there is no need to block paths to parents of y,
since the IC can simply use all parents of y in the set.

This shows why the proof in Theorem 4.1 cannot be directly applied to IC. The structure shown in
Fig. 4a has its edge λaz1 and λbz2 identifiable directly, and therefore there is no need for conditioning
at all - the edge is identifiable with standard IC.
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Figure 8: In (a), z a conditional IV for λx1y given w1 and w2. However, we can use w1 to solve for
λw1z and λzw2 , at which point we can identify λx1y using Theorem 5.1. In (b), we show the example
of an IC for λx2y where S = {z2, z4} and T = {x1}. Critically, the back-path through the bidirected
edge to y from z2 is blocked by the path from z4 to x1. The naïve construction of a half-trek IC
would have S′ = {z1, z2}, which would consequently allow a path from z2 ← z3 ↔ y. In (c) is
demonstrated the reason a match-block is required even when the closest cutset is limited to parents
of y. z1 has closest cutset at x′1, but does not have a match-block, since x′1 also has a path to x′2,
which does not have a corresponding match. Finally, (d) demonstrates why incoming edges to the cut
C are removed, with the example where an IC exists for λx1y but x2 and x3 both being descendants
of x1 if edges incident to w are not removed.

However, we can use the structure in Fig. 2d, which cannot have its back paths removed to replace
the original structure of a literal in the proof. The construction would be identical to the one given in
Theorem 4.1, but with 2 x variables per clause, and each literal consisting of the structure in Fig. 2d.
That way, we can show that both the auxiliary tsIV and a conditional version of IC would also be
NP-hard to find.

A.4.2 Algorithm for Instrumental Cutsets

Before developing an algorithm for IC, we first show some helper lemmas which allow us to gain an
intuition about the problem.

Lemma A.7. Given a DAG G = (V,D), a set of sources S, and sinks T , and a vertex min-cut C
between S and T closest to T , then if there exists a match-block between Cm ⊆ C and Tm ⊆ T ,
then Cm = Tm.

Proof. Suppose that ∃ci ∈ Cm \T . We can then replace Cm in C with Tm, to create a closer min-cut
of the same size as C (a contradiction), because |Cm| = |Tm| and Tm blocks all paths outgoing from
Cm to T . Furthermore, if ∃ci ∈ Cm \ Tm where ci ∈ T , then it is not part of a match-block, since it
has an unblocked path to ci ∈ T - another contradiction.

This means that a match-block between C and T can be described with a single set Cm ⊆ T , which
describes both start and endpoints of the matchblock. Note, however, that we still need to find a full
match-block, as shown in the example in Fig. 8c, where even when T = Pa(y), no match-block
exists, because x1 has a path to x2.

Lemma A.8. Given a DAG G, a set of sources S, sinks T , and a vertex min-cut C between S and T ,
there exist max flow FC from S to T which can be decomposed into max-flows FS from S to C and
FT from C to T , with |FS | = |FT | = |FC | = |C|.

Proof. This is by defintion of a vertex min-cut.

Lemma A.9. Given a DAG G, a set of sources S, sinks T , if there is a vertex max-flow F of
size k between S and T , with nonzero-flow start and endpoints Sf ⊆ S, Tf ⊆ T respectively,
and Sm ⊆ Sf , Tm ⊆ T consitute a match-block, then F can be decomposed into F− between
S− = Sf \ Sm and T− = Tf \ Tm of size k − |Sm|, and a full flow Fm between Sm and Tm.
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Proof. We know that Fm is a flow of size |Sm| = |Tm|. By the definition of match-block, we know
that all descendants of Sm that are in T are also in Tm. This means that any path starting from Sf that
crosses the descendants of Sm must end on Tm. Suppose that ∃si ∈ S− that is matched with ti ∈ Tm.
Consequently, one of the Sm cannot be matched, a contradiction, since Sm all have nonzero flow in
F . We can therefore conclude that F can be decomposed into a full flow from Sm to Tm, contained
entirely in the descendants of Sm (Fm), and a flow F− which does not cross the descendants of Sm,
from S− to T−. Since the flows can be decomposed into a flow through the match-block, and a flow
avoiding the match-block, we know that |F| = |Fm|+ |F−|, which completes the proof (remember
|Fm| = |Sm| and |F| = k).

Lemma A.10. Given a DAGG, a set of source nodes S, sinks T , and a node x ∈ An(T ), x /∈ De(S),
if there does not exist a max-flow F from S to T , and a path p from x to any ti ∈ T such that p
doesn’t cross any flow from F , then there exists a closest min-cut C between S and T where at least
one element ci ∈ C, such that ci /∈ S, or all paths from x cross S.

Proof. Suppose that the max-flow F is of size k. We now take a new max-flow F ′ from S ∪ {x}
to T . If this flow were of size k + 1, we could decompose it into a flow of size k between S and T ,
and a flow of size 1 between x and T (since we already know the max-flow between S and T is k).
We can construct a path p that contradicts the theorem’s statement using the flow from x to T . This
means that F ′ must be of size k.

We therefore have |S ∪ {x}| > k and |T | > k, meaning that there is a bottleneck of size k between
the two sets (ie, a set of nodes forming a min-cut). All paths from x to T must cross elements of a
closest min-cut C.

If there exists a path from x to T not crossing S, the closest-min-cut of the path must be in De(S),
since otherwise the full min-cut would be k + 1, giving a flow of k + 1, a contradiction.

We therefore know that there exists a cut C of size k contained in De(S), which cuts S ∪ {x} from
T . The same cut therefore must cut S from T - and if x has a path to T not crossing S, an element of
C must be along the path, meaning that ci ∈ C, but ci /∈ S.

Theorem 5.2. Given directed graph G = (V,D), a target edge x→ y, a set of “candidate sources"
S, and the vertex min-cut C between S and Pa(y) closest to Pa(y), then there exist subsets Sf ⊆ S
and Tf ⊆ Pa(y) where |Sf | = |Tf |+ 1 = k such that

1. the max-flow from Sf to Tf ∪ {x} is k in G, and

2. the max-flow from Sf to Tf ∪ {y} in G′ where x→ y is removed is k − 1

if and only if x is part of a match-block between C and Pa(y) in G with all edges incoming to ci ∈ C
removed.

Proof. ⇒: Suppose that a match-block Cm = Tm exists between C and Pa(y) (see Lemma A.7)
when incident edges to C are removed. We show that we can construct sets Sf , Tf satisfying
conditions 1 and 2 for all x ∈ Tm. Let F be a (vertex) max-flow from S to Pa(y) in the graph with
all edges present. Next, let Sf ⊆ S, Tf ⊆ Pa(y) \ {x} be the nodes of S and T respectively with
nonzero flow in F . We define k = |Sf |, automatically satisfying condition 1. We can decompose F
into a max-flow of size k = |C| from Sf to C (FS) and from C to Tf ∪ {x} (FT ) using Lemma A.8.
Finally, we define C−m = C \ Cm and T−m = Tf \ Cm.

With x → y removed and x ∈ Tm removed from target nodes, we have one of the ci ∈ Cm not
matched with any element of Tm ∪ {y}, by definition of match-block over Tm, making the maximum
flow between Cm and Tm ∪ {y} \ {x} be |Cm| − 1 (Lemma A.9). There remains a full flow between
C−m and T−m , so all of the other C elements have flow through them, making a path from ci not
able to pass over cj 6= ci. This makes the full max-flow from C to Tf be k − 1 by combining the
match-blocked paths and non-match-blocked paths. Finally, all paths from Sf to y must cross C, so
we have satisfied condition 2.

⇐: We now show that if a match-block between C and Tf ∪ {x} does not exist containing x, then
either condition 1 or 2 is violated. We can find sets Sf , Tf satisfying condition 1 (otherwise Sf has
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no path to x, and no match-block exists to x). The question, then, is whether any such sets also satisfy
condition 2.

Given any candidate set Sf , Tf satisfying condition 1, we have the closest min-cut C between Sf and
Tf ∪ {x}. Suppose for the sake of contradiction that condition 2 is also satisfied. That is, all flows
through C to Tf ∪ {x} must pass through x→ y. This means that x is part of the closest min-cut, ie,
x ∈ C. By the theorem’s conditions, all edges incoming to ci ∈ C were removed, so there are no
edges incoming to x. If x has no path to any ti ∈ Tf , then x is match-blocked with itself (ie, can use
Sf = {x}, Tf = ∅), a contradiction. We know that the flow between C \ {x} and Tf must be k − 1
(if it were k, we would not have condition 2 satisfied). If there exists a flow between C \ {x} and Tf
that does not block a path from x to some ti ∈ Tf , then condition 2 is satisfied by appending this
path to the flow, constructing a new flow of size k, a contradiction. Finally, in the case when all paths
from x to Tf are blocked by all flows between C \ {x} and Tf we invoke Lemma A.10 to claim that
there exists a closer min-cut than C, a contradiction.

Algorithm 5 ICID recursively applies IC to all nodes

function ICID(G)
Λ∗ ← ∅
do

for all y ∈ G do
(_, _, Tm)← IC(G, y,Λ∗)
Λ∗ ← Λ∗ ∪ {λty|t ∈ Tm}

end for
while at least one parameter was identified in this iteration
return Λ∗

end function
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