
A Obtaining Solutions to the Optimality FBSDE

A.1 A Momentum-Based Representation of the Optimizer Dynamics

Using a simple change of variables we may represent the dynamics of the FBSDE (9) in a simpler fashion, which
will aid us in obtaining solutions to this system of equations. Let us define the momentum process p = (pt)t2[0,T ]
as

pt =

✓
∂L

∂n

◆

t

= e
gt

⇣
—h(Xn⇤

t + e
�at n⇤)�—h(Xn⇤

t )
⌘
. (23)

Noting that since h is convex, we have the property that —h
⇤(x) = (—h)�1(x), we may use equation (23) to write

n⇤ in terms of the momentum process as

n⇤ = e
�at

�
—h

⇤�—h(Xt)+ e
�gt pt

�
�Xt

�
. (24)

The introduction of this process allows us to represent the solution to the optimality FBSDE (9), and by extension
the optimizer, in a much more tractable way. Re-writing (9) in terms of pt , we find that
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>:

d pt =�
n

e
gt+at+btE

h
— f (Xn⇤

t )
��Ft

i
+
⇣

e
gt —2

h(Xt)n⇤
t � e

at pt

⌘o
dt +dMt

pT =�e
dT E

h
— f (Xn⇤

T
)
��FT

i (25)

where the dynamics of the forward process X
n⇤

can be expressed as

dX
n⇤
t = e

at

⇣
—h

⇤
⇣

—h(Xn⇤
t )+ e

�gt pt

⌘
�X

n⇤
t

⌘
dt . (26)

This particular change of variables corresponds exactly to the Hamiltonian representation of the optimizer’s
dynamics, which we show in Appendix A.3.

Writing out the explicit solution to the FBSDE (25), we obtain a representation for the optimizer’s dynamics as

pt = E
Z

T

t

e
gu

n
e

au+bu — f (Xn⇤
u )+

⇣
—2

h(Xu)n⇤
u � e

au�gu pu

⌘o
du � e

dT — f (Xn⇤

T
)
���Ft

�
, (27)

showing that optimizer’s momentum can be represented as a time-weighted average of the expected future
gradients over the remainder of the optimization and the term e

gt —2
h(Xt)n⇤

t � e
at pt , where the weights are

determined by the choice of hyperparameters a,b and g . Noting that

—2
h(Xt)n⇤

t � e
at�gt pt = —2

h(Xt)n⇤
t �

✓
—h(Xt + e

�at n⇤
t )�—h(Xt)

e�at

◆
, (28)

we find that the additional correction term in (27) can be interpreted as the remainder in the first-order Taylor
expansion of the term —h(Xt + e

�at n⇤).

The representation (27) demonstrates optimizer does not only depend on the instantaneous value of gradients
at the point X

n⇤
t . Rather, we find that the algorithm’s behaviour depends on the expected value of all future

gradients that will be encountered over the remainder of the optimization process, projected onto the set of
accumulated gradient information, Ft . This is in stark contrast to most known stochastic optimization algorithms
which only make explicit use of local gradient information in order to bring the optimizer towards an optimum.

A.2 First-Order Singular Perturbation Approximation

When h does not take the quadratic form h(x) = 1
2 x

|
Mx for some positive-definite matrix M, the nonlinear

dynamics of the FBSDE (9) or in the equivalent momentum form (25) make it difficult to provive a solution for
general h. More precisely, the Taylor expansion term (28) constitutes the main obstacle in obtaining solutions in
general.

In cases where the scaling parameter at is sufficiently large, we can assume that the Taylor expansion remainder
term of equation (28) will become negligibly small. Hence, we may approximate the optimality dynamics of the
FBSDE (25) by setting this term to zero. This can be interpreted as the first-order term in a singular perturbation
expansion of the solution to the momentum FBSDE (25).

Under the assumption that the Taylor remainder term vanishes, we obtain the approximation p̃
(0) = (p̃

(0))t2[0,T ]
for the momentum, which we present in the following proposition.
Proposition A.1 (First-Order Singular Perturbation (FOSP)). The linear FBSDE

8
<

:
d p̃

(0)
t =�e

gt+at+bt E [— f (Xt) |Ft ] dt +dM̃
(0)
t

p̃
(0)
T
=�e

dT E
h
— f (Xn⇤

T
)
��FT

i , (29)
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admits a solution that can be expressed as

p̃
(0)
t = E

Z
T

t

e
gu+au+bu — f (Xu) du� e

dT — f (Xn⇤

T
)

����Ft

�
, (30)

provided that E
hR

T

0 e
gu+au+bu k— f (Xu)kdu

i
< •.

Proof. Noting that the remainder term in the expression (28) vanishes, we get that

p̃
(0)
t = E

Z
T

t

e
gu+au+bu — f (Xu) du� e

dT — f (Xn⇤

T
)
���Fu

�
. (31)

Under the assumption that a,b ,d ,g are continuous over [0,T ] and that Ek f (x)k2k< •, the right part of (31) is
bounded. Now note that the integral on the left side of (31) is upper bounded for all T by the integral provided
in the integrability condition of Proposition A.1, and therefore this condition is a sufficient condition for the
expression (31) to be finite and well-defined.

Although a general, model independent bound for the accuracy of such approximations is beyond the scope
of this paper, it can still serve as a reasonable and computationally cheap alternative to attempting to solve
the original problem dynamics directly with a BSDE numerical scheme. For more information on singular
perturbation methods in the context of FBSDEs, see Janković et al. (2012).

A.3 Hamiltonian Representation of the Optimizer Dynamics

Just as in Hamiltonian classical mechanics, it is possible to express the optimality FBSDE of Theorem (4.1) with
Hamiltonian equations of motion. We define the Hamiltonian H as the Legendre dual of L at, which can be
written as

H (t,X , p) = hp ,n⇤i�L (t,X ,n⇤) , (32)

where p = ∂L

∂X
. Using the identity Dh(x,y) = Dh⇤(—h(x),—h(y)), where h

⇤ is the Legendre dual of h, and
inverting the expression for ∂L

∂X
in terms p, we may compute equation (32) as4

H (t,X , p) = e
at+gt Dh⇤

�
—h(X)+ e

�gt p , —h(X)
�
+ e

gt+bt f (Xt) . (33)

Using this definition of H , and using the FBSDE (9), we obtain the following equivalent representation for the
dynamics of the optimizer.

Using the simple substitution pt =
⇣

∂L

∂X

⌘

t

and noting from equations (10) and (11) that

pt = e
gt

�
—h(Xt + e

�at n⇤
t )�—h(Xt)

�
, (34)

a straightforward computation applied to the definition of H shows that the dynamics of the optimality
FBSDE (9) admit the alternate Hamiltonian representation of the optimizer dynamics

dXt =

✓
∂H

∂ p

◆

t

dt , d pt =�E
✓

∂H

∂X

◆

t

���Ft

�
dt �dMt (35)

along with the boundary condition pT = 0.

B The Discrete Kalman Filter

Here we present the reader to the Kalman Filtering equations used in Section 5.2. Consider the model presented
in equations (19),

yi,tk+1 = Ãkyi,tk + L̃kwi,k , gi,tk = b
|
yi,tk +se

�at xi,k , (36)

where we use the notation Ãk = (I � e
�at

k A) and L̃k = Le
�at , and where wi,k and xi,k are all independent

standard Gaussian random variables. We provide the Kalman filtering equations for this model in the following
proposition.

4See Wibisono et al. (2016)[Appendix B.4] for the full details of the computation.
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Proposition B.1 (Walrand and Dimakis (2006, Theorem 10.2)). Let ŷi,k = E[ytk
|s(gt

k0 )
k

k0=1]. Then ŷi,k satisfies

the recursive equation

ŷi,k = Ãkŷi,k +Kk

�
gi,k �b

|
Ãkŷi,k

�
, (37)

where the matrices Kk are obtained via the independent recursive equations

Pk|k�1 = ÃkPk�1|k�1Ã
|
k
+ L̃

|
k
L̃k , (38)

Sk = s2 +b
|
Pk|k�1b , (39)

Kk = Pk|k�1bS
�1
k

, (40)

Pk|k = (I �Kkb
|)Pk|k�1 . (41)

For more information on the discrete Kalman filter, its derivation and for asymptotic properties, we refer the
reader to the lecture notes Walrand and Dimakis (2006).

Next, we provide a result on the asumptotic properties of the Kalman filter in the proposition that follows.
Proposition B.2 (Walrand and Dimakis (2006, Theorem 11.2)). Assume that atk

= at0 is constant, so that

Ãk = Ã and L̃k = L̃ become constant, and assume that there exists a positive-definite solution K• 2 Rd̃⇥d̃
to the

algebraic matrix equation

K̃ = ÃK̃Ã
|+ L̃L̃

| . (42)
Then, we may write the asymptotic dynamics of the filter ŷi as

ŷi,k = Ãŷi,k +K•
�
gi,k �b

|
Ãŷi,k

�
, (43)

where K• is the solution to the system of algebraic matrix equations

K• = (I �RC)S , R = Sb

⇣
b
|
Sb+s2

⌘�1
, S = ÃK•Ã

|+ L̃L̃
| . (44)

For more information on the Kalman Filter, its derivation and theoretical properties, see Walrand and Dimakis
(2006).
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C Proofs Relating to Theorem 4.1

Before going forward with the main part of the proof, we first present a lemma for the computation of the
Gâteaux derivative of J .
Lemma C.1. The functional J is everywhere Gâteaux differentiable over A . For any n ,w 2 A , the Gâteaux

derivative of J at n , in the direction of w̃ = w �n takes the form

hDJ (n), w̃i= E
Z

T

0

⌧
wt ,

∂L (t,Xn
t ,nt)

∂n
�E

Z
T

t

∂L (u,Xn
u ,nu)

∂X
du� e

dT — f
�
X

n
T

����Ft

��
dt

�
. (45)

Proof. Starting from the definition of the Gâteaux derivative, we have
d

dr

����
r=0

hDJ (n), w̃i= d

dr

����
r=0

J (n +r w̃)

=
d

dr

����
r=0

E
Z

T

0
L

⇣
t,Xn+r w̃

t ,nt +r w̃t

⌘
dt + e

dT

⇣
f (Xn+r w̃

T
)� f (x?)

⌘�
. (46)

In order to exchange the integral and the derivative, we must show that the conditions of Leibniz’ rule hold. To
do this, it is sufficient to show that the derivative of the integrand of equation (46) in the variable r , is continuous
and integrable for each n , w̃ .

Computing the derivative of the integrand, we get
Z

T

0

d

dr

����
r=0

L

⇣
t,Xn+r w̃

t ,nt +r w̃t

⌘
dt + e

dT
d

dr

����
r=0

f (Xn+r w̃
T

)

=
Z

T

0

⇢⌧
∂L (t,Xn

t ,nt)

∂X
,
Z

t

0
w̃u du

�
+

⌧
∂L (t,Xn

t ,nt)

∂n
, w̃t

��
dt +

⌧Z
T

0
w̃u du,edT — f (Xn

T
)

�
,

(47)
where we have

∂L (t,X ,n)
∂X

= e
gt+at(—h(X + e

�at n)�—h(X)� e
�at —2

h(X)n � e
bt — f (X)) (48)

∂L (t,X ,n)
∂n

= e
gt

�
—h(X + e

�at n)�—h(X)
�
. (49)

Since L and f are continuously differentiable functions, the above is countinuous in n , w̃ . Now all that remains
to show is that this expression is integrable.

First, note that by the Young and Jensen inequalities,

E
⌧Z

T

0
w̃u du,edT — f (Xn

T
)

��
 1

2
E
Z

T

0
kw̃uk2

du+ e
dT k— f (Xn

T
)k2
�
< • , (50)

where the boundedness holds from the fact that w̃ 2 A and that Ek f (x)k2 < • for all x 2 Rd .

Next, we focus on the left part of equation (47). By the Cauchy-Schwarz and Young inequalities, we have
����

⌧
∂L (t,Xn

t ,nt)

∂X
,
Z

t

0
w̃u du

�
+

⌧
∂L (t,Xn

t ,nt)

∂n
, w̃t

�����
����

∂L (t,Xn
t ,nt)

∂X

����

����
Z

t

0
w̃u du

����+
����

∂L (t,Xn
t ,nt)

∂n

����kw̃tk

(51)

 1
2

(����
Z

t

0
w̃u du

����
2
+

����
∂L (t,Xn

t ,nt)

∂X

����
2
+k∂L (t,Xn

t ,nt)

∂n
k2 +kw̃tk2

)
.

(52)
Using the L-Lipschitz property of the gradients of h, we can also bound the partial derivatives of the Lagrangian
with the triangle inequality as

����
∂L (t,Xn

t ,nt)

∂X

���� e
gt+at

��—h(X + e
�at n)�—h(X)

��+ e
gtk—2

h(X)nk+ e
bt+gt+atk— f (X)k

 L(egt+at + e
gt )knk+ e

bt+gt+atk f (X)k
C0 (knk+k— f (X)k)

����
∂L (t,X ,n)

∂n

���� e
gt

��—h(X + e
�at n)�—h(X)

��

 e
gt Lknk

C0 knk ,
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where C0 = (1+L)supt2[0,T ]{e
at+gt +e

gt +e
at+gt+bt} is bounded by the assumption that a,b ,g are continuous

in [0,T ].

Using the above result, and applying Young’s inequality to the previous result, we can upper bound equation (52)
as

(52)  32(1+C0)

⇢
1+

Z
T

0
kw̃uk2

du+kntk2 +kw̃tk2 +k— f (Xt)k2
�

(53)

 64(1+C0)

⇢
1+

Z
T

0
kwuk2

du+
Z

T

0
knuk2

du+kntk2 +kwtk2 +k— f (Xt)k2
�

, (54)

where the number 32 is chosen to be much larger than what is strictly necessary by Young’s inequality.

Now that we have verified that the conditions of Leibniz’ rule hold, we can proceed to exchanging the integral
and derivative operators to compute the Gâteax derivative as

d

dr

����
r=0

J (n +r w̃) =
d

dr

����
r=0

E
Z

T

0
L

⇣
t,Xn+r w̃

t ,nt +r w̃t

⌘
dt + e

dT

⇣
f (Xn+r w̃

T
)� f (x?)

⌘�

= E
"Z

T

0

d

dr

����
r=0

L

⇣
t,Xn+r w̃

t ,nt +r w̃t

⌘
dt + e

dT
d

dr

����
r=0

f (Xn+r w̃
T

)

#

= E
Z

T

0

⇢⌧
∂L (t,Xn

t ,nt)

∂X
,
Z

t

0
w̃u du

�
+

⌧
∂L (t,Xn

t ,nt)

∂n
, w̃t

��
dt +

⌧Z
T

0
w̃u du,edT — f (Xn

T
)

��
.

(55)

Applying integration by parts to the left side of equation (56), we obtain

d

dr

����
r=0

J (n +r w̃) = E
Z

T

0

⌧
w̃t ,

∂L (t,Xn
t ,nt)

∂n
�
Z

T

t

∂L (u,Xn
u ,nu)

∂X
du� e

dT — f (Xn
T
)

�
dt

�

Lastly, applying the tower property and Fubini’s theorem, we get

hDJ (n), w̃i= E
Z

T

0

⌧
w̃t ,

∂L (t,Xn
t ,nt)

∂n
�E

Z
T

t

∂L (u,Xn
u ,nu)

∂X
du+ e

dT — f (Xn
T
)
���Ft

��
dt

�
, (56)

as desired.

C.1 Proof of Theorem 4.1

Using the representation of the Gâteux derivative of J brought forth by Lemma C.1, we may proceed with the
proof of Theorem 4.1.

Proof of Theorem 4.1. The goal is to show that the BSDE (9) is a necessary and sufficient condition for n⇤ to
be a critical point of J . For any Gâteaux differentiable function J , a necessary and sufficient condition for a
point n⇤ 2 A to be a critical point is that its Gâteaux derivative vanished in any valid direction. Lemma C.1
shows that the Gâteaux derivative takes the form of equation (45). Therefore, all that remains is to show that the
FBSDE 9 is a necessary and sufficient condition for equation (45) to vanish.

Sufficiency. We will show that equation (45) vanishes when the FBSDE (9) holds. Assume that there exists a
solution to the FBSDE (9) satisfying n⇤ 2 A . We may then express the solution to the FBSDE explicitly as

✓
∂L

∂n

◆

t

= E
Z

T

t

✓
∂L

∂X

◆

u

du � e
dT — f (Xn

T
)
���Ft

�
.

Inserting this into the right side of (45), we find that hDJ (n),wi vanishes for all w 2 A , demonstrating
sufficiency.

Necessity. Conversely, let us assume that hDJ (n),w �ni= 0 for all w 2 A and for some n 2 A for which
the FBSDE (9) is not satisfied. We will show by contradiction that this statement cannot hold by choosing a
direction in which the Gâteax derivative does not vanish. Consider the choice

wr
t = nt +r

✓
∂L (t,Xn

t ,nt)

∂n
�E

Z
T

t

∂L (u,Xn
u ,nu)

∂X
du� e

dT — f (Xn
T
)
���Ft

�◆
, (57)
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for some sufficiently small r > 0. We will first show that wr 2 A for some r > 0.

First, note that clearly wr must be Ft -adapted, and we have w0 = nt . Moreover, note that since n 2 A , we have
that E

R
T

0 kntk2+k— f (Xn )k2
dt < •, that w0 = n . Notice that by the continuity of — f and the definition of X ,

the expression

E
Z

T

0
kwr

t k2+k— f (Xwr
)k2

dt (58)

is continuous in r . Since (58) is bounded for r = 0, by continuity there exists some r > 0 for which (58) is
bounded and by extension where wr 2 A for this same value of r .

Inserting (57) into the Gâteaux derivative (45), we get that

hDJ (n),wr �ni= r E
"Z

T

0

����
∂L (t,Xn

t ,nt)

∂n
�E

Z
T

t

∂L (u,Xn
u ,nu)

∂X
du� e

dT — f (Xn
T
)
���Ft

�����
2

dt

#
, (59)

which is strictly positive unless the FBSDE (9) is satisfied, thus forming a contradiction and demonstrating that
the condition is necessary.

D Proof of Theorem 4.2

Proof. The proof of this theorem is broken up into multiple parts. The idea will be to first show that the energy
functional E is a super-martingale with respect to Ft , and then to use this property to bound the expected
distance to the optimum. Lastly, we bound a quadratic co-variation term which appears within these equations to
obtain the final result.

Before delving into the proof, we introduce standard notation for semi-martingale calculus. We use the noation
dYt = dY

c
t +DYt to indicate the increments of the continuous part Y

c of a process Y and its discontinuities
DYt = Yt �Yt�, where we use the notation t� to indicate the left limit of the process. We use the notation
[Y,Z]t to represent the quadratic co-variation of two processes Y and Z. This quadratic variation term can be
decomposed into d[Y,Z]t = d[Y,Z]ct + hDYt ,DZti, where [Y,Z]ct represents the quadratic covariation between Y

c

and Z
c, and where hDYt ,DZti represents the inner product of their discontinuities at t. For more information

on semi-martingale calculus and the associated notation, see Jacod and Shiryaev (Jacod and Shiryaev, 2013,
Sections 3-5).

Dynamics of the Bregman Divergence. The idea will now be to show that the energy functional E , defined in
equation (13), is a super-martingale with respect to the visible filtration Ft .

Using Itô’s formula and Itô’s product rule for càdlàg semi-martingales Jacod and Shiryaev (2013)[Theorem
4.57], as well as the short-hand notation Yt = Xt + e

�at n⇤
t , we obtain

dDh(x
?,Yt ) =�

(
h—h(Yt ),dY

c

t
i+ 1

2

d

Â
i, j=1

∂ 2
h(Yt )

∂xi∂xi

d [Yi,Yj ]
c

t
+Dh(Yt )

)
�
(
hd—h(Yt ),x

?�Yt i�h—h(Yt ),dYt i�d [—h(Y ),Y ]
t

)

=�
(
h—h(Yt ),�DYt i+

1
2

d

Â
i, j=1

∂ 2
h(Yt )

∂xi∂xi

d [Yi,Yj ]
c

t
+Dh(Yt )

)
�
(
hd—h(Yt ),x

?�Yt i�
d

Â
i, j=1

∂ 2
h(Yt )

∂xi∂xi

d [Yi,Yj ]
c

t
�hD(—h(Yt )) ,DYt i

)

=�{Dh(Yt )�h—h(Yt ),DYt i}�hd—h(Yt ),x
?�Yt i+

(
1
2

d

Â
i, j=1

∂ 2
h(Yt )

∂xi∂xi

d [Yi,Yj ]
c

t
+ hD(—h(Yt )) ,DYt i

)
,

where from line 1 to 2, we use the identity d[—g(Y ),Y ]t = Âi, j
∂ 2

g(Yt )
∂xi∂x j

d[Yi,Yj]ct + hD(—g(Yt)),DYti for any C
2

function g.

Note that since h is convex, —2
h must have positive eigenvalues, and hence 1

2 Âd

i, j=1
∂ 2

h(Yt )
∂xi∂xi

d
⇥
Yi,Yj

⇤
c

t
� 0. The

convexity of h also implies that h—h(x)�—h(y),x� yi  0, and therefore we get hD(—h(Yt)) ,DYti � 0. The
convexity of h also implies that Dh(Yt)�h—h(Yt),DYti � 0. Combining these observations, we find that

dDh(x
?,Yt)�hd—h(Yt),x

?�Yti+
(

d

Â
i, j=1

∂ 2
h(Yt)

∂xi∂xi

d
⇥
Yi,Yj

⇤
c

t
+ hD(—h(Yt)) ,DYti

)
(60)

=�hd—h(Yt),x
?�Yti+[—h(Y ),Y ]t . (61)

Super-martingale property of E . Applying the scaling conditions to the optimality FBSDE (9), we obtain the
dynamics

d—h(Xn⇤
t + e

�at n⇤) =�e
at+btE

h
— f (Xn⇤

t )
��Ft

i
dt +dM̃t . (62)
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Inserting this in to the dynamics of for the energy functional, and applying the upper bound (61), we find that

dEt �hd—h(Yt),x
?�Yti+ ḃt e

bt ( f (Xt)� f (x?)) dt + e
bt h— f (Xt),nti dt (63)

=
D

e
at+btE[— f (Xt) |Ft ]dt �dMt , x

?�Yt

E
+ ḃt e

bt ( f (Xt)� f (x?)) dt + e
bt h— f (Xt),nti dt (64)

=�
n

D f (x
?,Yt)+

⇣
e

at � ḃt

⌘
e

bt ( f (Xt)� f (x?))
o

dt +dM
0
t , (65)

where we use the notation M
0
t to represent the Ft -martingale defined as

dM
0
t =

D
e

at+bt (E[— f (Xt) |Ft ]� f (Xt)) dt �dMt , x
?�Yt

E
. (66)

Now note that due to the assumed convexity of f , we have that D f (x
?,Yt) is almost surely non-negative. Second,

by the scaling conditions, e
at � ḃt is positive. Hence, the drift in equation (65) is almost surely negative, and Et

is a super-martingale.

Using the super-martingale property, we find that E [Et ]  E [E0] =

E
h
Dh(x

?,X0 + e
�a0 n0)+ e

b0 ( f (X0)� f (x?))
i
= C0 , where C0 � 0. Using the definition of E , and

using the fact that Dh � 0 if h is convex, we obtain

e
btE [( f (Xt)� f (x?))] E

h
Dh(x

?,Xt + e
�at nt)+ e

bt ( f (Xt)� f (x?))
i
C0 +E [ [—h(Y ),Y ]t ] . (67)

Upper bound on the Quadratic Co-variation. Now we upper bound the quadratic co-variation term appearing
on the right hand side of (67). Using the further change of variable Zt = —h(Yt), and noting that by the assumed
convexity of h that —h

⇤(x) = (—h)�1(x), we get [—h(Y ),Y ]t = [Z,—h
⇤(Z)]t .

Assuming that —h is µ-strongly convex, we get that —h
⇤must have µ�1-Lipschitz smooth gradients. This implies

that (i) the eigenvalues of —2
h
⇤must be bounded above by µ�1 (ii) from the Cauchy-Schwarz inequality, we

have h—h
⇤(x)�—h

⇤(y),x� yi  µ�1kx� yk2. Using these two observations and writing out the expression for
[Z,—h

⇤(Z)]t , we get

[Z,—h
⇤(Z)]t =

d

Â
i, j=1

∂ 2
h(Yt)

∂xi∂xi

d
⇥
Yi,Yj

⇤
c

t
+ hD(—h

⇤(Z)),DZti (68)

 µ�1[Z]t . (69)

Moreover, note that since Zt = —h(Xn⇤
t + e

�at n⇤
t ) and since —h(Xn⇤

t ) is a process of finite variation, the
optimality dynamics (9) imply that [Z]t = [e�gt M ]t ] = e

�gt [M ]t

Inserting the quadratic co-variation bound into equation (67) and using the super-martingale property, we obtain
the final result

E [( f (Xt)� f (x?))] e
�bt

✓
C0 +

1
2
E
⇥
[—h(X + e

�at n),n ]t
⇤◆

 e
�bt

✓
C0 +

1
2

e
�2gtE [ [M ]t ]

◆

 (C0 +
1
2
)e�bt max

n
1 , e

�2gtE [ [M ]t ]
o

= O

⇣
e
�bt max

n
1 , e

�bt+2gtE [ [M ]t ]
o⌘

,

as desired.

E Proofs of Propositions 5.1 and Proposition 5.2

Both of the proofs contained in this sections are applications of the momentum representation of the optimizer
dynamics, and the FOSP approximation to the solution of the optimality FBSDE (9).

E.1 Proof of Proposition 5.1

Proof. Using Proposition A.1, we find that the solution to the FOSP takes the form

p̃
(0)
t = E

Z
T

t

e
gt+at+bt — f (Xu) du� e

dT — f (Xn⇤

T
)

����Ft

�
.
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Applying Fubini’s theorem, and the martingale property of E [— f (Xu) |Fu] = gu/(1+r2), we find that

p̃
(0)
t = E

Z
T

t

e
gu+au+bu — f (Xu) du� e

dT — f (Xn⇤

T
)

����Ft

�

=
Z

T

t

e
gu+au+bu E

h
— f (Xn⇤

u )|Ft

i
du� e

dT E
h
— f (Xn⇤

T
)|Ft

i

=
Z

T

t

e
gu+au+bu E

h
— f (Xn⇤

t )|Ft

i
du� e

dT E
h
— f (Xn⇤

t )|Ft

i

= gt(1+r2)�1
✓Z

T

t

e
gu+au+bu du� e

dT

◆
.

Inserting expression above into equation (24), and re-arranging terms, we obtain the desired result.

E.2 Proof of Proposition 5.2

Proof. Using Proposition A.1, we find that the solution to the FOSP takes the form

p̃
(0)
t = E

Z
T

t

e
gt+at+bt — f (Xu) du� e

dT — f (Xn⇤

T
)

����Ft

�
.

Applying Fubini’s theorem, and noting that E[—i f (Xt+h)|yi,t ] = Âd̃

j=1(b
|
e
�Ah) j y·, j,t , we obtain

p̃
(0)
t = E

Z
T

t

e
gu+au+bu — f (Xu) du� e

dT — f (Xn⇤

T
)

����Ft

�

=
Z

T

t

e
gu+au+bu E

h
— f (Xn⇤

u )|Ft

i
du� e

dT E
h
— f (Xn⇤

T
)|Ft

i

=
Z

T

t

e
gu+au+bu

 
d̃

Â
j=1

(b|e
�A(u�t)) j y·, j,t

!
du� e

dT

 
d̃

Â
j=1

(b|e
�A(T�t)) j y·, j,t

!

=
d̃

Â
j=1

✓Z
T

t

e
gu+au+bu

⇣
b
|
e
�A(u�t)

⌘

j

du� e
dT (b|e

�A(T�t)) j

◆
y·, j,t

Inserting expression above into equation (24), and re-arranging terms, we obtain the desired result.
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