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Abstract

Feed-forward neural networks can be understood as a combination of an interme-1

diate representation and a linear hypothesis. While most previous works aim to2

diversify the representations, we explore the complementary direction by perform-3

ing an adaptive and data-dependent regularization motivated by the empirical Bayes4

method. Specifically, we propose to construct a matrix-variate normal prior (on5

weights) whose covariance matrix has a Kronecker product structure. This structure6

is designed to capture the correlations in neurons through backpropagation. Under7

the assumption of this Kronecker factorization, the prior encourages neurons to8

borrow statistical strength from one another. Hence, it leads to an adaptive and9

data-dependent regularization when training networks on small datasets. To opti-10

mize the model, we present an efficient block coordinate descent algorithm with11

analytical solutions. Empirically, we demonstrate that the proposed method helps12

networks converge to local optima with smaller stable ranks and spectral norms.13

These properties suggest better generalizations and we present empirical results14

to support this expectation. We also verify the effectiveness of the approach on15

multiclass classification and multitask regression problems with various network16

structures.17

1 Introduction18

Although deep neural networks have been widely applied in various domains [19, 25, 29], usually its19

parameters are learned via the principle of maximum likelihood, hence its success crucially hinges20

on the availability of large scale datasets. When training rich models on small datasets, explicit21

regularization techniques are crucial to alleviate overfitting. Previous works have explored various22

regularization [42] and data augmentation [19, 41] techniques to learn diversified representations.23

In this paper, we look into an alternative direction by proposing an adaptive and data-dependent24

regularization method to encourage neurons of the same layer to share statistical strength. The goal of25

our method is to prevent overfitting when training (large) networks on small dataset. Our key insight26

stems from the famous argument by Efron [8] in the literature of the empirical Bayes method: It is27

beneficial to learn from the experience of others. From an algorithmic perspective, we argue that the28

connection weights of neurons in the same layer (row/column vectors of the weight matrix) will be29

correlated with each other through the backpropagation learning. Hence, by learning the correlations30

of the weight matrix, a neuron can “borrow statistical strength” from other neurons in the same layer.31

As an illustrating example, consider a simple setting where the input x ∈ Rd is fully connected to a32

hidden layer h ∈ Rp, which is further fully connected to the single output ŷ ∈ R. Let σ(·) be the33

nonlinear activation function, e.g., ReLU [36], W ∈ Rp×d be the connection matrix between the34

input layer and the hidden layer, and a ∈ Rp be the vector connecting the output and the hidden layer.35

Without loss of generality, ignoring the bias term in each layer, we have: ŷ = aTh,h = σ(Wx).36

Consider using the usual `2 loss function `(ŷ, y) = 1
2 |ŷ − y|

2 and take the derivative of `(ŷ, y) w.r.t.37
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W . We obtain the update formula in backpropagation as W ← W − α(ŷ − y)(a ◦ h′) xT , where38

h′ is the componentwise derivative of h w.r.t. its input argument, and α > 0 is the learning rate.39

Realize that (a ◦ h′) xT is a rank 1 matrix, and the component of h′ is either 0 or 1. Hence, the40

update for each row vector of W is linearly proportional to x. Note that the observation holds for any41

input pair (x, y), so the update formula implies that the row vectors of W are correlated with each42

other. Although in this example we only discuss a one-hidden-layer network, it is straightforward to43

verify that the gradient update formula for general feed-forward networks admits the same rank one44

structure. The above observation leads us to the following question:45

Can we define a prior distribution over W that captures the correlations through46

the learning process for better generalization?47

Our Contributions. To answer the above question, we develop an adaptive regularization method for48

neural nets inspired by the empirical Bayes method. Motivated by the example above, we propose a49

matrix-variate normal prior whose covariance matrix admits a Kronecker product structure to capture50

the correlations between different neurons. Using tools from convex analysis, we present an efficient51

block coordinate descent algorithm with analytical solutions to optimize the model. Empirically, we52

show the proposed method helps the network converge to local optima with smaller stable ranks and53

spectral norms, and we verify the effectiveness of the approach on both multiclass classification and54

multitask regression problems with various network structures.55

2 Preliminary56

Notation and Setup We use lowercase letter to represent scalar and lowercase bold letter to denote57

vector. Capital letter, e.g., X , is reserved for matrix. Calligraphic letter, such as D, is used to denote58

set. We write Tr(A) as the trace of a matrix A, det(A) as the determinant of A and vec(A) as59

A’s vectorization by column. [n] is used to represent the set {1, . . . , n} for any integer n. Other60

notations will be introduced whenever needed. Suppose we have access to a training set D of n pairs61

of data instances (xi, yi), i ∈ [n]. We consider the supervised learning setting where xi ∈ X ⊆ Rd62

and yi ∈ Y . Let p(y | x,w) be the conditional distribution of y given x with parameter w. The63

parametric form of the conditional distribution is assumed be known. In this paper, we assume the64

model parameter w is sampled from a prior distribution p(w | θ) with hyperparameter θ. On the65

other hand, given D, the posterior distribution of w is denoted by p(w | D, θ).66

The Empirical Bayes Method To compute the predictive distribution, we need access to the value67

of the hyperparameter θ. However, complete information about the hyperparameter θ is usually not68

available in practice. To this end, empirical Bayes method [1, 9, 10, 12, 39] proposes to estimate θ69

from the data directly using the marginal distribution:70

θ̂ = arg max
θ

p(D | θ) = arg max
θ

∫
p(D | w) · p(w | θ) dw. (1)

Under specific choice of the likelihood function p(x, y | w) and the prior distribution p(w | θ), e.g.,71

conjugate pairs, we can solve the above integral in closed form. In certain cases we can even obtain72

an analytic solution of θ̂, which can then be plugged into the prior distribution. At a high level, by73

learning the hyperparameter θ in the prior distribution directly from data, the empirical Bayes method74

provides us a principled and data-dependent way to obtain an estimator of w. In fact, when both the75

prior and the likelihood functions are normal, it has been formally shown that the empirical Bayes76

estimators, e.g., the James-Stein estimator [23] and the Efron-Morris estimator [11], dominate the77

classic maximum likelihood estimator (MLE) in terms of quadratic loss for every choice of the model78

parameter w. At a colloquial level, the success of the empirical Bayes method can be attributed to79

the effect of “borrowing statistical strength” [8], which also makes it a powerful tool in multitask80

learning [30, 46] and meta-learning [15].81

3 Learning with Adaptive Regularization82

In this section we first propose an adaptive regularization (AdaReg) method, which is inspired by the83

empirical Bayes method, for learning neural networks. We then combine our observation in Sec. 184

to develop an efficient adaptive learning algorithm with matrix-variate normal prior. Through our85

derivation, we provide several connections and interpretations with other learning paradigms.86
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Figure 1: Illustration for Bayes/ Empirical Bayes, and our proposed adaptive regularization.

3.1 The Proposed Adaptive Regularization87

When the likelihood function p(D | w) is implemented as a neural network, the marginalization in (1)88

over model parameter w cannot be computed exactly. Nevertheless, instead of performing expensive89

Monte-Carlo simulation, we propose to estimate both the model parameter w and the hyperparameter90

θ in the prior simultaneously from the joint distribution p(D,w | θ) = p(D | w) · p(w | θ).91

Specifically, given an estimate ŵ of the model parameter, by maximizing the joint distribution w.r.t.92

θ, we can obtain θ̂ as an approximation of the maximum marginal likelihood estimator. As a result,93

we can use θ̂ to further refine the estimate ŵ by maximizing the posterior distribution as follows:94

ŵ← max
w

p(w | D) = max
w

p(D | w) · p(w | θ̂). (2)

The maximizer of (2) can in turn be used in an updated joint distribution. Formally, we can define the95

following optimization problem that characterizes our Adaptive Regularization (AdaReg) framework:96

97

max
w

max
θ

log p(D | w) + log p(w | θ). (3)

It is worth connecting the optimization problem (3) to the classic maximum a posteriori (MAP)98

inference and also discuss their difference. If we drop the inner optimization over the hyperparameter99

θ in the prior distribution. Then for any fixed value θ̂, (3) reduces to MAP with the prior defined by100

the specific choice of θ̂, and the maximizer ŵ corresponds to the mode of the posterior distribution101

given by θ̂. From this perspective, the optimization problem in (3) actually defines a series of MAP102

inference problems, and the sequence {ŵj(θ̂j)}j defines a solution path towards the final model103

parameter. On the algorithmic side, the optimization problem (3) also suggests a natural block104

coordinate descent algorithm where we alternatively optimize over w and θ until the convergence of105

the objective function. An illustration of the framework is shown in Fig. 1.106

3.2 Neural Network with Matrix-Normal Prior107

Inspired by the observation from Sec. 1, we propose to define a matrix-variate normal distribution [16]108

over the connection weight matrix W : W ∼MN (0p×d,Σr,Σc), where Σr ∈ Sp++ and Σc ∈ Sd++109

are the row and column covariance matrices, respectively.1 Equivalently, one can understand the110

matrix-variate normal distribution over W as a multivariate normal distribution with a Kronecker111

product covariance structure over vec(W ): vec(W ) ∼ N (0p×d,Σc ⊗ Σr). It is then easy to check112

that the marginal prior distributions over the row and column vectors of W are given by:113

Wi: ∼ N (0d, [Σr]ii · Σc), W:j ∼ N (0p, [Σc]jj · Σr).

We point out that the Kronecker product structure of the covariance matrix exactly captures our prior114

about the connection matrix W : the fan-in/fan-out of neurons in the same layer (row/column vectors115

of W ) are correlated with the same correlation matrix in the prior, and they only differ at the scales.116

For illustration purpose, let us consider the simple feed-forward network discussed in Sec. 1. Consider117

a reparametrization of the model by defining Ωr := Σ−1
r and Ωc := Σ−1

c to be the corresponding118

precision matrices and plug in the prior distribution into the our AdaReg framework (see (3)). After119

1The probability density function is given by p(W | Σr,Σc) =
exp(−Tr(Σ−1

r WΣ−1
c WT )/2)

(2π)pd/2 det(Σr)d/2 det(Σc)p/2
.
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routine algebraic simplifications, we reach the following concrete optimization problem:120

min
W,a

min
Ωr,Ωc

1

2n

∑
i∈[n]

(ŷ(xi;W,a)− yi)2 + λ||Ω1/2
r WΩ1/2

c ||2F − λ
(
d log det(Ωr) + p log det(Ωc)

)
subject to uIp � Ωr � vIp, uId � Ωc � vId (4)
where λ is a constant that only depends on p and d, 0 < u ≤ v and uv = 1. Note that the constraint121

is necessary to guarantee the feasible set to be compact so that the optimization problem is well122

formulated and a minimum is attainable. 2 It is not hard to show that in general the optimization123

problem (4) is not jointly convex in terms of {a,W,Ωr,Ωc}, and this holds even if the activation124

function is linear. However, as we will show later, for any fixed a,W , the reparametrization makes125

the partial optimization over Ωr and Ωc bi-convex. More importantly, we can derive an efficient126

algorithm that finds the optimal Ωr(Ωc) for any fixed a,W,Ωc(Ωr) in O(max{d3, p3}) time with127

closed form solutions. This allows us to apply our algorithm to networks of large sizes, where128

a typical hidden layer can contain thousands of nodes. Note that this is in contrast to solving a129

general semi-definite programming (SDP) problem using black-box algorithm, e.g., the interior-point130

method [35], which is computationally intensive and hard to scale to networks with moderate sizes.131

Before we delve into the details on solving (4), it is instructive to discuss some of its connections and132

differences to other learning paradigms.133

Maximum-A-Posteriori Estimation. Essentially, for model parameter W , (4) defines a sequence of134

MAP problems where each MAP is indexed by the pair of precision matrices (Ω
(t)
r ,Ω

(t)
c ) at iteration t.135

Equivalently, at each stage of the optimization, we can interpret (4) as placing a matrix variate normal136

prior on W where the precision matrix in the prior is given by Ω
(t)
r ⊗ Ω

(t)
c . From this perspective, if137

we fix Ω
(t)
r = Ip and Ω

(t)
c = Id, ∀t, then (4) naturally reduces to learning with `2 regularization [26].138

More generally, for non-diagonal precision matrices, the regularization term for W becomes:139

||Ω1/2
r WΩ1/2

c ||2F = ||vec(Ω1/2
r WΩ1/2

c )||22 = ||(Ω1/2
c ⊗ Ω1/2

r ) vec(W )||22,
and this is exactly the Tikhonov regularization [13] imposed on W where the Tikhonov matrix Γ is140

given by Γ := Ω
1/2
c ⊗Ω

1/2
r . But instead of manually designing the regularization matrix Γ to improve141

the conditioning of the estimation problem, we propose to also learn both precision matrices (so Γ as142

well) from data. From an algorithmic perspective, ΓTΓ = Ωc⊗Ωr serves as a preconditioning matrix143

w.r.t. model parameter W to reshape the gradient according to the geometry of the data [7, 17, 18].144

Volume Minimization. Let us consider the log det(·) function over the positive definite cone. It145

is well known that the log-determinant function is concave [3]. Hence for any pair of matrices146

A1, A2 ∈ Sm++, the following inequality holds:147

log det(A1) ≤ log det(A2) + 〈∇ log det(A2), A1 −A2〉 = log det(A2) + Tr(A−1
2 A1)−m. (5)

Applying the above inequality twice by fixing A1 = WΩcW
T /2d,A2 = Σr and A1 =148

WTΩrW/2p,A2 = Σc respectively leads to the following inequalities:149

d log det(WΩcW
T /2d) ≤ −d log det(Ωr) +

1

2
Tr(ΩrWΩcW

T )− dp,

p log det(WTΩrW/2p) ≤ −p log det(Ωc) +
1

2
Tr(ΩrWΩcW

T )− dp.

Realize Tr(ΩrWΩcW
T ) = ||Ω1/2

r WΩ
1/2
c ||2F . Summing the above two inequalities leads to:150

d log det(WΩcW
T )+p log det(WTΩrW ) ≤ ||Ω1/2

r WΩ1/2
c ||2F−

(
d log det(Ωr)+p log det(Ωc)

)
+c, (6)

where c is a constant that only depends on d and p. Recall that |det(ATA)| computes the squared151

volume of the parallelepiped spanned by the column vectors of A. Hence (6) gives us a natural152

interpretation of the objective function in (4): the regularizer essentially upper bounds the log-volume153

of the two parallelpipeds spanned by the row and column vectors of W . But instead of measuring the154

volume using standard Euclidean inner product, it also takes into account the local curvatures defined155

by Σr and Σc, respectively. For vectors with fixed lengths, the volume of the parallelepiped spanned156

by them becomes smaller when they are more linearly correlated, either positively or negatively. At a157

colloquial level, this means that the regularizer in (4) forces fan-in/fan-out of neurons at the same158

layer to be either positively or negatively correlated with each other, and this corresponds exactly to159

the effect of sharing statistical strengths.160

2The constraint uv = 1 is only for the ease of presentation in the following part and can be readily removed.
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Algorithm 1 Block Coordinate Descent for Adaptive Regularization

Input: Initial value φ(0) := {a(0),W (0)}, Ω
(0)
r ∈ Sp++ and Ω

(0)
c ∈ Sd++, first-order optimization algorithm A.

1: for t = 1, . . . ,∞ until convergence do
2: Fix Ω

(t−1)
r , Ω

(t−1)
c , optimize φ(t) by backpropagation and algorithm A

3: Ω
(t)
r ← INVTHRESHOLD(W (t)Ω

(t−1)
c W (t)T , d, u, v)

4: Ω
(t)
c ← INVTHRESHOLD(W (t)TΩ

(t)
r W (t), p, u, v)

5: end for
6: procedure INVTHRESHOLD(∆,m, u, v)
7: Compute SVD: Qdiag(r)QT = SVD(∆)
8: Hard thresholding r′ ← T[u,v](m/r)

9: return Qdiag(r′)QT

10: end procedure

3.3 The Algorithm161

In this section we describe a block coordinate descent algorithm to optimize the objective function162

in (4) and detail how to efficiently solve the matrix optimization subproblems in closed form using163

tools from convex analysis. Due to space limit, we defer proofs and detailed derivation to appendix.164

Given a pair of constants 0 < u ≤ v, we define the following thresholding function T[u,v](x):165

T[u,v](x) := max{u,min{v, x}}. (7)

We summarize our block coordinate descent algorithm to solve (4) in Alg. 1. In each iteration, Alg. 1166

takes a first-order algorithm A, e.g., the stochastic gradient descent, to optimize the parameters of the167

neural network by backpropagation. It then proceeds to compute the optimal solutions for Ωr and Ωc168

using INVTHRESHOLD as a sub-procedure. Alg. 1 terminates when a stationary point is found.169

We now proceed to show that the procedure INVTHRESHOLD finds the optimal solution given all the170

other variables fixed. Due to the symmetry between Ωr and Ωc in (4), we will only prove this for Ωr,171

and similar arguments can be applied to Ωc as well. Fix both W , Ωc and ignore all the terms that do172

not depend on Ωr, the sub-problem on optimizing Ωr becomes:173

min
Ωr

Tr(ΩrWΩcW
T )− d log det(Ωr), subject to uIp � Ωr � vIp. (8)

It is not hard to show that the optimization problem (8) is convex. Define the constraint set174

C := {A ∈ Sp++ | uIp � A � vIp} and the indicator function IC(A) = 0 iff A ∈ C else175

∞. Given the convexity of (8), we can use the indicator function to first transform (8) into an176

unconstrained one and use the first-order optimality condition to characterize the optimal solu-177

tion: 0 ∈ ∂
(

1
d Tr(ΩrWΩcW

T )− log det(Ωr) + IC(Ωr)
)

= WΩcW
T /d−Ω−1

r +NC(Ωr), where178

NC(A) := {B ∈ Sp | Tr(BT (Z −A)) ≤ 0,∀Z ∈ C} is the normal cone w.r.t. C at A. With the help179

of Lemma 1 in appendix, equivalently, we have Ω−1
r −WΩcW

T /d ∈ NC(Ωr). Geometrically, this180

means that the optimum Ω−1
r is the Euclidean projection of WΩcW

T /d onto C. Hence in order to181

solve (8), it suffices if we can solve the following Euclidean projection problem efficiently, where182

Ω̃r ∈ Sp is a real symmetric matrix:183

min
Ωr

||Ωr − Ω̃r||2F , subject to uIp � Ωr � vIp. (9)

The following theorem characterizes the optimal solution to the above Euclidean projection problem:184

Theorem 1. Let Ω̃r ∈ Sp with eigendecomposition as Ω̃r = QΛQT and ProjC(·) be the Euclidean185

projection operator onto C, then ProjC(Ω̃r) = QT[u,v](Λ)QT .186

Corollary 1. Let WΩcW
T be eigendecomposed as Qdiag(r)QT , then the optimal solution to (8) is187

given by QT[u,v](d/r)QT .188

Similar arguments can be made to derive the solution for Ωc in (4). The final algorithm is very189

simple as it only contains one SVD, hence its time complexity is O(max{d3, p3}). Note that the total190

number of parameters in the network is at least Ω(dp), hence the algorithm is efficient as it scales191

sub-quadratically in terms of number of parameters in the network.192
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Table 1: Explained variance of different methods on 7 regression tasks from the SARCOS dataset.

Method 1st 2nd 3rd 4th 5th 6th 7th

MTL 0.4418 0.3472 0.5222 0.5036 0.6024 0.4727 0.5298
MTL-Dropout 0.4413 0.3271 0.5202 0.5063 0.6036 0.4711 0.5345
MTL-BN 0.4768 0.3770 0.5396 0.5216 0.6117 0.4936 0.5479
MTL-DeCoV 0.4027 0.3137 0.4703 0.4515 0.5229 0.4224 0.4716
MTL-AdaReg 0.4769 0.3969 0.5485 0.5308 0.6202 0.5085 0.5561

4 Experiments193

In this section we demonstrate the effectiveness of AdaReg in learning practical deep neural networks194

on real-world datasets. We report generalization, optimization as well as stability results.195

4.1 Experimental Setup196

Multiclass Classification (MNIST & CIFAR10): In this experiment, we show that AdaReg provides197

an effective regularization on the network parameters. To this end, we use a convolutional neural198

network as our baseline model. To show the effect of regularization, we gradually increase the199

training set size. In MNIST we use the step from 60 to 60,000 (11 different experiments) and in200

CIFAR10 we consider the step from 5,000 to 50,000 (10 different experiments). For each training201

set size, we repeat the experiments for 10 times. The mean along with its standard deviation are202

shown as the statistics. Moreover, since both the optimization and generalization of neural networks203

are sensitive to the size of minibatches [14, 24], we study two minibatch settings for 256 and 2048,204

respectively. In our method, we place a matrix-variate normal prior over the weight matrix of the last205

softmax layer, and we use Alg. 1 to optimize both the model weights and two covariance matrices.206

Multitask Regression (SARCOS): SARCOS relates to an inverse dynamics problem for a seven207

degree-of-freedom (DOF) SARCOS anthropomorphic robot arm [44]. The goal of this task is to208

map from a 21-dimensional input space (7 joint positions, 7 joint velocities, 7 joint accelerations) to209

the corresponding 7 joint torques. Hence there are 7 tasks and the inputs are shared among all the210

tasks. The training set and test set contain 44,484 and 4,449 examples, respectively. Again, we apply211

AdaReg on the last layer weight matrix, where each row corresponds to a separate task vector.212

We compare AdaReg with classic regularization methods in the literature, including weight decay,213

dropout [42], batch normalization (BN) [22] and the DeCov method [6]. We also note that we214

fix all the hyperparameters such as learning rate to be the same for all the methods. We report215

evaluation metrics on test set as a measure of generalization. To understand how the proposed216

adaptive regularization helps in optimization, we visualize the trajectory of the loss function during217

training. Lastly, we also present the inferred correlation of the weight matrix for qualitative study.218

4.2 Results and Analysis219

Multiclass Classification (MNIST & CIFAR10): Results on the multiclass classification for dif-220

ferent training sizes are show in Fig. 2. For both MNIST and CIFAR10, we find AdaReg, Weight221

Decay, and Dropout are the effective regularization methods, while Batch Normalization and DeCov222

vary in different settings. Batch Normalization suffers from large batch size in CIFAR10 (comparing223

Fig. 2 (c) and (d)) but is not sensitive to batch size in MNIST (comparing Fig. 2 (a) and (b)). The224

performance deterioration in large batch size of Batch Normalization is also observed by [21]. DeCov,225

on the other hand, improves the generalization in MNIST with batch size 256 (see Fig. 2 (a)), while226

it demonstrates only comparable or even worse performance in other settings. To conclude, as227

training set size grows, AdaReg consistently performs better generalization as comparing to other228

regularization methods. We also note that AdaReg is not sensitive to the size of minibatches while229

most of the methods suffer from large minibatches. In appendix, we show the combination of AdaReg230

with other generalization methods can usually lead to even better results.231

Multitask Regression (SARCOS): In this experiment we are interested in investigating whether232

AdaReg can lead to better generalization for multiple related regression problems. To do so, we233

report the explained variance as a normalized metric, e.g., one minus the ratio between mean squared234

error and the variance of different methods in Table 1. The larger the explained variance, the better235
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(a) MNIST (Batch Size: 256) (b) MNIST (Batch Size: 2048) (c) CIFAR10 (Batch Size: 256) (d) CIFAR10 (Batch Size: 2048) 

AdaReg AdaReg

Figure 2: Generalization performance on MNIST and CIFAR10. AdaReg improves generalization under both
minibatch settings.
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(a) T/B: 600/256
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(b) T/B: 6000/256
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(c) T/B: 600/2048
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(d) T/B: 6000/2048

Figure 3: Optimization trajectory of AdaReg on MNIST with training size/batch size on training and
test sets. AdaReg helps to converge to better local optima. Note the log-scale on y-axis.
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(a) MNIST: S. rank
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(b) MNIST: S. norm
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(c) CIFAR10: S. rank
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(d) CIFAR10: S. norm

Figure 4: Comparisons of stable ranks (S. rank) and spectral norms (S. norm) from different methods
on MNIST and CIFAR10. x-axis corresponds to the training size.

the predictive performance. In this case we observe a consistent improvement of AdaReg over other236

competitors on all the 7 regression tasks. We would like to emphasize that all the experiments237

share exactly the same experimental protocol, including network structure, optimization algorithm,238

training iteration, etc, so that the performance differences can only be explained by different ways of239

regularizations. For better visualization, we also plot the result in appendix.240

Optimization: It has recently been empirically shown that BN helps optimization not by reducing241

internal covariate shift, but instead by smoothing the landscape of the loss function [40]. To understand242

how AdaReg improves generalization, in Fig. 3, we plot the values of the cross entropy loss function243

on both the training and test sets during optimization using Alg. 1. The experiment is performed244

in MNIST with batch size 256/2048. In this experiment, we fix the number of outer loop to be 2/5245

and each block optimization over network weights contains 50 epochs. Because of the stochastic246

optimization over model weights, we can see several unstable peaks in function value around iteration247

50 when trained with AdaReg, which corresponds to the transition phase between two consecutive248

outer loops with different row/column covariance matrices. In all the cases AdaReg converges to249

better local optima of the loss landscape, which lead to better generalization on the test set as well250

because they have smaller loss values on the test set when compared with training without AdaReg.251

Stable rank and spectral norm: Given a matrix W , the stable rank of W , denoted as srank(W ), is252

defined as srank(W ) := ||W ||2F /||W ||22. As its name suggests, the stable rank is more stable than253

the rank because it is largely unaffected by tiny singular values. It has recently been shown [37,254

Theorem 1] that the generalization error of neural networks crucially depends on both the stable ranks255

and the spectral norms of connection matrices in the network. Specifically, it can be shown that the256

generalization error is upper bounded by O
(√∏L

j=1 ||Wj ||22
∑L
j=1 srank(Wj)/n

)
, where L is the257

number of layers in the network. Essentially, this upper bound suggests that smaller spectral norm258

(smoother function mapping) and stable rank (skewed spectrum) leads to better generalization.259
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(a) CNN, Acc: 89.34

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.8

0.4

0.0

0.4

0.8

(b) AdaReg, Acc: 92.50
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(c) CNN, Acc: 98.99
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(d) AdaReg, Acc: 99.19
Figure 5: Correlation matrix of the weight matrix in the softmax layer. The left two correspond to
dataset with training size 600 and the right two with size 60,000. Acc means the test set accuracy.

To understand why AdaReg improves generalization, in Fig. 4, we plot both the stable rank and the260

spectral norm of the weight matrix in the last layer of the CNNs used in our MNIST and CIFAR10261

experiments. We compare 3 methods: CNN without any regularization, CNN trained with weight262

decay and CNN with AdaReg. For each setting we repeat the experiments for 5 times, and we plot263

the mean along with its standard deviation. From Fig. 4a and Fig. 4c it is clear that AdaReg leads to a264

significant reduction in terms of the stable rank when compared with weight decay, and this effect265

is consistent in all the experiments with different training size. Similarly, in Fig. 4b and Fig. 4d we266

plot the spectral norm of the weight matrix. Again, both weight decay and AdaReg help reduce the267

spectral norm in all settings, but AdaReg plays a more significant role than the usual weight decay.268

Combining the experiments with the generalization upper bound introduced above, we can see that269

training with AdaReg leads to an estimator of W that has lower stable rank and smaller spectral norm,270

which explains why it achieves a better generalization performance. Furthermore, this observation271

holds on the SARCOS datasets as well, and we show the results in the appendix.272

Correlation Matrix: To verify that AdaReg imposes the effect of “sharing statistical strength”273

during training, we visualize the weight matrix of the softmax layer by computing the corresponding274

correlation matrix, as shown in Fig. 5. In Fig. 5, darker color means stronger correlation. We conduct275

two experiments with training size 600 and 60,000 respectively. As we can observe, training with276

AdaReg leads to weight matrix with stronger correlations, and this effect is more evident when the277

training set is large. This is consistent with our analysis of sharing statistical strengths. As a sanity278

check, from Fig. 5 we can also see that similar digits, e.g., 1 and 7, share a positive correlation while279

dissimilar ones, e.g., 1 and 8, share a negative correlation.280

5 Related Work281

Despite the name, empirical Bayes method is in fact a frequentist approach to obtain estimator with282

favorable properties. On the other hand, truly Bayesian inference would instead put a posterior283

distribution over model weights to characterize the uncertainty during training [2, 20, 32]. However,284

due to the complexity of nonlinear neural networks, analytic posterior is not available, hence strong285

independent assumptions over model weight have to be made in order to achieve computationally286

tractable variational solution. Typically, both the prior and the variational posterior are assumed287

to fully factorize over model weights. As an exception, Louizos and Welling [31], Sun et al. [43]288

seek to learn Bayesian neural nets where they approximate the intractable posterior distribution289

using matrix-variate Gaussian distribution. The prior for weights are still assumed to be known and290

fixed. As a comparison, we use matrix-variate Gaussian as the prior distribution and we learn the291

hyperparameter in the prior from data. Hence our method does not belong to Bayesian neural nets:292

we instead use the empirical Bayes principle to derive adaptive regularization method in order to have293

better generalization, as done in [4, 38].294

6 Conclusion295

Inspired by empirical Bayes method, we propose an adaptive regularization (AdaReg) with matrix-296

variate normal prior for model parameters in deep neural networks. The prior encourages neurons297

to borrow statistical strength from other neurons during the learning process, and it provides an298

effective regularization when training networks on small datasets. To optimize the model, we design299

an efficient block coordinate descent algorithm to learn both model weights and the covariance300

structures. Empirically, on three datasets we demonstrate that AdaReg improves generalization by301

finding better local optima with smaller spectral norms and stable ranks.302
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In this appendix we first describe more related work, and then present missing proofs in the main412

section. We also provide detailed description of our experiments.413

A More Related Work414

Different kinds of regularization approaches have been studied and designed for neural networks,415

e.g., weight decay [26], early stopping [5], Dropout [42] and the more recent DeCov [6] method.416

BN was proposed to reduce the internal covariate shift during training, but recently it has been417

empirically shown to actually smooth the landscape of the loss function [40]. As a comparison, we418

propose AdaReg as an adaptive regularization method, with the aim to reduce overfitting by allowing419

neurons to share statistical strengths. From the optimization perspective, learning the row and column420

covariance matrices help to converge to better local optimum that also generalizes better.421

The Kronecker factorization assumption has also been applied in the literature of neural networks422

to approximate the Fisher information matrix in second-order optimization methods [34, 45]. The423

main idea here is to approximate the curvature of the loss function’s landscape, in order to achieve424

better convergence speed compared with first-order method while maintaining the tractability of such425

computation.426

Determinantal point process (DPP) has been previously applied to compress neural networks [33].427

Specifically, a DPP kernel is placed over the activations of neurons from the same layer, and then428

neurons with similar activations over a fixed dataset are merged into a single one. However, it is429

well known that DPPs can capture only negative correlations [27, 28], and as a result they do not430

stimulate neurons to learn from the experience of other neurons. As a comparison, by explicitly431

learning both precision (covariance) matrices, our framework can account for both positive and432

negative correlations among fan-in/fan-out of neurons from the same layer.433

B Detailed Derivation and Proofs of Our Algorithm434

We first show that the optimization problem (8) is convex:435

Proposition 1. The optimization problem (8) is convex.436

Proof. It is clear that the objective function is convex: the trace term is linear in Ωr and it is well-437

known that the log det(·) is concave in the positive definite cone [3], hence it trivially follows that438

Tr(ΩrWΩcW
T )− d log det(Ωr) is convex in Ωr.439

It remains to show that the constraint set is also convex. Let Ω1,Ω2 be any feasible points, i.e.,440

uIp � Ω1 � vIp and uIp � Ω2 � vIp. Let ∀t ∈ (0, 1), we have:441

||tΩ1 + (1− t)Ω2||2 ≤ t||Ω1||2 + (1− t)||Ω2||2 ≤ tv + (1− t)v = v,

where we use || · ||2 to denote the spectral norm of a matrix. Now since both Ω1 and Ω2 are positive442

definite, the spectral norm is also the largest eigenvalue, hence this shows that tΩ1 +(1− t)Ω2 � vIp.443

To show the other direction, we use the Courant-Fischer characterization of eigenvalues. Let λmin(A)444

denote the minimum eigenvalue of a real symmetric matrix A, then by the Courant-Fischer min-max445

theorem, we have:446

λmin(A) := min
x6=0,||x||2=1

||Ax||2.

For the matrix tΩ1 + (1− t)Ω2, let x∗ be the vector corresponding to the minimum eigenvalue, hence447

we have:448

λmin(tΩ1 + (1− t)Ω2) = min
x6=0,||x||2=1

||(tΩ1 + (1− t)Ω2)x||2

= (tΩ1 + (1− t)Ω2)x∗

≥ tλmin(Ω1) + (1− t)λmin(Ω2)

≥ tu+ (1− t)u
= u,

which also means that tΩ1 + (1− t)Ω2 � uIp, and this completes the proof. �449
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The following key lemma characterizes the structure of the normal cone:450

Lemma 1. Let Ωr ∈ C, then NC(Ωr) = −NC(Ω−1
r ).451

Proof. Let S ∈ NC(Ωr). We want to show −S ∈ NC(Ω−1
r ). By definition of the normal cone, since452

S ∈ NC(Ωr), we have:453

Tr(SZ) ≤ Tr(SΩr), ∀Z ∈ C
Now realize that Ωr ∈ C and C is a compact set, it follows Ωr is the solution of the following linear454

program:455

max Tr(SZ), subject to Z ∈ C
Since both S and Z are real symmetric matrix, we can decompose them as Z := QZΛZQ

T
Z and456

S := QSΛSQ
T
S , where both QZ , QS are orthogonal matrices and ΛZ ,ΛS are diagonal matrices with457

the corresponding eigenvalues in decreasing order. Plug them into the objective function, we have:458

Tr(SZ) = Tr(QSΛSQ
T
SQZΛZQ

T
Z) = Tr(ΛSQ

T
SQZΛZQ

T
ZQS).

Define K := QTSQZ and D = K ◦K, where we use ◦ to denote the Hadamard product between two459

matrices. Since both QS and QZ are orthogonal matrices, we know that K is also orthogonal, which460

implies:461
p∑
j=1

Dij = 1,∀i ∈ [p], and
p∑
i=1

Dij = 1,∀j ∈ [p].

As a result, D is a doubly stochastic matrix and we can further simplify the objective function as:462

Tr(ΛSQ
T
SQZΛZQ

T
ZQS) = Tr(ΛSKΛZK

T ) = λTSDλZ =

p∑
i,j=1

λS,iDijλZ,j ,

where λS and λZ are p dimensional vectors that contain the eigenvalues of S and Z in decreasing463

order, respectively. Now for any λS and λZ in decreasing order, we have:464

u

p∑
i=1

λS,i ≤
p∑
i=1

λS,iλZ,1+p−i ≤
p∑

i,j=1

λS,iDijλZ,j ≤
p∑
i=1

λS,iλZ,i ≤ v
p∑
i=1

λS,i (10)

From (10), in order for Ωr to maximize the linear program, it must hold that D = K = Ip and all the465

eigenvalues of Ωr are v. But due to the assumption that uv = 1, in this case we also know that all466

the eigenvalues of Ω−1
r are 1/v = u, hence Ω−1

r also minimizes the above linear program, which467

implies:468

Tr(SΩ−1
r ) ≤ Tr(SZ), ∀Z ∈ C ⇔ Tr(−S(Z − Ω−1

r )) ≤ 0 ∀Z ∈ C.
In other words, we have −S ∈ NC(Ω−1

r ). Using exactly the same arguments it is clear to see that the469

other direction also holds, hence we have NC(Ωr) = −NC(Ω−1
r ). �470

Based on the previous first-order optimality condition, it is clear to see that Lemma 1 implies471

WΩcW
T /d− Ω−1

r ∈ NC(Ω−1
r ). Geometrically, this means that the optimum Ω−1

r is the Euclidean472

projection of WΩcW
T /d onto C. Hence we proceed to derive the projection operator:473

Theorem 1. Let Ω̃r ∈ Sp with eigendecomposition as Ω̃r = QΛQT and ProjC(·) be the Euclidean474

projection operator onto C, then ProjC(Ω̃r) = QT[u,v](Λ)QT .475

Proof. Since Ωr ∈ C is real and symmetric, we can reparametrize Ωr as Ωr := UΛΩr
UT where U476

is an orthogonal matrix and ΛΩr
is a diagonal matrix whose entries corresponds to the eigenvalues of477

Ωr. Recall that U corresponds to a rigid transformation that preserves length, so we have:478

||Ωr − Ω̃r||2F = ||UΛΩr
UT − UUT Ω̃rUU

T ||2F = ||ΛΩr
− UT Ω̃rU ||2F (11)

Define B := UT Ω̃rU . Now by using the fact that Ω̃r can be eigendecomposed as Ω̃r = QΛQT , we479

can further simplify (11) as:480

||ΛΩr
−UT Ω̃rU ||2F =

∑
i∈[p]

(ΛΩr,ii−Bii)2+
∑
i 6=j

B2
ij ≥

∑
i∈[p]

(ΛΩr,ii−Bii)2 ≥
∑
i∈[p]

(T[u,v](Bii)−Bii)2,

where the last inequality holds because u ≤ ΛΩr,ii ≤ v,∀i ∈ [p]. In order to achieve the first481

equality, B = UT Ω̃rU should be a diagonal matrix, which means UTQ = Ip ⇔ U = Q. In this482

case, diag(B) = Λ. To achieve the second equality, simply let ΛΩr
= T[u,v](diag(B)) = T[u,v](Λ),483

which completes the proof. �484
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Table 2: Stable rank and spectral norm on SARCOS.

Stable Rank Spectral Norm
MTL 4.48 0.96
MTL-WeightDecay 4.83 0.92
MTL-AdaReg 2.88 0.70

C More Experiments485

In this section we first describe the network structures used in our main experiments and present more486

experimental results.487

C.1 Network Structures488

Multiclass Classification (MNIST & CIFAR10): We use a convolutional neural network as our489

baseline model. The network used in the experiment has the following structure: CONV5×5×1×10-490

CONV5×5×10×20-FC320×50-FC50×10. The notation CONV5×5×1×10 denotes a convolutional layer491

with kernel size 5 × 5 from depth 1 to 10; the notation FC320×50 denotes a fully connected layer492

with size 320× 50. Similarly, CIFAR10 considers the structure: CONV5×5×3×10-CONV5×5×10×20-493

FC500×500-FC500×500-FC500×10.494

Multitask Regression (SARCOS): The network structure is given by FC21×256-FC256×100-495

FC100×7.496

C.2 Stable Rank and Spectral Norm on SARCOS497

We also show the experimental results of stable ranks and spectral norms on the SARCOS dataset.498

For the SARCOS dataset, the weight matrix being regularized is of dimension 100× 7. Again, we499

compare the results using three methods: MTL, MTL-WeightDecay and MTL-AdaReg. As can be500

observed from Table 2, compared with the weight decay regularization, AdaReg greatly reduces501

both the stable rank and the spectral norm of learned weight matrix, which also helps to explain why502

MTL-AdaReg generalizes better compared with MTL and MTL-WeightDecay.503

C.3 Combination504

As discussed in the main text, combining the proposed AdaReg with BN can further improve the505

generalization performance, due to the complementary effects between these two approaches: BN506

helps smoothing the landscape of the loss function while AdaReg also changes the curvature via the507

row and column covariance matrices (see Fig. 6).508

On the other hand, we do not observe significant difference when combining AdaReg with Dropout509

on this dataset. While we are not clear what is the exact reason for this effect, we conjecture this is510

due to the fact that Dropout works as a regularizer that prevents coadaptation while AdaReg instead511

encourages neurons to learn from each other.512

C.4 Ablations513

In all the experiments, the AdaReg algorithm is performed on the softmax layer. Here, we study514

the effects of applying AdaReg algorithm in all CONV/FC layers, all CONV layers, all FC layers,515

and the last FC layer (i.e., softmax layer). We first discuss how we handle the convolutions in our516

AdaReg algorithm. Consider a convolutional layer with {input channel, output channel, kernel width,517

kernel height} being {a, b, kw, kh}, we vectorize the original 4-D tensor to be a 2-D matrix of size518

akwkh × b. The AdaReg algorithm can therefore be directly applied on this transformed matrix.519

Next, we perform the experiment on MNIST with batch size 2048 in Fig. 7. The training set size here520

is chosen as {128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 60000}.521

We find that simply applying the AdaReg algorithm in the softmax layer reaches best generalization522

as comparing to applying AdaReg on more layers. The improvement is more obvious when the523

training set size is small. We argue that neural networks can be realized as a combination of a complex524
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Figure 6: Combine AdaReg with BN and Dropout on MNIST.

102 103 104

Train Size

75

80

85

90

95

A
cc

ur
ac

y

ALL
CONV
FC
LAST

Figure 7: Applying AdaReg on different layers in neural networks for MNIST with batch size 2048.

nonlinear transformation (i.e., feature extraction) and a linear model (i.e., softmax layer). Since525

AdaReg represents a correlation learning in the weight matrix, it implies that implicit correlations526

of neurons can also be discovered. In the real world setting, different tasks should be correlated.527

Therefore, applying AdaReg in the linear model shall improve the model performance by discovering528

these tasks correlations. On the contrary, the nonlinear features should be decorrelated for the purpose529

of generalization. Hence, applying AdaReg in previous layers may lead to adversarial effect.530

C.5 Covariance matrices in the prior531

One byproduct that AdaReg brings to us is the learned row and column covariance matrices, which532

can be used in exploratory data analysis to understand the correlations between learned features and533

different output tasks. To this end, we visualize both the row and column covariance matrices in534

Fig. 8. The two covariance matrices on the first row correspond to the ones learned on a training set535

with 600 instances while the two on the second row are trained with the full dataset on MNIST.536

From Fig. 8 we can make the following observations: the structure of both covariance matrices537

become more evident when trained with larger dataset, and this is consistent with the Bayesian538

principle because more data provide more evidence. Second, we observe in our experiments that the539

variances of both matrices are small. In fact, the variance of the row covariance matrix Σr achieves540

the lower bound limit u at convergence. Lastly, comparing the row covariance matrix Σr in Fig. 8541

with the one computed from model weights in Fig. 5, we can see that both matrices exhibit the same542

correlation patterns, except that the one obtained from model weights are more evident, which is543

15



0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.8

0.4

0.0

0.4

0.8

(a) Row Cov. matrix trained on 600 instances.
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(b) Column Cov. matrix trained on 600 instances.
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(c) Row Cov. matrix trained on 60,000 instances.
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(d) Column Cov. matrix trained on 60,000 instances.

Figure 8: Recovered row covariance matrix Σr and column covariance matrix Σc in the prior
distribution on MNIST.

due to the fact that model weights are closer to data evidence than the row covariance matrix in the544

Bayesian hierarchy.545

On the other hand, the column covariance matrix in Fig. 8 also exhibit rich correlations between the546

learned features, e.g., the neurons in the penultimate layer. Again, with more data, these patterns547

become more evident.548
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Figure 9: Explained variance of different methods on 7 regression tasks from the SARCOS dataset.
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