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A Related Work

The volume of the literature on neural networks is growing rapidly, and we cannot hope to do justice
to this large body of related work. Here we sample an incomplete list of works that are most relevant
to this work.

There have been intensive efforts in proving the (global) convergence of the simple first-order methods
such as (stochastic) gradient descent [BG17, LY17, ZSJ+17], where the true function that generates
the responses/labels is a two-layer neural network of the same size as the neural network candidates.
Notably, in this line of work, it is typically assumed that m  d.

Over-parameterized neural networks are observed to enjoy smaller training errors and even smaller
generalization errors [ZBH+16, LL18]. Allen-Zhu et al. [AZLL18] considered the setting where the
true network is much smaller than the candidate networks, and showed that searching among over-
parametrized network candidates smoothes the optimization trajectory and enjoys a strongly-convex-
like behavior. Similar results were shown in [DZPS18, ADH+19, OS19]. In particular, it was shown
in an inspiring work [DZPS18] that when m = ⌦(n6

) and the minimum eigenvalue of some Gram
matrix is positive, then randomly initialized GD can find an optimal neural network, under squared
loss, at a linear rate. However, the involved minimum eigenvalue scales in n, and the impacts of this
scaling on the convergence and the corresponding convergence rate were overlooked in [DZPS18].
Unfortunately, taking such scaling into account, their convergence rate approaches 0 as n ! 1; we
formally show this in Theorem 2 and Corollary 1. Recently, [OS19] showed that when m = ⌦(n2

),
the empirical risk (training error) goes to zero at a linear rate (1� c d

n )

t
= exp

��t log(1/(1 � c d
n ))

�

,
where t is the GD iteration and c > 0 is some absolute constant; see [OS19, Corollaries 2.2 and 2.4]
for details. Here log(1/(1� c d

n )) is the convergence rate. It is easy to see that log(1/(1� c d
n )) ! 0

as n increases.

For deep networks (which contain more than one hidden layer), the (global) convergence of (S)GD
are shown in [ZCZG18, DLL+18, AZLS18] with different focuses and characterizations of over-
parameterization sufficiency. In particular, [ZCZG18] studied the binary classification problem
and showed that (S)GD can find a global minimum provided that the feature vectors with different
labels are well separated and m = ⌦(poly(n, L)), where L is the number of hidden layers. Allen-
Zhu et al. [AZLS18] considered the regression problem and showed similar over-parameterization
sufficiency. The over-parameterization sufficiency in terms of its scaling in n is significantly improved
in [DLL+18] without considering the scaling of the minimum eigenvalue of the Gram matrix in n.

All the above recent progress is established on the common observation that when the network
is sufficiently over-parameterized, during training, the network weights are mainly stay within a
small perturbation region centering around the initial weights. In fact, the over-parameterization
sufficiency that ensures the above mild weight changes is often referred to as NTK region; see
[JGH18] for details. Recently, a handful of work studied linearized neural networks in high dimension
[GMMM19, YS19, VW18]. Since we consider fixed d, our results are not directly comparable to
that line of work.

B Existing Generalization Bound

Though a generalization bound is given in [ADH+19, Theorem 5.1 and Corollary 5.2], it is unclear

how their bound scales in n. In particular, the dominating term of their bound is
q

2y>
(nH)

�1y
n .

Here, the matrix H is defined w.r.t. the training dataset {(xi, yi) : 1  i  n} and the `
2

norm of the
response vector y grows with n. As a result of this, the scaling of the magnitude of y>

(nH)

�1

y in
n is unclear. Recall that yi = ⇥(1) for i = 1, · · · , n; thus, kyk = ⇥(

p
n). If we do not care about

the structure of the target function f⇤ and allow yp
n

to be the eigenvector associated with the least

eigenvalue of H , then
q

2y>
(nH)

�1y
n might not decrease to zero as n ! 1. This is because

s
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⇣
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As illustrated by Fig. 3, even when ⇢ is the uniform distribution, (�
min

(nH))

� 1
2 does not approach

zero as n increases. In general, without specifying the structure of the target function f⇤, in the
presence of the randomness of data generation and the network initialization, it is unclear which
eigenvalues of H determines the generalization capability of the learned neural network.
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Figure 3: Plot of (�
min

(nH))

� 1
2 under different sample sizes. Here the feature vectors are generated

from the uniform distribution on the unit sphere.

C Proof of Theorem 1

We use the following proposition in proving Theorem 1.
Proposition 1. It is true that for any j 2 [m], i 2 [n], and t � 0,

⌘aj

n
p

m

n
X

i0=1

(yi0 � byi0(t))hxi, xi0i1{hwt
j ,xi0i>0}1{hwt

j ,xii>0}
 ⇥hwt+1

j , xii
⇤

+

� ⇥hwt
j , xii

⇤

+

(19)

 ⌘aj

n
p

m

n
X

i0=1

(yi0 � byi0(t))hxi, xi0i1{hwt
j ,xi0i>0}1{hwt+1

j ,xii>0}. (20)

Proof. From (5), we have

hwt+1

j , xii � hwt
j , xii =

⌘aj

n
p

m

n
X

i0=1

(yi0 � byi0(t))hxi, xi0i1{hwt
j ,xi0 i>0}. (21)

Then the conclusion follows from the fact that

1{a>0}(b � a)  [b]
+

� [a]

+

 1{b>0}(b � a), 8 a, b. (22)

Remark 2. The inequality in (22) can be extended to a general family of activation function � if

�0
(a)(b � a)  �(b) � �(a)  �0

(b)(b � a), 8 a, b,

where �0
(·) is the derivative of �. For ReLu activation, the right derivative is used.

Proof of Theorem 1. Recall from (4) that for t � 0,

byi(t + 1) =

1p
m

m
X

j=1

aj

⇥⌦

wt+1

j , x
↵⇤

+

=

1p
m

X

j2A

⇥⌦

wt+1

j , x
↵⇤

+

� 1p
m

X

j2B

⇥⌦

wt+1

j , x
↵⇤

+

.
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Thus,

byi(t + 1) � byi(t) =

1p
m

X

j2A

⇣

⇥⌦

wt+1

j , x
↵⇤

+

� ⇥⌦wt
j , x
↵⇤

+

⌘

� 1p
m

X

j2B

⇣

⇥⌦

wt+1

j , x
↵⇤

+

� ⇥⌦wt
j , x
↵⇤

+

⌘

(a)

 ⌘

nm

X

j2A

n
X

i0=1

(yi0 � byi0(t))hxi, xi0i1{hwt
j ,xi0i>0}1{hwt+1

j ,xii>0}

+

⌘

nm

X

j2B

n
X

i0=1

(yi0 � byi0(t))hxi, xi0i1{hwt
j ,xi0i>0}1{hwt

j ,xii>0}

= ⌘

n
X

i0=1

⇣

fH+

ii0(t + 1) + H�
ii0(t + 1)

⌘

(yi0 � byi0(t)),

where inequality (a) follows from Proposition 1. Thus,

yi � byi(t + 1) � yi � byi(t) � ⌘

n
X

i0=1

⇣

fH+

ii0(t + 1) + H�
ii0(t + 1)

⌘

(yi0 � byi0(t)),

whose matrix form is (y � by(t + 1)) �
⇣

I � ⌘
⇣

fH+

(t + 1) + H�
(t + 1)

⌘⌘

(y � by(t)) ,proving
the lower bound in Theorem 1. The upper bound in Theorem 1 can be obtained analogously.

D Proof of Theorem 2

Let �
1

� �
2

� . . . be the spectrum of LK defined in (11), whose existence is given by the spectral
theorem [DS63, Theorem 4, Chapter X.3]. Recall that

Hii0 =

1

nm
hxi, xi0i

m
X

j=1

1{hw0
j ,xi0i>0}1{hw0

j ,xii>0}

is a random n ⇥ n matrix, where the randomness comes from (1) the data randomness
{(xi, yi) : 1  i  n} and (2) the network initialization randomness. Thus, e�i for 1  i  n
are random. Notably, K = E [H] is still random as the data randomness remains. Denote the
spectrum of K as b�

1

� · · · � b�n. By [RBV10, Proposition 10], with probability at least 1 � �
2

over
data generation,

sup

i
|�i � b�i| 

r

8 log(4/�)

n
. (23)

For a given dataset x
1

, . . . , xn 2 Sd�1, by Hoeffding’s inequality and the union bound, with
probability at least 1 � �

2

over network initialization,

kH �Kk
F

= kH � EHk
F


r

log(4n2/�)

m
. (24)

Then, it follows from Weyl’s inequality that

sup

i
|e�i � b�i| 

r

log(4n2/�)

m
. (25)

We conclude (9) by combining (23) and (25). Letting � =

1

n , we have, with probability 1 � 1

n ,

0  �
min

(H)  �n +

r

log(4n3

)

m
+

r

8 log(4n)

n
,

where the right-hand side vanishes with n. Thus, let n ! 1, we have 1 � 1

n ! 1, and

lim

n!1 �n + lim

n!1

r

log(4n3

)

m
+ lim

n!1

r

8 log(4n)

n
= 0,

proving the theorem.
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E Proof of Theorem 3

We prove Theorem 3 via two steps: (1) We first bound the perturbation terms. (2) Then, we prove
Theorem 3 via an induction argument.

E.1 Bounding the perturbation

For ease of exposition, let

H(t) :=

�

H+

(t) + H�
(t)
�

, (26)

M(t) :=

⇣

fH�
(t) �H�

(t)
⌘

, (27)

L(t) :=

⇣

fH+

(t) �H+

(t)
⌘

. (28)

Lemma 1. Choose 0 < ⌘ < 1. Then for any t � 0, it holds that

ky � by(t + 1)k 
�

�

�

(I � ⌘K)

t+1

y
�

�

�

+ ⌘

t+2

X

r=2

k(K �H(r � 1))k
�

�

�

(I � ⌘K)

r�2

y
�

�

�

+ ⌘

t+2

X

r=2

(kM(r � 1)k + kL(r � 1)k) k(y � by(r � 2))k .

Proof. Let ✏(t + 1) := (y � by(t + 1)) � (I � ⌘H(t + 1)) (y � by(t)), for t � 0, i.e.,

y � by(t + 1) = (I � ⌘H(t + 1)) (y � by(t)) + ✏(t + 1), 8 t � 0. (29)

It follows from Theorem 1 that

k✏(t + 1)k  ⌘(kM(t + 1)k + kL(t + 1)k) ky � by(t)k . (30)

Expanding (29) over t, we have

y � by(t + 1) =

"

t+1

Y

r=1

(I � ⌘H(r))

#

(y � by(0)) +

t+2

X

r=2

"

t+1

Y

k=r

(I � ⌘H(k))

#

✏(r � 1), (31)

where
Qt+1

r=k (I � ⌘H(r)) := (I � ⌘H(t + 1)) ⇥ · · ·⇥ (I � ⌘H(k)) for k  t + 1 is a backward
matrix product, and

Qt+1

k=t+2

(I � ⌘H(k)) := I . Recall that by(0) = 0. Eq. (31) can be simplified as

y � by(t + 1) =

"

t+1

Y

r=1

(I � ⌘H(r))

#

y +

t+2

X

r=2

"

t+1

Y

k=r

(I � ⌘H(k))

#

✏(r � 1).

In addition, it can be shown by a simple induction that
"

t+1

Y

r=1

(I � ⌘H(r))

#

= (I � ⌘K)

t+1

+ ⌘

t+2

X

r=2

"

t+1

Y

k=r

(I � ⌘H(k))

#

(K �H(r � 1)) (I � ⌘K)

r�2

.

Thus, we have

y � by(t + 1) = (I � ⌘K)

t+1

y + ⌘

t+2

X

r=2

"

t+1

Y

k=r

(I � ⌘H(k))

#

(K �H(r � 1)) (I � ⌘K)

r�2

y

+

t+2

X

r=2

"

t+1

Y

k=r

(I � ⌘H(k))

#

✏(r � 1).

Notably, kH(k)k2  kH(k)k2

F

 1 for each k � 1. Choosing 0 < ⌘ < 1, we have kI � ⌘H(k)k 
1 for k � 1. With this fact and (30), we conclude Lemma 1.
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For each i 2 [n] and t � 0, let

F(xi, t) :=

n

j : 90  k  t s. t. 1{hwk
j ,xii>0} 6= 1{hw0

j ,xii>0}
o

. (32)

be the set of hidden neurons that have ever flipped their signs by iteration t.
Lemma 2. Choose 0 < ⌘ < 1. The following holds for all t � 0:

max {kM(t)k + kL(t)k , kH �H(t)k} 
v

u

u

t

4

m2n

n
X

i=1

|F(xi, t)|2.

Proof. We bound M(t) as

kM(t)k2  kM(t)k2

F

=

n
X

i=1

n
X

i0=1

M2

ii0(t)

 1

m2n2

n
X

i=1

n
X

i0=1

0

@hxi, xi0i
X

j2F(xi,t)\A
1{hwt

j ,xi0i+btj}

1

A

2

 1

m2n

n
X

i=1

|F(xi, t)|2 . (33)

Similarly, kL(t)k2  1

m2n

Pn
i=1

|F(xi, t)|2 and kH �H(t)k2  4

m2n

Pn
i=1

|F(xi, t)|2.

Lemma 3. Fix a dataset {(xi, yi) : 1  i  n}. For any R > 0 and � 2 (0, 1

4

), with probability at
least 1 � � over network initialization,

kK �Hk +

v

u

u

u

t

4

m2n

n
X

i=1

0

@

m
X

j=1

1{|hw0
j ,xii|R}

1

A

2

 4Rp
2⇡

+ 4

r

log(4n/�)

m
. (34)

Proof. Since w0

j ⇠ N (0, I) and xi 2 Sd�1, it is true that
⌦

w0

j , xi

↵ ⇠ N (0, 1). Thus,

E
h

1{|hw0
j ,xii|R}

i

= P
�

�

�

⌦

w0

j , xi

↵

�

�  R
 

< 2Rp
2⇡

holds for any R > 0. By Hoeffding’s inequality

and union bound, we have, with probability at least 1 � �
2

,

1

m2n

n
X

i=1

0

@

m
X

j=1

1{|hw0
j ,xii| R}

1

A

2


 

2Rp
2⇡

+

r

log(4n/�)

m

!

2

. (35)

In addition, we have shown in (24) that with probability at least 1 � �
2

,

kH �Kk 
r

log(4n2/�)

m
.

From (35) and (24), we conclude Lemma 3.

E.2 Finishing the proof of Theorem 3

For any � 2 (0, 1

4

), let E be the event on which (34) holds for R =

1p
m

⇣

1

c0
+ 2⌘Tc

1

⌘

. By Lemma
3, we know P {E} � 1 � �.

Conditioning on event E occurs, we finish proving Theorem 3 via induction. Since we assume E
has occurred, all the relevant quantities below are deterministic. The base case t = 0 trivially holds.
Suppose (15) is true up to t  T � 1, and it suffices to prove it for t + 1. By (13), we have

⌘

t
X

r=0

�

�

�

�

1p
n

(I � ⌘K)

r
y

�

�

�

�

 ⌘

t
X

r=0

((1 � ⌘c
0

)

r
+ c

1

)  1

c
0

+ ⌘Tc
1

. (36)
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By the induction hypothesis, we have

⌘

t
X

r=0

�

�

�

�

1p
n

(y � by(r))

�

�

�

�

 ⌘

t
X

r=0

((1 � ⌘c
0

)

r
+ 2c

1

)  1

c
0

+ 2⌘Tc
1

. (37)

Also, we have |F(xi, r)|  |F(xi, t + 1)| for each r  t + 1 by monotonicity. Then, applying the
upper bounds in Lemma 2 and (36) – (37) into Lemma 1, we obtain that,
�

�

�

�

1p
n

(y � by(t + 1))

�

�

�

�


⇣

(1 � ⌘c
0

)

t+1

+ c
1

⌘

+

0

@kK �Hk +

v

u

u

t

4

m2n

n
X

i=1

|F(xi, t + 1)|2
1

A

✓

2

c
0

+ 3⌘Tc
1

◆

. (38)

It remains to bound the cardinality of F(xi, t + 1). Note that

F(xi, t + 1) ✓
⇢

j :

�

�

⌦

w0

j , xi

↵

�

�  max

1kt+1

�

�wk
j � w0

j

�

�

�

.

Since kxik = 1, it follows from (5) that

�

�wk
j � wk�1

j

�

�  ⌘

n
p

m

n
X

i=1

|yi � byi(k � 1)|  ⌘p
nm

ky � by(k � 1)k .

Then, by (37), we have

max

1kt+1

�

�wk
j � w0

j

�

� 
t+1

X

k=1

�

�wk
j � wk�1

j

�

�  1p
m

✓

1

c
0

+ 2⌘Tc
1

◆

.

Thus, by Lemma 3, it holds that

kK �Hk +

v

u

u

u

t

4

m2n

n
X

i=1

0

@

m
X

j=1

1{|hw0
j ,xii|R}

1

A

2

 4p
2⇡

p
m

✓

1

c
0

+ 2⌘Tc
1

◆

+ 4

r

log(4n/�)

m
.

(39)
Substituting (39) into (38), we finish the induction.

F Proof of Theorem 4

We prove (13) through exploring the structure of f⇤ and using the concentration of spectral projection.
In a sense, 1p

n
(I � ⌘K)

t
y approximates (I � ⌘LK)

t
f⇤ w. r. t. some properly chosen norm. Here

I is the identity operator, i.e., If = f for each f 2 L2

(Sd�1, ⇢). Theorem 4 follows immediately
from Theorem 3 and the following lemma.
Lemma 4. For any ` � 1 such that µi > 0, for i = 1, · · · , `, let

✏(f⇤, `) := sup

x2Sd�1

�

�

�

�

�

�

f⇤
(x) � (

X

1i`

Pµif
⇤
)(x)

�

�

�

�

�

�

.

Then given � 2 (0, 1

4

), if n >
256 log

2
�

(�m`
��m`+1)

2 , with probability at least 1 � 2� it holds that

�

�

�

�

1p
n

(I � ⌘K)

t
y

�

�

�

�


✓

1 � 3

4

⌘�m`

◆t

+

8

p
2

q

log

2

�

(�m` � �m`+1

)

p
n

+

p
2✏(`, f⇤

).

Proof. Since K is symmetric, we have K =

Pn
i=1

b�ibuibu
>
i , where b�is are in an non-increasing

order, 0  b�i  1, and kbuik = 1. For each i, define a function b�i over {xk : k 2 [n]} by
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b�i(xk) =

p
nbui(k) for k 2 [n]. Let ⇢(n) be the empirical distribution of {xk : k 2 [n]}. Define

h·, ·i⇢(n)

as

hf, gi⇢(n)

:=

1

n

n
X

k=1

f(xk)g(xk). (40)

Notably, h·, ·i⇢(n)

is similar to that of h·, ·i⇢ but with a different measure. By definition
n

b�i : 1  i  n
o

is a set of n orthonormal functions w.r.t. the inner product h·, ·i⇢(n)

. It holds
that

1p
n

(I � ⌘K)

t
y =

1p
n

n
X

i=1

(1 � ⌘b�i)
t
(bu>

i y)bui =

n
X

i=1

(1 � ⌘b�i)
thb�i, f

⇤i⇢(n)

bui.

Henceforth, we assume that m` < n; the case m` � n can be shown similarly with the fact that
�m`  �n. Since hb�i, f

⇤i⇢(n)

=

1

n

Pn
i=1

(bu>
i y)

2

=

1

n kyk2  1, we have
�

�

�

�

1p
n

(I � ⌘K)

ty

�

�

�

�

2

 (1 � ⌘b�m`)
2t

+

n
X

i=m`+1

hb�i, f
⇤i2⇢(n)

. (41)

Next we analyze the second term in (41). Let �
1

, �
2

, . . . be orthonormal eigenfunctions of LK with
strictly positive eigenvalues �

1

, �
2

, · · · , respectively. Let �j := hf⇤, �ji⇢. It holds that
n
X

i=m`+1

⇣

1 � ⌘b�i

⌘

2t
✓

D

b�i, f
⇤
E

⇢(n)

◆

2

(a)


n
X

i=m`+1

✓

D

b�i, f
⇤
E

⇢(n)

◆

2

=

n
X

i=m`+1

0

@

*

b�i,

m
X̀

j=1

�j�j

+

⇢(n)

+

*

b�i, f
⇤ �

m
X̀

j=1

�j�j

+

⇢(n)

1

A

2

 2

n
X

i=m`+1

0

@

*

b�i,

m
X̀

j=1

�j�j

+

⇢(n)

1

A

2

+ 2

n
X

i=m`+1

0

@

*

b�i, f
⇤ �

m
X̀

j=1

�j�j

+

⇢(n)

1

A

2

, (42)

where inequality (a) holds because that 0 < b�i  1. The first term in (42) can be bounded as
n
X

i=m`+1

*

b�i,

m
X̀

j=1

�j�j

+

2

⇢(n)

(a)


n
X

i=m`+1

0

@

m
X̀

j=1

�2

j

1

A

m
X̀

j=1

D

b�i, �j

E

2

⇢(n)

(b)


n
X

i=m`+1

m
X̀

j=1

D

b�i, �j

E

2

⇢(n)

,

(43)
where inequality (a) follows from Cauchy-Schwarz inequality, and inequality (b) is true because that
Pm`

j=1

�2

j  1. In addition, for any � 2 (0, 1), with probability at least 1 � �
2

, it holds that
n
X

i=m`+1

m
X̀

j=1

D

b�i, �j

E

2

⇢(n)

 64

b�m`+1

log

2

�

�m`(�m` � �m`+1

)

2n
. (44)

We postpone the proof of (44) to Section F.1. We bound the second term in (42) as

n
X

i=m`+1

*

b�i, f
⇤ �

m
X̀

j=1

�j�j

+

2

⇢(n)

 1

n

n
X

k=1

0

@f⇤
(xk) �

m
X̀

j=1

�j�j(xk)

1

A

2

 ✏2(f⇤, `). (45)

In addition, by (23) and the assumption that n >
256 log

2
�

(�m`
��m`+1)

2 , with probability at least 1 � �,

b�m` �
3

4

�m` , and b�m`+1

 �m` . (46)

By (42), (43), (44), (45), and (46), we continue to bound (41) as: for any � 2 (0, 1

4

), with probability
at least 1 � 2�,

�

�

�

�

1p
n

(I � ⌘K)

t
y

�

�

�

�

2


✓

1 � 3⌘

4

�m`

◆

2t

+

128 log 2/�

(�m` � �m`+1

)

2n
+ 2✏2(`, f⇤

).
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F.1 Proof of Eq. (44)

Preliminaries Recall from (23) that the spectrum of K concentrates on the spectrum of the
integral operator LK. To show (44), we need to know how �i, i � 1 the eigenfunctions of LK and
b�i, 1  i  n the eigenfunctions of K are related. Though both LK and K are defined w. r. t. the
kernel function K (defined in (12)), investigating this relation is not easy. This is because that �i

is defined on L2

(Sd�1, ⇢), whereas b�i is defined on L2

(Sd�1, ⇢(n)). To overcome this difficulty,
we relate LK and K to two linear operators TH and Tn, respectively, on H the reproducing kernel
Hilbert space (RKHS) associated with the kernel function K. In particular, we define TH and Tn by

THf =

Z

Sd�1

hf,KxiHKxd⇢(x), and Tnf =

1

n

n
X

i=1

h·,KxiiHKxi .

Here h·, ·iH is the inner product with the RKHS H that satisfies f(x) = hf,KxiH for f 2 H, where
Kx = K(x, ·). It has been shown that the spectra of LK and TH are the same, possibly up to the
zero, and that the spectra of K and Tn are the same, possibly up to the zero. More importantly, clear
correspondences between LK and TH and between K and Tn are established. See [RBV10, item
2 of Proposition 8] and [RBV10, item 2 of Proposition 9] for details. Notably, there is a notational
issue in [RBV10] which leads to an error in the multipliers in the correspondences. But this error can
be fixed easily, and our calculation reflects this correction.

Proof We first show that
Pn

i=m`+1

Pm`

j=1

D

b�i, �j

E

2

⇢(n)

can be upper bounded with (1) the dif-

ference between the projection of TH onto its first m` eigenfunctions and that of Tn, and (2) the
correspondences between the eigenfunctions of LK and TH and between that of K and Tn. Then we
apply existing bound on the projection difference to conclude the proof.

Let v
1

, · · · , vm` , · · · be the orthonormal set of functions in H that related to �
1

, · · · , �m` , · · · by the
relation given by [RBV10, item 2 of Proposition 8]. Similarly, let bv

1

, · · · , bvn be the corresponding
Nystrom extension given by [RBV10, item 2 of Proposition 9]. Complete {vi}i�1

and {bvi}
1in,

respectively, to orthonormal bases of H. Define two projection operators as follows:

PTH
=

m
X̀

j=1

h·, vjiHvj , PTn
=

m
X̀

j=1

h·, bvjiHbvj .

Since both (vj)j�1

and (bvj)j�1

are orthonormal bases for H, it is true that

kPTn � PTHk2

HS =

X

i�1,j�1

�

�

⌦�

PTn � PTH
�

bvi, vj

↵

�

�

2

,

where k·kHS denotes the Hilbert–Schmidt norm defined as kAk2

HS =

P

i2I kAeik2 for an orthonor-
mal basis {ei : i 2 I}. By definition of PTH and PTn , we have

⌦�

PTn � PTH
�

bvi, vj

↵

=

⌦

PTn
bvi, vj

↵� ⌦PTH
bvi, vj

↵

=

8

>

>

<

>

>

:

0, if 1  i  m`, & 1  j  m`;

hbvi, vjiH , if 1  i  m`, & j � m` + 1;

�hbvi, vjiH , if i � m` + 1, & 1  j  m`;

0, if i � m` + 1, & j � m` + 1.

Thus we get

kPTn � PTHk2

HS =

m
X̀

i=1

X

j�m`+1

�hbvi, vjiH
�

2

+

X

i�m`+1

m
X̀

j=1

�hbvi, vjiH
�

2 �
n
X

i=m`+1

m
X̀

j=1

�hbvi, vjiH
�

2

.

Since with probability 1 over the data generation b�i > 0 for i = 1, · · · , n, for 1  i  n, we have

�hbvi, vjiH
�

2

=

1

b�i

D

b�i, vj

E

2

⇢(n)

.
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So it holds that
n
X

i=m`+1

m
X̀

j=1

�hbvi, vjiH
�

2 � 1

b�m`+1

n
X

i=m`+1

m
X̀

j=1

✓

D

b�i, vj

E

⇢(n)

◆

2

(b)
=

1

b�m`+1

n
X

i=m`+1

m
X̀

j=1

✓

D

b�i,
p

�j�j

E

⇢(n)

◆

2

� �m`

b�m`+1

n
X

i=m`+1

m
X̀

j=1

✓

D

b�i, �j

E

⇢(n)

◆

2

,

where equality (b) follows from [RBV10, Proposition 8, item 2]. Since n >
256 log

2
�

(�m`
��m`+1)

2 , by

[RBV10, Theorem 7 and Proposition 6], it holds that with probability at least 1 � �
2

,

kPTn � PTHk2

HS  64 log

2

�

(�m` � �m`+1

)

2n
,

finishing the proof of Eq. (44).

G Harmonic analysis on spheres

Throughout this section, we consider uniform distribution ⇢ on the unit sphere in Rd with d � 3,
and we consider functions on on Sd�1. For ease of exposition, we do not explicitly write out the
dependence on d in the notations.

Let H` denote the space of degree-` homogeneous harmonic polynomials on Sd�1:

H` =

8

<

:

P : Sd�1 7! R : P (x) =

X

|↵|=`

c↵x↵, �P = 0

9

=

;

,

where x↵
= x↵1

1

· · ·x↵d
d is a monomial with degree |↵| = ↵

1

+ · · · + ↵d, c↵ 2 R, and � is the
Laplacian operator. The dimension of H` is denoted by N` =

(2`+d�2)(`+d�3)!

`!(d�2)!

. For any ` and `0,
the spaces H` and H`0 are orthogonal to each other.

The Gegenbauer polynomials, denoted by C
(�)

` for � > � 1

2

and ` = 0, 1, · · · , are defined on [�1, 1]

as

C
(�)

` (u) =

b`/2c
X

k=0

(�1)

k �(` � k + �)

�(�)k!(` � 2k)!

(2u)

`�2k, (47)

where �(v) :=

R1
0

zv�1e�z
dz. Notably, �(v + 1) = z�(v). The cases � = 0, 1

2

, 1 correspond
to Chebyshev polynomials of the first kind, Legendre polynomials, Chebyshev polynomials of the
second kind, respectively. It has been shown that [Sze75, Section 4.1(2), Section 4.7] for � 6= 0

Gegenbauer polynomials are orthogonal with the weight function w�(u) = (1 � u2

)

�� 1
2 :

Z

1

�1

C
(�)

` (u)C
(�)

k (u)w�(u)du =

⇡2

1�2�
�(` + 2�)

`!(` + �)(�(�))

2

�k,`,

where �k,` = 1 if k = ` and �k,` = 0 otherwise. The orthogonality can be equivalently written as
Z ⇡

0

C
(�)

` (cos ✓)C
(�)

k (cos ✓) sin

2� ✓d✓ =

⇡2

1�2�
�(` + 2�)

`!(` + �)(�(�))

2

�k,`.

For each ` 2 N, there exists a set of orthonormal basis {Y`,i : i = 1, . . . , N`} for H` w. r. t. the
uniform distribution ⇢ that can be written in terms of C

(�)

` in [DX13, Theorem 1.5.1] as

C
(�)

` (hx, yi) =

�

` + �

N
X̀

i=1

Y`,i(x)Y`,i(y), � =

d � 2

2

. (48)
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This is known as the addition theorem. Therefore, a function of the form f(x, y) = f(hx, yi) (i.e.,
the value of f(x, y) depends on x and y through their angle hx, yi only) can be expanded under C

(�)

`
as

f(x, y) = f(hx, yi) =

X

`�0

↵`C
(�)

` (u) =

X

`�0

↵`�

` + �

N
X̀

i=1

Y`,i(x)Y`,i(y) , (49)

where u = hx, yi, � =

d�2

2

, and

↵` =

R

1

�1

f(u)C
(�)

` (u)w�(u)du
R

1

�1

(C
(�)

` (u))

2w�(u)du
.

For the kernel function defined in (16), it can be expanded as

K(x, s) =

X

`�0

�`

N
X̀

i=1

Y`,i(x)Y`,i(s), where �` :=

↵`
d�2

2

` +

d�2

2

,

where for each ` � 0, ↵` is the coefficient of K(x, s) in the expansion into Gegenbauer polynomials,
�` is the eigenvalue associated with the space of degree–` homogeneous harmonic polynomials
on Sd�1, denoted by H`, and Y`,i for i = 1, · · · , N` are an orthonormal basis of H`. Thus, the
corresponding integral operator can be decomposed as LK =

P

`�0

�`P`.
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