
Neural Proximal/Trust Region Policy Optimization
Attains Globally Optimal Policy

Boyi Liu∗† Qi Cai∗‡ Zhuoran Yang§ Zhaoran Wang¶

Abstract

Proximal policy optimization and trust region policy optimization (PPO and
TRPO) with actor and critic parametrized by neural networks achieve significant
empirical success in deep reinforcement learning. However, due to nonconvexity,
the global convergence of PPO and TRPO remains less understood, which sepa-
rates theory from practice. In this paper, we prove that a variant of PPO and TRPO
equipped with overparametrized neural networks converges to the globally opti-
mal policy at a sublinear rate. The key to our analysis is the global convergence
of infinite-dimensional mirror descent under a notion of one-point monotonicity,
where the gradient and iterate are instantiated by neural networks. In particu-
lar, the desirable representation power and optimization geometry induced by the
overparametrization of such neural networks allow them to accurately approxi-
mate the infinite-dimensional gradient and iterate.

1 Introduction

Policy optimization aims to find the optimal policy that maximizes the expected total reward through
gradient-based updates. Coupled with neural networks, proximal policy optimization (PPO) [40]
and trust region policy optimization (TRPO) [39] are among the most important workhorses behind
the empirical success of deep reinforcement learning across applications such as games [34] and
robotics [13]. However, the global convergence of policy optimization, including PPO and TRPO,
remains less understood due to multiple sources of nonconvexity, including (i) the nonconvexity of
the expected total reward over the infinite-dimensional policy space and (ii) the parametrization of
both policy (actor) and action-value function (critic) using neural networks, which leads to noncon-
vexity in optimizing their parameters. As a result, PPO and TRPO are only guaranteed to monoton-
ically improve the expected total reward over the infinite-dimensional policy space [23, 24, 39, 40],
while the global optimality of the attained policy, the rate of convergence, as well as the impact
of parametrizing policy and action-value function all remain unclear. Such a gap between theory
and practice hinders us from better diagnosing the possible failure of deep reinforcement learning
[37, 19, 21] and applying it to critical domains such as healthcare [28] and autonomous driving [38]
in a more principled manner.

Closing such a theory-practice gap boils down to answering three key questions: (i) In the ideal case
that allows for infinite-dimensional policy updates based on exact action-value functions, how do
PPO and TRPO converge to the optimal policy? (ii) When the action-value function is parametrized
by a neural network, how does temporal-difference learning (TD) [41] converge to an approximate
action-value function with sufficient accuracy within each iteration of PPO and TRPO? (iii) When

∗equal contribution
†Northwestern University; boyiliu2018@u.northwestern.edu
‡Northwestern University; qicai2022@u.northwestern.edu
§Princeton University; zy6@princeton.edu
¶Northwestern University; zhaoranwang@gmail.com

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

the policy is parametrized by another neural network, based on the approximate action-value func-
tion attained by TD, how does stochastic gradient descent (SGD) converge to an improved policy
that accurately approximates its ideal version within each iteration of PPO and TRPO? However,
these questions largely elude the classical optimization framework, as questions (i)-(iii) involve non-
convexity, question (i) involves infinite-dimensionality, and question (ii) involves bias in stochastic
(semi)gradients [44, 42]. Moreover, the policy evaluation error arising from question (ii) compounds
with the policy improvement error arising from question (iii), and they together propagate through
the iterations of PPO and TRPO, making the convergence analysis even more challenging.

Contribution. By answering questions (i)-(iii), we establish the first nonasymptotic global rate
of convergence of a variant of PPO (and TRPO) equipped with neural networks. In detail,
we prove that, with policy and action-value function parametrized by randomly initialized and
overparametrized two-layer neural networks, PPO converges to the optimal policy at the rate of
O(1/

√
K), where K is the number of iterations. For solving the subproblems of policy evaluation

and policy improvement within each iteration of PPO, we establish nonasymptotic upper bounds of
the numbers of TD and SGD iterations, respectively. In particular, we prove that, to attain an ε accu-
racy of policy evaluation and policy improvement, which appears in the constant of the O(1/

√
K)

rate of PPO, it suffices to take O(1/ε2) TD and SGD iterations, respectively.

More specifically, to answer question (i), we cast the infinite-dimensional policy updates in the ideal
case as mirror descent iterations. To circumvent the lack of convexity, we prove that the expected
total reward satisfies a notation of one-point monotonicity [14], which ensures that the ideal policy
sequence evolves towards the optimal policy. In particular, we show that, in the context of infinite-
dimensional mirror descent, the exact action-value function plays the role of dual iterate, while the
ideal policy plays the role of primal iterate [31, 32, 36]. Such a primal-dual perspective allows us to
cast the policy evaluation error in question (ii) as the dual error and the policy improvement error in
question (iii) as the primal error. More specifically, the dual and primal errors arise from using neural
networks to approximate the exact action-value function and the ideal improved policy, respectively.
To characterize such errors in questions (ii) and (iii), we unify the convergence analysis of TD for
minimizing the mean squared Bellman error (MSBE) [7] and SGD for minimizing the mean squared
error (MSE) [22, 27, 10, 3, 54, 8, 9, 26, 5], both over neural networks. In particular, we show that
the desirable representation power and optimization geometry induced by the overparametrization of
neural networks enable the global convergence of both the MSBE and MSE, which correspond to the
dual and primal errors, at a sublinear rate to zero. By incorporating such errors into the analysis of
infinite-dimensional mirror descent, we establish the global rate of convergence of PPO. As a side
product, the proof techniques developed here for handling nonconvexity, infinite-dimensionality,
semigradient bias, and overparametrization may be of independent interest to the analysis of more
general deep reinforcement learning algorithms. In addition, it is worth mentioning that, when the
activation functions of neural networks are linear, our results cover the classical setting with linear
function approximation, which encompasses the classical tabular setting as a special case.

More Related Work. PPO [40] and TRPO [39] are proposed to improve the convergence of vanilla
policy gradient [49, 43] in deep reinforcement learning. Related algorithms based on the idea of
KL-regularization include natural policy gradient and actor-critic [23, 35], entropy-regularized pol-
icy gradient and actor-critic [29], primal-dual actor-critic [12, 11], soft Q-learning and actor-critic
[17, 18], and dynamic policy programming [6]. Despite its empirical success, policy optimization
generally lacks global convergence guarantees due to nonconvexity. One exception is the recent
analysis by [33], which establishes the global convergence of TRPO to the optimal policy. However,
[33] require infinite-dimensional policy updates based on exact action-value functions and do not
provide the nonasymptotic rate of convergence. In contrast, we allow for the parametrization of
both policy and action-value function using neural networks and provide the nonasymptotic rate of
PPO as well as the iteration complexity of solving the subproblems of policy improvement and pol-
icy evaluation. In particular, based on the primal-dual perspective of reinforcement learning [36], we
develop a concise convergence proof of PPO as infinite-dimensional mirror descent under one-point
monotonicity, which is of independent interest. In addition, we refer to the closely related concurrent
work [2] for the global convergence analysis of (natural) policy gradient for discrete state and action
spaces as well as continuous state space with linear function approximation. See also the concurrent
work [52], which studies continuous state space with general function approximation, but only es-

2

tablishes the convergence to a locally optimal policy. In addition, in our companion paper [48], we
establish the global convergence of neural (natural) policy gradient.

2 Background

In this section, we briefly introduce the general setting of reinforcement learning as well as PPO
and TRPO.

Markov Decision Process. We consider the Markov decision process (S,A,P, r, γ), where S
is a compact state space, A is a finite action space, P : S × S × A → R is the transition kernel,
r : S×A → R is the reward function, and γ ∈ (0, 1) is the discount factor. We track the performance
of a policy π : A×S → R using its action-value function (Q-function) Qπ : S ×A → R, which is
defined as

Qπ(s, a) = (1− γ) · E
[∞∑
t=0

γt · r(st, at)
∣∣∣∣ s0 = s, a0 = a, at ∼ π(· | st), st+1 ∼ P(· | st, at)

]
.

Correspondingly, the state-value function V π : S → R of a policy π is defined as

V π(s) = (1− γ) · E
[∞∑
t=0

γt · r(st, at)
∣∣∣∣ s0 = s, at ∼ π(· | st), st+1 ∼ P(· | st, at)

]
. (2.1)

The advantage function Aπ : S × A → R of a policy π is defined as Aπ(s, a) = Qπ(s, a) −
V π(s). We denote by νπ(s) and σπ(s, a) = π(a | s) · νπ(s) the stationary state distribution and
the stationary state-action distribution associated with a policy π, respectively. Correspondingly, we
denote by Eσπ [·] and Eνπ [·] the expectations E(s,a)∼σπ [·] = Ea∼π(· | s),s∼νπ(·)[·] and Es∼νπ [·],
respectively. Meanwhile, we denote by 〈·, ·〉 the inner product over A, e.g., we have V π(s) =
Ea∼π(· | s)[Qπ(s, a)] = 〈Qπ(s, ·), π(· | s)〉.

PPO and TRPO. At the k-th iteration of PPO, the policy parameter θ is updated by

θk+1 ← argmax
θ

Ê
[
πθ(a | s)
πθk(a | s)

·Ak(s, a)− βk ·KL(πθ(· | s) ‖πθk(· | s))
]
, (2.2)

where Ak is an estimator of Aπθk and Ê[·] is taken with respect to the empirical version of σπθk ,
that is, the empirical stationary state-action distribution associated with the current policy πθk . In
practice, the penalty parameter βk is adjusted by line search.

At the k-th iteration of TRPO, the policy parameter θ is updated by

θk+1 ← argmax
θ

Ê
[
πθ(a | s)
πθk(a | s)

·Ak(s, a)

]
, subject to KL(πθ(· | s) ‖πθk(· | s)) ≤ δ, (2.3)

where δ is the radius of the trust region. The PPO update in (2.2) can be viewed as a Lagrangian
relaxation of the TRPO update in (2.3) with Lagrangian multiplier βk, which implies their updates
are equivalent if βk is properly chosen. Without loss of generality, we focus on PPO hereafter.

It is worth mentioning that, compared with the original versions of PPO [40] and TRPO [39], the
variants in (2.2) and (2.3) use KL(πθ(· | s) ‖πθk(· | s)) instead of KL(πθk(· | s) ‖πθ(· | s)). In Sec-
tions 3 and 4, we show that, as the original versions, such variants also allow us to approximately
obtain the improved policy πθk+1

using SGD, and moreover, enjoy global convergence.

3 Neural PPO

We present more details of PPO with policy and action-value function parametrized by neural net-
works. For notational simplicity, we denote by νk and σk the stationary state distribution νπθk and
the stationary state-action distribution σπθk , respectively. Also, we define an auxiliary distribution
σ̃k over S ×A as σ̃k = νkπ0.

Neural Network Parametrization. Without loss of generality, we assume that (s, a) ∈ Rd for all
s ∈ S and a ∈ A. We parametrize a function u : S×A → R, e.g., policy π or action-value function

3

Qπ , by the following two-layer neural network, which is denoted by NN(α;m),

uα(s, a) =
1√
m

m∑
i=1

bi · σ([α]>i (s, a)). (3.1)

Herem is the width of the neural network, bi ∈ {−1, 1} (i ∈ [m]) are the output weights, σ(·) is the
rectified linear unit (ReLU) activation, and α = ([α]>1 , . . . , [α]>m)> ∈ Rmd with [α]i ∈ Rd (i ∈ [m])
are the input weights. We consider the random initialization

bi
i.i.d.∼ Unif({−1, 1}), [α(0)]i

i.i.d.∼ N (0, Id/d), for all i ∈ [m]. (3.2)
We restrict the input weights α to an `2-ball centered at the initialization α(0) by the projection
ΠB0(Rα)(α

′) = argminα∈B0(Rα){‖α − α′‖2}, where B0(Rα) = {α : ‖α − α(0)‖2 ≤ Rα}.
Throughout training, we only update α, while keeping bi (i ∈ [m]) fixed at the initialization. Hence,
we omit the dependency on bi (i ∈ [m]) in NN(α;m) and uα(s, a).

Policy Improvement. We consider the population version of the objective function in (2.2),
L(θ) = Eνk

[
〈Qωk(s, ·), πθ(· | s)〉 − βk ·KL(πθ(· | s) ‖πθk(· | s))

]
, (3.3)

where Qωk is an estimator of Qπθk , that is, the exact action-value function of πθk . In the follow-
ing, we convert the subproblem maxθ L(θ) of policy improvement into a least-squares subprob-
lem. We consider the energy-based policy π(a | s) ∝ exp{τ−1f(s, a)}, which is abbreviated as
π ∝ exp{τ−1f}. Here f : S × A → R is the energy function and τ > 0 is the temperature
parameter. We have the following closed form of the ideal infinite-dimensional policy update. See
also, e.g., [1] for a Bayesian inference perspective.

Proposition 3.1. Let πθk ∝ exp{τ−1k fθk} be an energy-based policy. Given an estimator Qωk of
Qπθk , the update π̂k+1 ← argmaxπ{Eνk [〈Qωk(s, ·), π(· | s)〉 − βk ·KL(π(· | s) ‖πθk(· | s))]} gives

π̂k+1 ∝ exp{β−1k Qωk + τ−1k fθk}. (3.4)

Proof. See Appendix C for a detailed proof.

Here we note that the closed form of ideal infinite-dimensional update in (3.4) holds state-wise. To
represent the ideal improved policy π̂k+1 in Proposition 3.1 using the energy-based policy πθk+1

∝
exp{τ−1k+1fθk+1

}, we solve the subproblem of minimizing the MSE,

θk+1 ← argmin
θ∈B0(Rf)

Eσ̃k
[(
fθ(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)2]
, (3.5)

which is justified in Appendix B as a majorization of−L(θ) defined in (3.3). Here we use the neural
network parametrization fθ = NN(θ;mf) defined in (3.1), where θ denotes the input weights and
mf is the width. It is worth mentioning that in (3.5) we sample the actions according to σ̃k so that
πθk+1

approximates the ideal infinite-dimensional policy update in (3.4) evenly well over all actions.
Also note that the subproblem in (3.5) allows for off-policy sampling of both states and actions [1].

To solve (3.5), we use the SGD update
θ(t+ 1/2)← θ(t)− η ·

(
fθ(t)(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)
· ∇θfθ(t)(s, a),

(3.6)
where (s, a) ∼ σ̃k and θ(t + 1) ← ΠB0(Rf)(θ(t + 1/2)). Here η is the stepsize. See Appendix A
for a detailed algorithm.

Policy Evaluation. To obtain the estimator Qωk of Qπθk in (3.3), we solve the subproblem of
minimizing the MSBE,

ωk ← argmin
ω∈B0(RQ)

Eσk [(Qω(s, a)− [T πθkQω](s, a))2]. (3.7)

Here the Bellman evaluation operator T π of a policy π is defined as
[T πQ](s, a) = E

[
(1− γ) · r(s, a) + γ ·Q(s′, a′)

∣∣ s′ ∼ P(· | s, a), a′ ∼ π(· | s′)
]
.

We use the neural network parametrization Qω = NN(ω;mQ) defined in (3.1), where ω denotes the
input weights and mQ is the width. To solve (3.7), we use the TD update
ω(t+ 1/2)← ω(t)− η ·

(
Qω(t)(s, a)− (1− γ) · r(s, a)− γ ·Qω(t)(s′, a′)

)
· ∇ωQω(t)(s, a),

(3.8)
where (s, a) ∼ σk, s′ ∼ P(· | s, a), a′ ∼ πθk(· | s′), and ω(t+ 1) = ΠB0(RQ)(ω(t+ 1/2)). Here η
is the stepsize. See Appendix A for a detailed algorithm.

4

Neural PPO. By assembling the subproblems of policy improvement and policy evaluation, we
present neural PPO in Algorithm 1, which is characterized in Section 4.

Algorithm 1 Neural PPO
Require: MDP (S,A,P, r, γ), penalty parameter β, widths mf and mQ, number of SGD and TD

iterations T , number of TRPO iterations K, and projection radii Rf ≥ RQ
1: Initialize with uniform policy: τ0 ← 1, fθ0 ← 0, πθ0 ← π0 ∝ exp{τ−10 fθ0}
2: for k = 0, . . . ,K − 1 do
3: Set temperature parameter τk+1 ← β

√
K/(k + 1) and penalty parameter βk ← β

√
K

4: Sample {(st, at, a0t , s′t, a′t)}Tt=1 with (st, at) ∼ σk, a0t ∼ π0(· | st), s′t ∼ P(· | st, at) and
a′t ∼ πθk(· | s′t)

5: Solve for Qωk = NN(ωk;mQ) in (3.7) using the TD update in (3.8) (Algorithm 3)
6: Solve for fθk+1

= NN(θk+1;mf) in (3.5) using the SGD update in (3.6) (Algorithm 2)
7: Update policy: πθk+1

∝ exp{τ−1k+1fθk+1
}

8: end for

4 Main Results

In this section, we establish the global convergence of neural PPO in Algorithm 1 based on character-
izing the errors arising from solving the subproblems of policy improvement and policy evaluation
in (3.5) and (3.7), respectively.

Our analysis relies on the following regularity condition on the boundedness of reward.
Assumption 4.1 (Bounded Reward). There exists a constant Rmax > 0 such that Rmax =
sup(s,a)∈S×A |r(s, a)|, which implies |V π(s)| ≤ Rmax and |Qπ(s, a)| ≤ Rmax for any policy
π.

To ensure the compatibility between the policy and the action-value function [25, 43, 23, 35, 46, 47],
we set mf = mQ and use the following random initialization. In Algorithm 1, we first generate
according to (3.2) the random initialization α(0) = θ(0) = ω(0) and bi (i ∈ [m]), and then use
it as the fixed initialization of both SGD and TD in Lines 6 and 5 of Algorithm 1 for all k ∈ [K],
respectively.

4.1 Errors of Policy Improvement and Policy Evaluation

We define the following function class, which characterizes the representation power of the neural
network defined in (3.1).
Definition 4.2. For any constant R > 0, we define the function class

FR,m =

{
1√
m

m∑
i=1

bi · 1
{

[α(0)]>i (s, a) > 0
}
· [α]>i (s, a) : ‖α− α(0)‖2 ≤ R

}
,

where [α(0)]i and bi (i ∈ [m]) are the random initialization defined in (3.2).

As m → ∞, FR,m − NN(α(0);m) approximates a subset of the reproducing kernel Hilbert space
(RKHS) induced by the kernel K(x, y) = Ez∼N(0,Id/d)[1{z>x > 0, z>y > 0}x>y] [22, 27, 10,
3, 54, 8, 9, 26, 5, 7]. Such a subset is a ball with radius R in the corresponding H-norm, which is
known to be a rich function class [20]. Correspondingly, for a sufficiently large width m and radius
R, FR,m is also a sufficiently rich function class.

Based on Definition 4.2, we lay out the following regularity condition on the action-value function
class.
Assumption 4.3 (Action-Value Function Class). It holds that Qπ(s, a) ∈ FRQ,mQ for any π.

Assumption 4.3 states thatFRQ,mQ is closed under the Bellman evaluation operator T π , asQπ is the
fixed-point solution of the Bellman equation T πQπ = Qπ . Such a regularity condition is commonly
used in the literature [30, 4, 16, 15, 45, 51]. In particular, [50] define a class of Markov decision
processes that satisfy such a regularity condition, which is sufficiently rich due to the representation
power of FRQ,mQ .

5

In the sequel, we lay out another regularity condition on the stationary state-action distribution σπ .
Assumption 4.4 (Regularity of Stationary Distribution). There exists a constant c > 0 such that for
any vector z ∈ Rd and ζ > 0, it holds almost surely that Eσπ [1{|z>(s, a)| ≤ ζ} | z] ≤ c · ζ/‖z‖2
for any π.

Assumption 4.4 states that the density of σπ is sufficiently regular. Such a regularity condition holds
as long as the stationary state distribution νπ has upper bounded density.

We are now ready present bounds for errors induced by approximation via two-layer neural net-
works, with analysis generalizing those of [7, 5] included in Appendix D. First, we characterize
the policy improvement error, which is induced by solving the subproblem in (3.5) using the SGD
update in (3.6), in the following theorem. See Line 6 of Algorithm 1 and Algorithm 2 for a detailed
algorithm.
Theorem 4.5 (Policy Improvement Error). Suppose that Assumptions 4.1, 4.3, and 4.4 hold. We
set T ≥ 64 and the stepsize to be η = T−1/2. Within the k-th iteration of Algorithm 1, the output
fθ of Algorithm 2 satisfies

Einit,σ̃k

[(
fθ(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)2]
= O(R2

fT
−1/2 +R

5/2
f m

−1/4
f +R3

fm
−1/2
f).

Proof. See Appendix D for a detailed proof.

Similarly, we characterize the policy evaluation error, which is induced by solving the subproblem
in (3.7) using the TD update in (3.8), in the following theorem. See Line 5 of Algorithm 1 and
Algorithm 3 for a detailed algorithm.
Theorem 4.6 (Policy Evaluation Error). Suppose that Assumptions 4.1, 4.3, and 4.4 hold. We set
T ≥ 64/(1 − γ)2 and the stepsize to be η = T−1/2. Within the k-th iteration of Algorithm 1, the
output Qω of Algorithm 3 satisfies

Einit,σk [(Qω(s, a)−Qπθk (s, a))2] = O(R2
QT
−1/2 +R

5/2
Q m

−1/4
Q +R3

Qm
−1/2
Q).

Proof. See Appendix D for a detailed proof.

As we show in Sections 4.3 and 5, Theorems 4.5 and 4.6 characterize the primal and dual errors of
the infinite-dimensional mirror descent corresponding to neural PPO. In particular, such errors decay
to zero at the rate of 1/

√
T when the width mf = mQ is sufficiently large, where T is the number

of TD and SGD iterations in Algorithm 1. For notational simplicity, we omit the dependency on the
random initialization in the expectations hereafter.

4.2 Error Propagation

We denote by π∗ the optimal policy with ν∗ being its stationary state distribution and σ∗ being its
stationary state-action distribution. Recall that, as defined in (3.4), π̂k+1 is the ideal improved policy
based on Qωk , which is an estimator of the exact action-value function Qπθk . Correspondingly, we
define the ideal improved policy based on Qπθk as

πk+1 = argmax
π

{
Eνk
[
〈Qπθk (s, ·), π(·, s)〉 − βk ·KL(π(· | s) ‖πθk(· | s))

]}
. (4.1)

By the same proof of Proposition 3.1, we have πk+1 ∝ exp{β−1k Qπθk + τ−1k fθk}, which is also an
energy-based policy.

We define the following quantities related to density ratios between policies or stationary distribu-
tions,

φ∗k = Eσ̃k [|dσ∗/dσ̃k − d(πθkν
∗)/dσ̃k|2]1/2, ψ∗k = Eσk [|dσ∗/dσk − dν∗/dνk|2]1/2, (4.2)

where dσ∗/dσ̃k, d(πθkν
∗)/dσ̃k, dσ∗/dσk, and dν∗/dνk are the Radon-Nikodym derivatives. A

closely related quantity known as the concentrability coefficient is commonly used in the literature
[30, 4, 16, 45, 51]. In comparison, as our analysis is based on stationary distributions, our definitions
of φ∗k and ψ∗k are simpler in that they do not require unrolling the state-action sequence. Then we
have the following lemma that quantifies how the errors of policy improvement and policy evaluation
propagate into the infinite-dimensional policy space.

6

Lemma 4.7 (Error Propagation). Suppose that the policy improvement error in Line 6 of Algorithm
1 satisfies

Eσ̃k
[(
fθk+1

(s, a)− τk+1 · (β−1k Qωk(s, a)− τ−1k fθk(s, a))
)2] ≤ εk+1, (4.3)

and the policy evaluation error in Line 5 of Algorithm 1 satisfies
Eσk [(Qωk(s, a)−Qπθk (s, a))2] ≤ ε′k. (4.4)

For πk+1 defined in (4.1) and πθk+1
obtained in Line 7 of Algorithm 1, we have∣∣Eν∗[〈log(πθk+1

(· | s)/πk+1(· | s)), π∗(· | s)− πθk(· | s)
〉]∣∣ ≤ εk, (4.5)

where εk = τ−1k+1εk+1 · φ∗k+1 + β−1k ε′k · ψ∗k.

Proof. See Appendix E for a detailed proof.

Lemma 4.7 quantifies the difference between the ideal case, where we use the infinite-dimensional
policy update based on the exact action-value function, and the realistic case, where we use the neu-
ral networks defined in (3.1) to approximate the exact action-value function and the ideal improved
policy.

The following lemma characterizes the difference between fθk+1
and fθk .

Lemma 4.8 (Stepwise Energy Difference). Under the same conditions of Lemma 4.7, we have
Eν∗ [‖τ−1k+1fθk+1

(s, ·)− τ−1k fθk(s, ·)‖2∞] ≤ 2ε′k + 2β−2k M,

where ε′k = |A| · τ−2k+1ε
2
k+1 and M = 2Eν∗ [maxa∈A(Qω0

(s, a))2] + 2R2
f .

Proof. See Appendix E for a detailed proof.

Intuitively, the bounded difference between fθk+1
and fθk+1

quantified in Lemma 4.8 is due to the
KL-regularization in (3.3), which keeps the updated policy πθk+1

from being too far away from the
current policy πθk .

The differences characterized in Lemmas 4.7 and 4.8 play key roles in establishing the global con-
vergence of neural PPO.

4.3 Global Convergence of Neural PPO

We track the progress of neural PPO in Algorithm 1 using the expected total reward
L(π) = Eν∗ [V π(s)] = Eν∗ [〈Qπ(s, ·), π(· | s)〉], (4.6)

where ν∗ is the stationary state distribution of the optimal policy π∗. The following theorem char-
acterizes the global convergence of L(πθk) towards L(π∗). Recall that Tf and TQ are the numbers
of SGD and TD iterations in Lines 6 and 5 of Algorithm 1, while φ∗k and ψ∗k are defined in (4.2).
Theorem 4.9 (Global Rate of Convergence of Neural PPO). Suppose that Assumptions 4.1, 4.3,
and 4.4 hold. For the policy sequence {πθk}Kk=1 attained by neural PPO in Algorithm 1, we have

min
0≤k≤K

{
L(π∗)− L(πθk)

}
≤
β2 log |A|+M + β2

∑K−1
k=0 (εk + ε′k)

(1− γ)β ·
√
K

.

Here εk = τ−1k+1εk+1 · φ∗k + β−1k ε′k · ψ∗k and ε′k = |A| · τ−2k+1ε
2
k+1, where

εk+1 = O(R2
fT
−1/2 +R

5/2
f m

−1/4
f +R3

fm
−1/2
f), ε′k = O(R2

QT
−1/2 +R

5/2
Q m

−1/4
Q +R3

Qm
−1/2
Q).

Also, we have M = 2Eν∗ [maxa∈A(Qω0(s, a))2] + 2R2
f .

Proof. See Section 5 for a detailed proof of Theorem 4.9. The key to our proof is the global conver-
gence of infinite-dimensional mirror descent with errors under one-point monotonicity, where the
primal and dual errors are characterized by Theorems 4.5 and 4.6, respectively.

To understand Theorem 4.9, we consider the infinite-dimensional policy update based on the exact
action-value function, that is, εk+1 = ε′k = 0 for any k+1 ∈ [K]. In such an ideal case, by Theorem
4.9, neural PPO globally converges to the optimal policy π∗ at the rate of

min
0≤k≤K

{
L(π∗)− L(πθk)

}
≤

2
√
M log |A|

(1− γ) ·
√
K
,

7

with the optimal choice of the penalty parameter βk =
√
MK/ log |A|.

Note that Theorem 4.9 sheds light on the difficulty of choosing the optimal penalty coefficient in
practice, which is observed by [40]. In particular, the optimal choice of β in βk = β

√
K is given by

β =

√
M√

log |A|+
∑K−1
k=0 (εk + ε′k)

,

where M and
∑K−1
k=0 (εk + ε′k) may vary across different deep reinforcement learning problems. As

a result, line search is often needed in practice.

To better understand Theorem 4.9, the following corollary quantifies the minimum width mf and
mQ and the minimum number of SGD and TD iterations T that ensure the O(1/

√
K) rate of con-

vergence.

Corollary 4.10 (Iteration Complexity of Subproblems and Minimum Widths of Neural Networks).
Suppose that Assumptions 4.1, 4.3, and 4.4 hold. Let mf = Ω(K6R10

f · φ∗k
4 + K4R10

f · |A|2),
mQ = Ω

(
K2R10

Q ·ψ∗k
4
)
, and T = Ω(K3R4

f ·φ∗k
2 +K2R4

f · |A|+KR4
Q ·ψ∗k

2) for any 0 ≤ k ≤ K.
We have

min
0≤k≤K

{
L(π∗)− L(πθk)

}
≤ β2 log |A|+M +O(1)

(1− γ)β ·
√
K

.

Proof. See Appendix F for a detailed proof.

The difference between the requirements on the widths mf and mQ in Corollary 4.10 suggests that
the errors of policy improvement and policy evaluation play distinct roles in the global convergence
of neural PPO. In fact, Theorem 4.9 depends on the total error τ−1k+1εk+1 · φ∗k + β−1k ε′k · ψ∗k + |A| ·
τ−2k+1ε

2
k+1, where the weight τ−1k+1 of the policy improvement error εk+1 is much larger than the

weight β−1k of the policy evaluation error ε′k, and |A| · τ−2k+1ε
2
k+1 is a high-order term when εk+1 is

sufficiently small. In other words, the policy improvement error plays a more important role.

5 Proof Sketch

In this section, we sketch the proof of Theorem 4.9. In detail, we cast neural PPO in Algorithm 1
as infinite-dimensional mirror descent with primal and dual errors and exploit a notion of one-point
monotonicity to establish its global convergence.

We first present the performance difference lemma of [24]. Recall that the expected total reward
L(π) is defined in (4.6) and ν∗ is the stationary state distribution of the optimal policy π∗.

Lemma 5.1 (Performance Difference). For L(π) defined in (4.6), we have
L(π)− L(π∗) = (1− γ)−1 · Eν∗ [〈Qπ(s, ·), π(· | s)− π∗(· | s)〉].

Proof. See Appendix G for a detailed proof.

Since the optimal policy π∗ maximizes the value function V π(s) with respect to π for any s ∈ S,
we have L(π∗) = Eν∗ [V π

∗
(s)] ≥ Eν∗ [V π(s)] = L(π) for any π. As a result, we have

Eν∗ [〈Qπ(s, ·), π(· | s)− π∗(· | s)〉] ≤ 0, for any π. (5.1)
Under the variational inequality framework [14], (5.1) corresponds to the monotonicity of the map-
ping Qπ evaluated at π∗ and any π. Note that the classical notion of monotonicity requires the
evaluation at any pair π′ and π, while we restrict π′ to π∗ in (5.1). Hence, we refer to (5.1) as one-
point monotonicity. In the context of nonconvex optimization, the mapping Qπ can be viewed as
the gradient of L(π) at π, which lives in the dual space, while π lives in the primal space. Another
condition related to (5.1) in nonconvex optimization is known as dissipativity [53].

The following lemma establishes the one-step descent of the KL-divergence in the infinite-
dimensional policy space, which follows from the analysis of mirror descent [31, 32] as well as
the fact that given any νk, the subproblem of policy improvement in (4.1) can be solved for each
s ∈ S individually.

8

Lemma 5.2 (One-Step Descent). For the ideal improved policy πk+1 defined in (4.1) and the current
policy πθk , we have that, for any s ∈ S,
KL(π∗(· | s) ‖πθk+1

(· | s))−KL(π∗(· | s) ‖πθk(· | s))
≤
〈
log(πθk+1

(· | s)/πk+1(· | s)), πθk(· | s)− π∗(· | s)
〉
− β−1k · 〈Q

πθk (s, ·), π∗(· | s)− πθk(· | s)〉
− 1/2 · ‖πθk+1

(· | s)− πθk(· | s)‖21 − 〈τ−1k+1fθk+1
(s, ·)− τ−1k fθk(s, ·), πθk(· | s)− πθk+1

(· | s)〉.

Proof. See Appendix G for a detailed proof.

Based on Lemmas 5.1 and 5.2, we prove Theorem 4.9 by casting neural PPO as infinite-dimensional
mirror descent with primal and dual errors, whose impact is characterized in Lemma 4.7. In partic-
ular, we employ the `1-`∞ pair of primal-dual norms.

Proof of Theorem 4.9. Taking expectation with respect to s ∼ ν∗ and invoking Lemmas 4.7 and
5.2, we have
Eν∗ [KL(π∗(· | s) ‖πθk+1

(· | s))]− Eν∗ [KL(π∗(· | s) ‖πθk(· | s))]
≤ εk − β−1k · Eν∗ [〈Q

πθk (s, ·), π∗(· | s)− πθk(· | s)〉]− 1/2 · Eν∗ [‖πθk+1
(· | s)− πθk(· | s)‖21]

− Eν∗ [〈τ−1k+1fθk+1
(s, ·)− τ−1k fθk(s, ·), πθk(· | s)− πθk+1

(· | s)〉].
By Lemma 5.1 and the Hölder’s inequality, we further have

Eν∗ [KL(π∗(· | s) ‖πθk+1
(· | s))]− Eν∗ [KL(π∗(· | s) ‖πθk(· | s))]

≤ εk − (1− γ)β−1k · (L(π∗)− L(πθk))− 1/2 · Eν∗ [‖πθk+1
(· | s)− πθk(· | s)‖21]

+ Eν∗
[
‖τ−1k+1fθk+1

(s, ·)− τ−1k fθk(s, ·)‖∞ · ‖πθk(· | s)− πθk+1
(· | s)‖1

]
≤ εk − (1− γ)β−1k · (L(π∗)− L(πθk)) + 1/2 · Eν∗ [‖τ−1k+1fθk+1

(s, ·)− τ−1k fθk(s, ·)‖2∞]

≤ εk − (1− γ)β−1k · (L(π∗)− L(πθk)) + (ε′k + β−2k M), (5.2)
where in the second inequality we use 2xy − y2 ≤ x2 and in the last inequality we use Lemma 4.8.
Rearranging the terms in (5.2), we have

(1− γ)β−1k · (L(π∗)− L(πθk)) (5.3)

≤ Eν∗ [KL(π∗(· | s) ‖πθk+1
(· | s))]− Eν∗ [KL(π∗(· | s) ‖πθk(· | s))] + β−2k M + εk + ε′k.

Telescoping (5.3) for k + 1 ∈ [K], we obtain
K−1∑
k=0

(1− γ)β−1k · (L(πθk)− L(π∗))

≤ Eν∗ [KL(π∗(· | s) ‖πθK (· | s))]− Eν∗ [KL(π∗(· | s) ‖πθ0(· | s))]

+M
K−1∑
k=0

β−2k +
K−1∑
k=0

(εk + ε′k).

Note that we have (i)
∑K−1
k=0 β−1k ·(L(π∗)−L(πθk)) ≥ (

∑K−1
k=0 β−1k)·min0≤k≤K{L(π∗)−L(πθk)},

(ii) Eν∗ [KL(π∗(· | s) ‖πθ0(· | s))] ≤ log |A| due to the uniform initialization of policy, and that (iii)
the KL-divergence is nonnegative. Hence, we have

min
0≤k≤K

{
L(π∗)− L(πθk)

}
≤

log |A|+M
∑K−1
k=0 β−2k +

∑K−1
k=0 (εk + ε′k)

(1− γ)
∑K−1
k=0 β−1k

. (5.4)

Setting the penalty parameter βk = β
√
K, we have

∑K−1
k=0 β−1k = β−1

√
K and

∑K−1
k=0 β−2k = β−2,

which together with (5.4) concludes the proof of Theorem 4.9.

Acknowledgement

The authors thank Jason D. Lee, Chi Jin, and Yu Bai for enlightening discussions throughout this
project.

9

References
[1] Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N. and Riedmiller, M.

(2018). Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920.

[2] Agarwal, A., Kakade, S. M., Lee, J. D. and Mahajan, G. (2019). Optimality and approximation
with policy gradient methods in Markov decision processes. arXiv preprint arXiv:1908.00261.

[3] Allen-Zhu, Z., Li, Y. and Liang, Y. (2018). Learning and generalization in overparameterized
neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918.

[4] Antos, A., Szepesvári, C. and Munos, R. (2008). Fitted Q-iteration in continuous action-space
mdps. In Advances in Neural Information Processing Systems.

[5] Arora, S., Du, S. S., Hu, W., Li, Z. and Wang, R. (2019). Fine-grained analysis of optimiza-
tion and generalization for overparameterized two-layer neural networks. arXiv preprint
arXiv:1901.08584.

[6] Azar, M. G., Gómez, V. and Kappen, H. J. (2012). Dynamic policy programming. Journal of
Machine Learning Research, 13 3207–3245.

[7] Cai, Q., Yang, Z., Lee, J. D. and Wang, Z. (2019). Neural temporal-difference learning con-
verges to global optima. arXiv preprint arXiv:1905.10027.

[8] Cao, Y. and Gu, Q. (2019). Generalization bounds of stochastic gradient descent for wide and
deep neural networks. arXiv preprint arXiv:1905.13210.

[9] Cao, Y. and Gu, Q. (2019). A generalization theory of gradient descent for learning over-
parameterized deep ReLU networks. arXiv preprint arXiv:1902.01384.

[10] Chizat, L. and Bach, F. (2018). A note on lazy training in supervised differentiable program-
ming. arXiv preprint arXiv:1812.07956.

[11] Cho, W. S. and Wang, M. (2017). Deep primal-dual reinforcement learning: Accelerating
actor-critic using Bellman duality. arXiv preprint arXiv:1712.02467.

[12] Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J. and Song, L. (2017). SBEED:
Convergent reinforcement learning with nonlinear function approximation. arXiv preprint
arXiv:1712.10285.

[13] Duan, Y., Chen, X., Houthooft, R., Schulman, J. and Abbeel, P. (2016). Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learn-
ing.

[14] Facchinei, F. and Pang, J.-S. (2007). Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems. Springer Science & Business Media.

[15] Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, C. and Mannor, S. (2016). Regularized pol-
icy iteration with nonparametric function spaces. Journal of Machine Learning Research, 17
4809–4874.

[16] Farahmand, A.-m., Szepesvári, C. and Munos, R. (2010). Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems.

[17] Haarnoja, T., Tang, H., Abbeel, P. and Levine, S. (2017). Reinforcement learning with deep
energy-based policies. In International Conference on Machine Learning.

[18] Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290.

[19] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and Meger, D. (2018). Deep
reinforcement learning that matters. In AAAI Conference on Artificial Intelligence.

10

[20] Hofmann, T., Schölkopf, B. and Smola, A. J. (2008). Kernel methods in machine learning.
Annals of Statistics 1171–1220.

[21] Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L. and Madry, A.
(2018). Are deep policy gradient algorithms truly policy gradient algorithms? arXiv preprint
arXiv:1811.02553.

[22] Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems.

[23] Kakade, S. (2002). A natural policy gradient. In Advances in Neural Information Processing
Systems.

[24] Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement learn-
ing. In International Conference on Machine Learning.

[25] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in Neural In-
formation Processing Systems.

[26] Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Sohl-Dickstein, J. and Pennington, J. (2019).
Wide neural networks of any depth evolve as linear models under gradient descent. arXiv
preprint arXiv:1902.06720.

[27] Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradi-
ent descent on structured data. In Advances in Neural Information Processing Systems.

[28] Ling, Y., Hasan, S. A., Datla, V., Qadir, A., Lee, K., Liu, J. and Farri, O. (2017). Diagnostic
inferencing via improving clinical concept extraction with deep reinforcement learning: A
preliminary study. In Machine Learning for Healthcare Conference.

[29] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning.

[30] Munos, R. and Szepesvári, C. (2008). Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9 815–857.

[31] Nemirovski, A. S. and Yudin, D. B. (1983). Problem Complexity and Method Efficiency in
Optimization. Springer.

[32] Nesterov, Y. (2013). Introductory Lectures on Convex Optimization: A Basic Course, vol. 87.
Springer Science & Business Media.

[33] Neu, G., Jonsson, A. and Gómez, V. (2017). A unified view of entropy-regularized Markov
decision processes. arXiv preprint arXiv:1705.07798.

[34] OpenAI (2019). OpenAI Five. https://openai.com/five/.

[35] Peters, J. and Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71 1180–1190.

[36] Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons.

[37] Rajeswaran, A., Lowrey, K., Todorov, E. V. and Kakade, S. M. (2017). Towards generalization
and simplicity in continuous control. In Advances in Neural Information Processing Systems.

[38] Sallab, A. E., Abdou, M., Perot, E. and Yogamani, S. (2017). Deep reinforcement learning
framework for autonomous driving. Electronic Imaging, 2017 70–76.

[39] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P. (2015). Trust region policy
optimization. In International Conference on Machine Learning.

[40] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

11

https://openai.com/five/

[41] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3 9–44.

[42] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.

[43] Sutton, R. S., McAllester, D. A., Singh, S. P. and Mansour, Y. (2000). Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems.

[44] Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4 1–103.

[45] Tosatto, S., Pirotta, M., D’Eramo, C. and Restelli, M. (2017). Boosted fitted Q-iteration. In
International Conference on Machine Learning.

[46] Wagner, P. (2011). A reinterpretation of the policy oscillation phenomenon in approximate
policy iteration. In Advances in Neural Information Processing Systems.

[47] Wagner, P. (2013). Optimistic policy iteration and natural actor-critic: A unifying view and a
non-optimality result. In Advances in Neural Information Processing Systems.

[48] Wang, L., Cai, Q., Yang, Z. and Wang, Z. (2019). Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150.

[49] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8 229–256.

[50] Yang, L. F. and Wang, M. (2019). Sample-optimal parametric Q-learning with linear transition
models. arXiv preprint arXiv:1902.04779.

[51] Yang, Z., Xie, Y. and Wang, Z. (2019). A theoretical analysis of deep Q-learning. arXiv
preprint arXiv:1901.00137.

[52] Zhang, K., Koppel, A., Zhu, H. and Başar, T. (2019). Global convergence of policy gradient
methods to (almost) locally optimal policies. arXiv preprint arXiv:1906.08383.

[53] Zhou, M., Liu, T., Li, Y., Lin, D., Zhou, E. and Zhao, T. (2019). Toward understanding the
importance of noise in training neural networks. In International Conference on Machine
Learning.

[54] Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2018). Stochastic gradient descent optimizes over-
parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888.

12

A Algorithms in Section 3

We present the algorithms for solving the subproblems of policy improvement and policy evaluation
in Section 3.

Algorithm 2 Policy Improvement via SGD
1: Require: MDP (S,A,P, r, γ), current energy function fθk , initial weights bi, [θ(0)]i (i ∈

[mf]), number of iterations T , sample {(st, a0t)}Tt=1

2: Set stepsize η ← T−1/2

3: for t = 0, . . . , T − 1 do
4: (s, a)← (st+1, a

0
t+1)

5: θ(t+ 1/2)← θ(t)−η ·
(
fθ(t)(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)
·∇θfθ(t)(s, a)

6: θ(t+ 1)← argminθ∈B0(Rf)

{
‖θ − θ(t+ 1/2)‖2

}
7: end for
8: Average over path θ ← 1/T ·

∑T−1
t=0 θ(t)

9: Output: fθ

Algorithm 3 Policy Evaluation via TD
1: Require: MDP (S,A,P, r, γ), initial weights bi, [ω(0)]i (i ∈ [mQ]), number of iterations T ,

sample {(st, at, s′t, a′t)}Tt=1

2: Set stepsize η ← T−1/2

3: for t = 0, . . . , T − 1 do
4: (s, a, s′, a′)← (st+1, at+1, s

′
t+1, a

′
t+1)

5: ω(t+ 1/2)← ω(t)− η ·
(
Qω(t)(s, a)− (1− γ) · r(s, a)− γQω(t)(s′, a′)

)
· ∇ωQω(t)(s, a)

6: ω(t+ 1)← argminω∈B0(RQ)

{
‖ω − ω(t+ 1/2)‖2

}
7: end for
8: Average over path ω ← 1/T ·

∑T−1
t=0 ω(t)

9: Output: Qω

B Supplementary Lemma in Section 3

The following lemma quantifies the policy improvement error in terms of the distance between
polices, which is induced by solving (3.5).

Lemma B.1. Suppose that πθk+1
∝ exp{τ−1k+1fθk+1

} satisfies

Eσ̃k
[(
fθk+1

(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))
)2] ≤ εk+1.

We have
Eσ̃k [(πθk+1

(a | s)− π̂k+1(a | s))2] ≤ τ−2k+1εk+1/16,

where π̂k+1 is defined in (3.4).

Proof. Let τ−1k+1f̂k+1 = β−1k Qωk + τ−1k fθk . Since an energy-based policy π ∝ exp{τ−1f} is
continuous with respect to f , by the mean value theorem, we have

|πθk+1
(a | s)− π̂k+1(a | s)| =

∣∣∣∣ exp{τ−1k+1fθk+1
(s, a)}∑

a′∈A exp{τ−1k+1fθk+1
(s, a′)}

−
exp{τ−1k+1f̂k+1(s, a)}∑

a′∈A exp{τ−1k+1f̂k+1(s, a′)}

∣∣∣∣
=

∣∣∣∣ ∂

∂f(s, a)

(
exp{τ−1k+1f̃(s, a)}∑

a′∈A exp{τ−1k+1f̃(s, a′)}

)∣∣∣∣ · |fθk+1
(s, a)− f̂k+1(s, a)|,

where f̃ is a function determined by fθk+1
and f̂k+1. Furthermore, we have∣∣∣∣ ∂

∂f(s, a)

(
exp{τ−1k+1f(s, a)}∑

a′∈A exp{τ−1k+1f(s, a′)}

)∣∣∣∣ = τ−1k+1 · π(a | s) · (1− π(a | s)) ≤ τ−1k+1/4.

13

Therefore, we obtain
(πθk+1

(a | s)− π̂k+1(a | s))2

≤ τ−2k+1/16 ·
(
fθk+1

(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))
)2
. (B.1)

Taking expectation Eσ̃k [·] on the both sides of (B.1), we finally obtain
Eσ̃k [(πθk+1

(a | s)− π̂k+1(a | s))2]

≤ τ−2k+1/16 · Eσ̃k
[(
fθk+1

(s, a)− τk+1 · (β−1k Qω0(s, a) + τ−1k fθk(s, a))
)2] ≤ τ−2k+1εk+1/16,

which concludes the proof of Lemma B.1.

Lemma B.1 ensures that if the policy improvement error εk+1 is small, then the corresponding
improved policy πθk+1

is close to the ideal improved policy π̂k+1, which justifies solving the sub-
problem in (3.5) for policy improvement.

C Proof of Proposition 3.1

Proof. The subproblem of policy improvement for solving π̂k+1 takes the form
max
π

Eνk
[
〈π(· | s), Qωk(s, ·)〉 − βk ·KL(π(· | s) ‖πθk(· | s))

]
subject to

∑
a∈A

π(a | s) = 1, for any s ∈ S.

The Lagrangian of the above maximization problem takes the form∫
s∈S

[
〈π(· | s), Qωk(s, ·)〉 − βk ·KL(π(· | s) ‖πθk(· | s))

]
νk(ds) +

∫
s∈S

(∑
a∈A

π(a | s)− 1

)
λ(ds).

Plugging in πθk(s, a) = exp{τ−1k fθk(s, a)}/
∑
a′∈A exp{τ−1k fθk(s, a′)}, we obtain the optimality

condition

Qωk(s, a) + βkτ
−1
k fθk(s, a)− βk ·

[
log

(∑
a′∈A

exp{τ−1k fθk(s, a′)}
)

+ log π(a |s) + 1

]
+

λ(s)

νk(s)
= 0,

for any a ∈ A and s ∈ S. Note that log(
∑
a′∈A exp{τ−1k fθk(s, a′)}) is determined by the state s

only. Hence, we have π̂k+1(a | s) ∝ exp{β−1k Qωk(s, a) + τ−1k fθk(s, a)} for any a ∈ A and s ∈ S,
which concludes the proof of Proposition 3.1.

D Proofs for Section 4.1

The proofs in this section generalizes those of [7, 5] under a unified framework, which accounts for
both SGD, and TD, which uses stochastic semi-gradient. In particular, we develop a unified global
convergence analysis of a meta-algorithm with the following update,

α(t+ 1/2)← α(t)− η · (uα(t)(s, a)− v(s, a)− µ · uα(t)(s′, a′)) · ∇αuα(t)(s, a), (D.1)

α(t+ 1)← ΠB0(Ru)(α(1 + 1/2)) = argmin
α∈B0(Ru)

‖α− α(t+ 1/2)‖2, (D.2)

where µ ∈ [0, 1) is a constant, (s, a, s′, a′) is sampled from a stationary distribution ρ, and uα is
parametrized by the two-layer neural network NN(α;m) defined in (3.1). The random initialization
of uα is given in (3.2). We denote by Einit[·] the expectation over such random initialization and
Eρ[·] the expectation over (s, a) conditional on the random initialization.

Such a meta-algorithm recovers SGD for policy improvement in (3.5) when we set ρ = σ̃k, uα = fθ,
v = τk+1 · (β−1k Qωk + τ−1k fθk), µ = 0, and Ru = Rf , and recovers TD for policy evaluation in
(3.8) when we set ρ = σk, uα = Qω , v = (1− γ) · r, µ = γ, and Ru = RQ.

To unify our analysis for SGD and TD, we assume that v in (D.1) satisfies
Eρ[(v(s, a))2] ≤ v1 · Eρ[(uα(0)(s, a))2] + v2 ·R2

u + v3
for constants v1, v2, v3 ≥ 0. Also, without loss of generality, we assume that ‖(s, a)‖2 ≤ 1 for any
s ∈ S and a ∈ A. In Section D.2, we set v1 = 4, v2 = 4, and v3 = 0 for SGD, and v1 = 0, v2 = 0,
and v3 = Rmax for TD, respectively.

14

For notational simplicity, we define the residual δα(s, a, s′, a′) = uα(s, a)−v(s, a)−µ ·uα(s′, a′).
We denote by

gα(t)(s, a, s
′, a′) = δα(t)(s, a, s

′, a′) · ∇αuα(t)(s, a), ḡα(t) = Eρ[gt(s, a, s′, a′)] (D.3)
the stochastic update vector at the t-th iteration and its population mean, respectively. For SGD,
gα(t)(s, a, s

′, a′) corresponds to the stochastic gradient, while for TD, gα(t)(s, a, s′, a′) corresponds
to the stochastic semigradient.

Note that the gradient of uα(s, a) with respect to α takes the form

∇αuα(s, a) = 1/
√
m ·

(
b1 · 1

{
[α]>1 (s, a) > 0

}
· (s, a)>, . . . , bm · 1

{
[α]>m(s, a) > 0

}
· (s, a)>

)> ∈ Rmd
almost everywhere, which yields

‖∇αuα(s, a)‖22 =
1

m

m∑
i=1

1
{

[α]>i (s, a) > 0
}
· ‖(s, a)‖22 ≤ 1.

Therefore, uα(s, a) is 1-Lipschitz continuous with respect to α.

In the following, we first show in Section D.1 that the overparametrization of uα ensures that it
behaves similarly as its local linearization at the random initialization α(0) defined in (3.2). Then in
Section D.2, we establish the global convergence of the meta-algorithm defined in (D.1) and (D.2),
which implies the global convergence of SGD and TD.

D.1 Local Linearization

In this section, we first define a local linearization of the two-layer neural network uα at its random
initialization and then characterize the error induced by local linearization. We define

u0α(s, a) =
1√
m

m∑
i=1

bi · 1
{

[α(0)]>i (s, a) > 0
}
· [α]>i (s, a). (D.4)

The linearity of u0α with respect to α yields
〈∇αu0α(s, a), α〉 = u0α(s, a). (D.5)

The following lemma characterizes how far u0α(t) deviates from uα(t) for α(t) ∈ B0(Ru).

Lemma D.1. For any α′ ∈ B0(Ru), we have
Einit,ρ[(uα′(s, a)− u0α′(s, a))2] = O(R3

um
−1/2).

Proof. By the definition of uα in (3.1), we have
|uα′(s, a)− u0α′(s, a)| (D.6)

≤ 1√
m

∣∣∣∣ m∑
i=1

bi ·
(
1
{

[α(0)]>i (s, a) > 0
}
− 1

{
[α(0)]>i (s, a) > 0

})
·
(
|[α(0)]>i (s, a)|+ ‖[α′]i − [α(0)]i‖2

)∣∣∣∣
≤ 1√

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α′]i − [α(0)]i‖2
}
·
(
|[α(0)]>i (s, a)|+ ‖[α′]i − [α(0)]i‖2

)
,

where the second inequality follows from |bi| = 1 and the fact that
1
{

[α(t)]>i (s, a) > 0
}
6= 1

{
[α(0)]>i (s, a) > 0

}
implies

|[α(0)]>i (s, a)| ≤ |[α(t)]>i (s, a)− [α(0)]>i (s, a)| ≤ ‖[α(0)]i − [α(t)]i‖2.

Next, applying the inequality 1{|z| ≤ y}|z| ≤ 1{|z| ≤ y}y to the right-hand side of (D.6), we
obtain

|uα′(s, a)− u0α′(s, a)|

≤ 2√
m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α′]i − [α(0)]i‖2
}
· ‖[α′]i − [α(0)]i‖2. (D.7)

Further applying the Cauchy-Schwarz inequality to (D.7) and invoking the upper bound ‖α′ −
α(0)‖2 ≤ Ru, we obtain

|uα′(s, a)− u0α′(s, a)|2 ≤ 4R2
u

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α′]i − [α(0)]i‖2
}
. (D.8)

15

Taking expectation on the both sides and invoking Assumption 4.4, we obtain

Einit,ρ[(uα′(s, a)− u0α′(s, a))2] ≤ 4cR2
u

m
· Einit

[m∑
i=1

‖[α′]i − [α(0)]i‖2/‖[α(0)]i‖2
]
. (D.9)

By the Cauchy-Schwartz inequality, we have

Einit

[m∑
i=1

‖[α′]i − [α(0)]i‖2/‖[α(0)]i‖2
]
≤ Einit

[m∑
i=1

‖[α′]i − [α(0)]i‖22
]1/2

· Einit

[m∑
i=1

‖[α(0)]i‖−22

]1/2
≤ Ru · Einit

[m∑
i=1

‖[α(0)]i‖−22

]1/2
,

where the second inequality follows from
∑m
i=1 ‖[α′]i−[α(0)]i‖22 = ‖α′−α(0)‖22 ≤ R2

u. Therefore,
we have that the right-hand side of (D.9) is O(R3

um
−1/2). Thus, we obtain

Einit,ρ[(uα′(s, a)− u0α′(s, a))2] = O(R3
um
−1/2),

which concludes the proof of Lemma D.1.

Corresponding to u0α defined in (D.4), let δ0α(s, a, s′, a′) = u0α(s, a) − v(s, a) − µ · u0α(s′, a′). We
define the local linearization of ḡα(t), which is defined in (D.3), as

ḡ0α(t) = Eρ[δ0α(t)(s, a, s
′, a′) · ∇αu0α(t)(s, a)]. (D.10)

The following lemma characterizes the difference between ḡ0α(t) and ḡα(t).

Lemma D.2. For any t ∈ [T], we have
Einit[‖ḡα(t) − ḡ0α(t)‖

2
2] = O(R3

um
−1/2).

Proof. By the definition of ḡ0α(t) and ḡα(t) in (D.10) and (D.3), we have

‖ḡα(t) − ḡ0α(t)‖
2
2 = ‖Eρ[δα(t)(s, a, s′, a′) · ∇αuα(t)(s, a)− δ0α(t)(s, a, s

′, a′) · ∇αu0α(t)(s, a)]‖22
≤ 2Eρ

[
|δα(t)(s, a, s′, a′)− δ0α(t)(s, a, s

′, a′)|2 · ‖∇αuα(t)(s, a)‖22
]︸ ︷︷ ︸

(i)

(D.11)

+ 2Eρ
[
|δ0α(t)(s, a, s

′, a′)| · ‖∇αuα(t)(s, a)−∇αu0α(t)(s, a)‖2
]2︸ ︷︷ ︸

(ii)

.

Upper Bounding (i): We have ‖∇αuα(t)(s, a)‖2 ≤ 1 as ‖(s, a)‖2 ≤ 1. Note that the difference
between δα(t) and δ0α(t) takes the form

δα(t)(s, a, s
′, a′)− δ0α(t)(s, a, s

′, a′) = (uα(t)(s, a)− u0α(t)(s, a))− µ · (uα(t)(s′, a′)− u0α(t)(s
′, a′)).

Taking expectation on the both sides, we obtain
Einit,ρ[|δα(t)(s, a, s′, a′)− δ0α(t)(s, a, s

′, a′)|2]

≤ 2Einit,ρ[(uα(t)(s, a)− u0α(t)(s, a))2] + 2µ2 · Einit,ρ[(uα(t)(s
′, a′)− u0α(t)(s

′, a′))2]

= 4Einit,ρ[(uα(t)(s, a)− u0α(t)(s, a))2],

where the equality follows from |µ| ≤ 1 and the fact that (s, a) and (s′, a′) have the same marginal
distribution. Thus, by Lemma D.1, we have that (i) in (D.11) is O(R3

um
−1/2).

Upper Bounding (ii): First, by the Hölder’s inequality, we have
Eρ
[
|δ0α(t)(s, a, s

′, a′)| · ‖∇αuα(t)(s, a)−∇αu0α(t)(s, a)‖2
]2

≤ Eρ[|δ0α(t)(s, a, s
′, a′)|2] · Eρ[‖∇αuα(t)(s, a)−∇αu0α(t)(s, a)‖22].

We use |u0α(t)(s, a)− u0α(0)(s, a)| ≤ ‖α(t)− α(0)‖2 ≤ Ru to obtain

|δ0α(t)(s, a, s
′, a′)|2 = (u0α(t)(s, a)− v(s, a)− µ · u0α(t)(s

′, a′))2

≤ 3
(
(u0α(t)(s, a))2 + (v(s, a))2 + µ2 · (u0α(t)(s

′, a′))2
)

≤ 3(u0α(0)(s, a))2 + 3(u0α(0)(s
′, a′))2 + 6R2

u + 3(v(s, a))2. (D.12)

16

Next we characterize ‖∇αuα(t)(s, a)−∇αu0α(t)(s, a)‖2 in (ii). Recall that

∇αuα(s, a) = 1/
√
m ·

(
b1 · 1

{
[α]>1 (s, a) > 0

}
· (s, a)>, . . . , bm · 1

{
[α]>m(s, a) > 0

}
· (s, a)>

)>
,

and
∇αu0α(s, a) = 1/

√
m ·

(
b1 · 1

{
[α(0)]>1 (s, a) > 0

}
· (s, a)>, . . . , bm · 1

{
[α(0)]>m(s, a) > 0

}
· (s, a)>

)>
.

We have

‖∇αuα(t)(s, a)−∇αu0α(t)(s, a)‖22 =
1

m

m∑
i=1

(
1
{

[α(t)]>i (s, a) > 0
}
− 1

{
[α(0)]>i (s, a) > 0

})2 · ‖(s, a)‖22

≤ 1

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α(t)]i − [α(0)]i‖2
}
, (D.13)

where the inequality follows from the same arguments used to derive (D.6). Plugging (D.12) and
(D.13) into (ii) and recalling that

Eρ[(v(s, a))2] ≤ v1 · Eρ[(uα(0)(s, a))2] + v2 ·R2
u + v3,

we find that it remains to upper bound the following two terms

Einit,ρ

[
1

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α(t)]i − [α(0)]i‖2
}]
, (D.14)

and

Einit

[
Eρ[(u0α(0)(s, a))2] · Eρ

[
1

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α(t)]i − [α(0)]i‖2
}]]

. (D.15)

We already show in the proof of Lemma D.1 that (D.14) is O(Rum
−1/2). We characterize (D.15)

in the following. For the random initialization of uα(s, a) in (3.2), we have

Eρ[(u0α(0)(s, a))2] =
1

m
· Eρ

[m∑
i=1

σ([α(0)]>i (s, a))2 +
∑

1≤i 6=j≤m

bibj · σ([α(0)]>i (s, a)) · σ([α(0)]>j (s, a))

]
,

plugging which into (D.15) gives

Einit

[
Eρ[(u0α(0)(s, a))2] · Eρ

[
1

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖α(t)− α(0)‖2
}]]

≤ Einit

[
1

m
· Eρ

[m∑
i=1

σ([α(0)]>i (s, a))2 +
∑

1≤i 6=j≤m

bibj · σ([α(0)]>i (s, a)) · σ([α(0)]>j (s, a))

]

· c
m
·
(m∑
i=1

‖[α(t)]i − [α(0)]i‖22
)1/2

·
(m∑
i=1

1

‖[α(0)]i‖22

)1/2]
,

where we use the same arguments applied to (D.8) in the proof of Lemma D.1. Note that bi, bj are
independent of α(0), Einit[bibj] = 0, and

∑m
i=1 ‖[α(t)]i − [α(0)]i‖22 = ‖α(t) − α(0)‖22 ≤ R2

u. We
further obtain

Einit

[
Eρ[(u0α(0)(s, a))2] · Eρ

[
1

m

m∑
i=1

1
{

[α(0)]>i (s, a) ≤ ‖[α(t)]i − [α(0)]i‖2
}]]

≤ cRu
m2
· Einit

[
Eρ
[m∑
i=1

σ
(
[α(0)]>i (s, a)

)2] · (m∑
i=1

1

‖[α(0)]i‖22

)1/2]

≤ cRu
m2
· Einit

[(m∑
i=1

‖[α(0)]i‖22
)
·
(m∑
i=1

1

‖[α(0)]i‖22

)1/2]
.

Finally, by the Cauchy-Schwarz inequality, we have

Einit

[(m∑
i=1

‖[α(0)]i‖22
)
·
(m∑
i=1

1

‖[α(0)]i‖22

)1/2]

≤ Einit

[(m∑
i=1

‖[α(0)]i‖22
)2]1/2

· Einit

[m∑
i=1

1

‖[α(0)]i‖22

]1/2
,

whose right-hand side is O(m3/2). Thus, we obtain that (D.15) is O(Rum
−1/2) and (ii) in (D.11)

is O(R3
um
−1/2), which concludes the proof of Lemma D.2.

17

D.2 Global Convergence

In this section, we establish the global convergence of the meta-algorithm defined in (D.1) and (D.2).
We first present the following lemma for characterizing the variance of the stochastic update vector
gα(t)(s, a, s

′, a′) defined in (D.3), which later allows us to focus on tracking its mean in the global
convergence analysis.

Lemma D.3 (Variance of the Stochastic Update Vector). There exists a constant ξ2g = O(R2
u)

independent of t, such that for any t ≤ T , it holds that
Einit,ρ[‖gα(t)(s, a, s′, a′)− ḡα(t)‖22] ≤ ξ2g .

Proof. Since we have
Einit,ρ[‖gα(t)(s, a, s′, a′)− ḡα(t)‖22] = Einit

[
Eρ[‖gα(t)(s, a, s′, a′)− ḡα(t)‖22]

]
≤ Einit

[
Eρ[‖gα(t)(s, a, s′, a′)‖22]

]
= Einit,ρ[‖gα(t)(s, a, s′, a′)‖22],

it suffices to prove that E[‖gα(t)(s, a, s′, a′)‖22] = O(R2
u). By the definition of

Eρ[‖gα(t)(s, a, s′, a′)‖22] in (D.3), using ‖∇α(t)uα(t)(s, a)‖22 ≤ 1, we obtain
Eρ[‖gα(t)(s, a, s′, a′)‖22] = Eρ[‖δα(t)(s, a, s′, s′) · ∇αuα(t)(s, a)‖22]

≤ Eρ[|δα(t)(s, a, s′, s′)|2]. (D.16)
Then, by similar arguments used in the derivation of (D.12), we obtain

Einit,ρ[|δα(t)(s, a, s′, s′)|2] ≤ 6Einit,ρ[(uα(0)(s, a))2] + 6R2
u + 3Einit,ρ[(v(s, a))2]

≤ (6 + 3v1) · Einit,ρ[(uα(0)(s, a))2] + (6 + v2)R2
u + 3v3

2. (D.17)
Note that by ‖(s, a)‖2 ≤ 1, we have

Einit,ρ[(uα(0)(s, a))2] = Ez∼N (0,Id/d),ρ[σ(z>(s, a))2] ≤ Ez∼N (0,Id/d)[‖z‖
2
2] = 1,

which together with (D.16) and (D.17) implies Einit,ρ[‖gα(t)(s, a, s′, a′)‖22] = O(R2
u). Thus, we

complete the proof of Lemma D.3.

Before presenting the global convergence result of the meta-algorithm defined in (D.1), we first
define u0α∗ , which later become the exact learning target of the meta-algorithm defined in (D.1) and
(D.2). In specific, we define the approximate stationary point as α∗ ∈ B0(Ru) such that

α∗ = ΠB0(Ru)(α
∗ − η · ḡ0α∗), (D.18)

which is equivalent to the condition
〈ḡ0α∗ , α− α∗〉 ≥ 0, for any α ∈ B0(Ru). (D.19)

Then we establish the uniqueness and existence of u0α∗ with α∗ defined in D.18. We first define the
operator

T u(s, a) = E[v(s, a) + µ · u(s′, a′) | s′ ∼ P(· | s, a), a ∼ π(· | s′)]. (D.20)
Then using the definition of T in (D.20) and plugging the definition of ḡ0α∗ in (D.4) into (D.19), we
obtain

〈u0α∗ − T u0α∗ , u0α − u0α∗〉ρ ≥ 0, for any u0α ∈ FB,m,
which is equivalent to u0α∗ = ΠFB,mT u0α∗ . Here the projection ΠFB,m is defined with respect to
the `2-distance under measure ρ. Finally, as we have the following contraction inequality
Eρ[(ΠFB,mT u0α(s, a)−ΠFB,mT u0α′(s, a))2]

≤ Eρ[(T u0α(s, a)− T u0α′(s, a))2]

= µ2 · Eρ
[(
E[u0α(s′, a′) | s′ ∼ P(· | s, a), a′ ∼ π(· | s′)]− E[u0α′(s

′, a′) | s′ ∼ P(· | s, a), a′ ∼ π(· | s′)]
)2]

≤ µ2 · Eρ[(u0α(s, a)− u0α′(s, a))2],

we know that such fixed-point solution u0α∗ uniquely exists.

Now, with a well-defined learning target u0α∗ , we are ready to prove the the global convergence of
the meta-algorithm defined in (D.1) and (D.2) with two-layer neural network approximation.

Theorem D.4. Suppose that we run T ≥ 64/(1 − µ)2 iterations of the meta-algorithm defined in
(D.1) and (D.2). Setting the stepsize η = T−1/2, we have

Einit,ρ[(uα(s, a)− u0α∗(s, a))2] = O(R2
uT
−1/2 +R5/2

u m−1/4 +R3
um
−1/2),

where α = 1/T ·
∑T−1
t=0 α(t) and α∗ is the approximate stationary point defined in (D.18).

18

Proof. The proof of the theorem consists of two parts. We first analyze the progress of each step.
Then based on such one-step analysis, we establish the error bound of the approximation via two-
layer neural network uα.

One-Step Analysis: For any t < T , using the stationarity condition in (D.18) and the convexity of
B0(Ru), we obtain
Eρ[‖α(t+ 1)− α∗‖22 |α(t)] (D.21)

= Eρ
[∥∥ΠB0(Ru)(α(t)− η · gα(t)(s, a, s′, a′))−ΠB0(Ru)(α

∗ − ηḡ0α∗)
∥∥2
2

∣∣α(t)
]

≤ Eρ
[∥∥(α(t)− α∗)− η · (gα(t)(s, a, s′, a′)− ḡ0α∗)

∥∥2
2

∣∣α(t)
]

= ‖α(t)− α∗‖22 − 2η · 〈ḡα(t) − ḡ0α∗ , α(t)− α∗〉+ η2 · Eρ[‖gα(t)(s, a, s′, a′)− ḡ0α∗‖22 |α(t)].
In the following, we upper bound the last two terms in (D.21). First, to upper bound
Eρ[‖gα(t)(s, a, s′, a′)− ḡ0α∗‖22 |α(t)], by the Cauchy-Schwarz inequality we have

Eρ[‖gα(t)(s, a, s′, a′)− ḡ0α∗‖22 |α(t)]

≤ 2Eρ[‖gα(t)(s, a, s′, a′)− ḡα(t)‖22 |α(t)] + 2‖ḡα(t) − ḡ0α∗‖22
≤ 2Eρ[‖gα(t)(s, a, s′, a′)− ḡα(t)‖22 |α(t)] + 4‖ḡα(t) − ḡ0α(t)‖

2
2 + 4‖ḡ0α(t) − ḡ

0
α∗‖22, (D.22)

where the total expectation on the first two terms on the right-hand side are characterized in Lemmas
D.3 and D.2, respectively. To characterize ‖ḡ0α(t) − ḡ

0
α∗‖22, again using ‖(s, a)‖2 ≤ 1, we have

‖ḡ0α(t) − ḡ
0
α∗‖22 = Eρ

[
(δα(t)(s, a, s

′, a′)− δα∗(s, a, s′, a′))2 · ‖∇αu0α(t)(s, a)‖22
]

≤ Eρ
[(

(u0α(t)(s, a)− u0α∗(s, a))− µ · (u0α(t)(s
′, a′)− u0α∗(s′, a′))

)2]
. (D.23)

For the right-hand side of (D.23), we use the Cauchy-Schwarz inequality on the interaction term and
obtain

Eρ
[
(u0α(t)(s

′, a′)− u0α∗(s′, a′)) · (u0α(t)(s, a)− u0α∗(s, a))
]

≤ Eρ[(u0α(t)(s
′, a′)− u0α∗(s′, a′))2]1/2 · Eρ[(u0α(t)(s, a)− u0α∗(s, a))2]1/2

= Eρ[(u0α(t)(s, a)− u0α∗(s, a))2], (D.24)
where in the last line we use the fact that (s, a) and (s′, a′) have the same marginal distribution.
Thus, we obtain

‖ḡ0α(t) − ḡ
0
α∗‖22 ≤ 4Eρ[(u0α(t)(s, a)− u0α∗(s, a))2]. (D.25)

Next, to upper bound 〈ḡα(t) − ḡ0α∗ , α(t)− α∗〉, we use the Hölder’s inequality to obtain
〈ḡα(t) − ḡ0α∗ , α(t)− α∗〉 = 〈ḡα(t) − ḡ0α(t), α(t)− α∗〉+ 〈ḡ0α(t) − ḡ

0
α∗ , α(t)− α∗〉

≥ −‖ḡα(t) − ḡ0α(t)‖2 · ‖α(t)− α∗‖2 + 〈ḡ0α(t) − ḡ
0
α∗ , α(t)− α∗〉

≥ −Ru‖ḡα(t) − ḡ0α(t)‖2 + 〈ḡ0α(t) − ḡ
0
α∗ , α(t)− α∗〉, (D.26)

where the second inequality follows from ‖α(t)−α∗‖2 ≤ Ru. For the term 〈ḡ0α(t)− ḡ
0
α∗ , α(t)−α∗〉

on the right-hand side of (D.26), we have
〈ḡ0α(t) − ḡ

0
α∗ , α(t)− α∗〉

= Eρ
[(

(u0α(t)(s, a)− u0α∗(s, a))− µ · (u0α(t)(s
′, a′)− u0α∗(s′, a′))

)
· 〈∇αu0α(t)(s, a), α(t)− α∗〉

]
= Eρ

[(
(u0α(t)(s, a)− u0α∗(s, a))− µ · (u0α(t)(s

′, a′)− u0α∗(s′, a′))
)
· (u0α(t)(s, a)− u0α∗(s, a))

]
≥ Eρ[(u0α(t)(s, a)− u0α∗(s, a))2]− µ · Eρ[(u0α(t)(s, a)− u0α∗(s, a))]2

≥ (1− µ) · Eρ[(u0α(t)(s, a)− u0α∗(s, a))2], (D.27)
where the second equality and the first inequality follow from (D.5) and (D.24), respectively.

Therefore, combining (D.21) with (D.22), (E.4), (D.26), and (D.27), we obtain
Eρ[‖α(t+ 1)− α∗‖22 |α(t)]

≤ ‖α(t)− α∗‖22 −
(
2η(1− γ)− 8η2

)
· Eρ[(u0α(t)(s, a)− u0α∗(s, a))2 |α(t)] (D.28)

+ 2η2‖ḡα(t) − ḡ0α(t)‖
2
2 + 2ηRu‖ḡα(t) − ḡ0α(t)‖2 + η2 · Eρ[‖gα(t)(s, a, s′, a′)− ḡα(t)‖22 |α(t)].

19

Error Bound: Rearranging (D.28), we obtain
Eρ[(uα(t)(s, a)− u0α∗(s, a))2 |α(t)]

≤ Eρ
[
2(uα(t)(s, a)− u0α(t)(s, a))2 + 2(u0α(t)(s, a)− u0α∗(s, a))2

∣∣α(t)
]

≤
(
η(1− γ)− 4η2

)−1 · (‖α(t)− α∗‖22 − Eρ[‖α(t+ 1)− α∗‖22 |α(t)] + ξ2αη
2
)

(D.29)

+O(R5/2
u m−1/4 +R3

um
−1/2).

Taking total expectation on both sides of (D.29) and telescoping for t+ 1 ∈ [T], we further obtain

Einit,ρ[(uα(s, a)− u0α∗(s, a))2] ≤ 1

T

T−1∑
t=0

Einit,ρ[(uα(t)(s, a)− uα∗(s, a))2] (D.30)

≤ T−1 ·
(
η(1− γ)− 4η2

)−1 · (Einit[‖α(0)− α∗‖22] + Tξ2αη
2
)

+O(R5/2
u m−1/4 +R3

um
−1/2).

Let T ≥ 64/(1 − µ)2 and η = T−1/2, it holds that T−1/2 · (η(1 − γ) − 4η2)−1 ≤ 16(1 − γ)−1/2

and Tη2 ≤ 1, which together with (D.30) implies
Einit,ρ[(uα(t)(s, a)− u0α∗(s, a))2 |α(t)]

≤ 16

(1− µ)2
√
T
·
(
Einit[‖α(0)− α∗‖22] + ξ2α

)
+O(R5/2

u m−1/4 +R3
um
−1/2)

≤ 16(R2
α + ξ2α)

(1− µ)2
√
T

+O(R5/2
u m−1/4 +R3

um
−1/2) = O(R2

uT
−1/2 +R5/2

u m−1/4 +R3
um
−1/2),

where in the second inequality we use ‖α(0)− α∗‖2 ≤ Ru and in the equality we use Lemma D.3.
Thus, we conclude the proof of Theorem D.4.

Following the definition of u0α in (D.4), we define the local linearization of Qω at the initialization
as

Q0
ω(s, a) =

1
√
mQ

mQ∑
i=1

bi · 1
{

[ω(0)]>i (s, a) ≥ 0
}
· [ω]>i (s, a).

Similarly, for fθ we define

f0θ (s, a) =
1
√
mf

mf∑
i=1

bi · 1
{

[θ(0)]>i (s, a) ≥ 0
}
· [θ]>i (s, a).

In the sequel, we show that Theorem D.4 implies both Theorems 4.5 and 4.6.

To obtain Theorem 4.5, we set ρ = σ̃k, uα = fθ, v = τk+1 · (β−1k Qωk + τ−1k fθk), µ = 0, and
Ru = Rf . Using τk+1, τk, and βk specified in Algorithm 1, we have

Eσ̃k [(v(s, a))2] ≤ 2τ2k+1 ·
(
β−2k · Eσ̃k [(Qωk(s, a))2] + τ−2k · Eσ̃k [(fθk(s, a))2]

)
≤ 4Eσ̃k [(fθ(0)(s, a))2] + 4R2

f ,

where in the second inequality we use τ2k+1β
−2
k + τ2k+1τ

−2
k ≤ 1 and the fact that (Qωk(s, a))2 ≤

2(Qω(0)(s, a))2 + 2R2
Q and (fθk(s, a))2 ≤ 2(fθ(0)(s, a))2 + 2R2

f , which is a consequence of the 1-
Lipschitz continuity of the neural network with respect to the weights. Also note that Qω(0)(s, a) =
fθ(0)(s, a) due to the fact that Qωk and fθk share the same initialization. Thus, we have v1 = 4,
v2 = 4, and v3 = 0. Moreover, by f0θ∗ = ΠFRf ,mf T f

0
θ∗ = ΠFRf ,m(τk+1 · (β−1k Qωk + τ−1k fθk)),

we have
f0θ∗ = argmin

f∈FRf ,mf

{∥∥f − τk+1 · (β−1k Qωk + τ−1k fθk)
∥∥
2,σ̃k

}
,

which together with the fact that τk+1 · (β−1k Q0
ωk

(s, a) + τ−1k f0θk(s, a)) ∈ FRf ,mf implies

Einit,σ̃k

[(
f0θ∗(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)2]
≤ Einit,σ̃k

[(
τk+1 · (β−1k Q0

ωk
(s, a) + τ−1k f0θk(s, a))− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)2]
≤ τ2k+1β

−2
k · Einit,σ̃k [(Q0

ωk
(s, a)−Qωk(s, a))2] + τ2k+1τ

−2
k · Einit,σ̃k [(f0θk(s, a)− fθk(s, a))2]

= O(R3
fm
−1/2
f). (D.31)

20

Finally, plugging (D.31) into Theorem D.4 for fθ, we obtain
Einit,σ̃k

[(
fθ(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)2]
≤ 2Einit,σ̃k [(fθ(s, a)− f0θ∗(s, a))2] + 2Einit,σ̃k

[(
f0θ∗(s, a)− τk+1 · (β−1k Qωk(s, a) + τ−1k fθk(s, a))

)2]
= O(R2

fT
−1/2 +R

5/2
f m

−1/4
f +R3

fm
−1/2
f)

which gives Theorem 4.5.

To obtain Theorem 4.6, we set ρ = σk, uα = Qω , v = (1 − γ) · r, µ = γ and Ru = RQ. Corre-
spondingly, we have v1 = 0, v2 = 0, v3 = R2

max and u0α∗ = Q0
ω∗ . Moreover, by the definition of the

operator T in (D.20), we have T = T πθk , which implies Qπθk = T Qπθk . Meanwhile, by Assump-
tion 4.3, we have Qπθk ∈ FRQ,mQ , which implies Qπθk = ΠFRQ,mQQ

πθk = ΠFRQ,mQT Q
πθk .

Since we already show thatQ0
ω∗ is the unique solution to the equationQ = ΠFRQ,mQT Q, we obtain

Q0
α∗ = Qπθk . Therefore, we can substitute Q0

α∗ with Qπθk in Theorem D.4 to obtain Theorem 4.6.

E Proofs for Section 4.2

Proof of Lemma 4.7. We first have
πk+1(a | s) = exp{β−1k Qπθk (s, a) + τ−1k fθk(s, a)}/Zk+1(s),

and
πθk+1

(a | s) = exp{τ−1k+1fθk+1
(s, a)}/Zθk+1

(s).

Here Zk+1(s), Zθk+1
(s) ∈ R are normalization factors, which are defined as

Zk+1(s) =
∑
a′∈A

exp{β−1k Qπθk (s, a′) + τ−1k fθk(s, a′)},

Zθk+1
(s) =

∑
a′∈A

exp{τ−1k+1fθk+1
(s, a′)}, (E.1)

respectively. Thus, we reformulate the inner product in (4.5) as
〈log πθk+1

(· | s)− log πk+1(· | s), π∗(· | s)− πθk(· | s)〉
=
〈
τ−1k+1fθk+1

(s, ·)− (β−1k Qπθk (s, ·) + τ−1k fθk(s, ·)), π∗(· | s)− πθk(· | s)
〉
, (E.2)

where we use the fact that
〈logZk+1(s)− logZθk+1

(s), π∗(· | s)− πθk(· | s)〉

= (logZk+1(s)− logZθk+1
(s))

∑
a′∈A

(π∗(a′ | s)− πθk(a′ | s)) = 0.

Thus, it remains to upper bound the right-hand side of (E.2). We first decompose it to two terms,
namely the error from learning the Q-function and the error from fitting the improved policy, that is,〈

τ−1k+1fθk+1
(s, ·)− (β−1k Qπθk (s, ·) + τ−1k fθk(s, ·)), π∗(· | s)− πθk(· | s)

〉
=
〈
τ−1k+1fθk+1

(s, ·)− (β−1k Qωk(s, ·) + τ−1k fθk(s, ·)), π∗(· | s)− πθk(· | s)
〉︸ ︷︷ ︸

(i)

+ 〈β−1k Qωk(s, ·)− β−1k Qπθk (s, ·), π∗(· | s)− πθk(· | s)〉︸ ︷︷ ︸
(ii)

. (E.3)

Upper Bounding (i): We have〈
τ−1k+1fθk+1

(s, ·)− (β−1k Qωk(s, ·) + τ−1k fθk(s, ·)), π∗(· | s)− πθk(· | s)
〉

(E.4)

=

〈
τ−1k+1fθk+1

(s, ·)− (β−1k Qωk(s, ·) + τ−1k fθk(s, ·)), π0(· | s)·
(
π∗(· | s)
π0(· | s)

− πθk(· | s)
π0(· | s)

)〉
.

21

Taking expectation with respect to s ∼ ν∗ on the both sides of (E.4) and using the Cauchy-Schwarz
inequality, we obatin∣∣Eν∗[〈τ−1k+1fθk+1

(s, ·)− (β−1k Qωk(s, ·) + τ−1k fθk(s, ·)), π∗(· | s)− πθk(· | s)
〉]∣∣

=

∣∣∣∣∫
S

〈
τ−1k+1fθk+1

(s, ·)− (β−1k Qωk(s, ·) + τ−1k fθk(s, ·)), π0(· | s) · νk(s)·
(
π∗(· | s)
π0(· | s)

− πθk(· | s)
π0(· | s)

)〉
· ν
∗(s)

νk(s)
ds

∣∣∣∣
=

∣∣∣∣∫
S×A

(
τ−1k+1fθk+1

(s, a)− (β−1k Qωk(s, a) + τ−1k fθk(s, a))
)
·
(
σ∗(a | s)
σ̃k(a | s)

− πθk(a | s) · ν∗(s)
σ̃k(a | s)

)
dσ̃k(s, a)

∣∣∣∣
≤ Eσ̃k

[(
τ−1k+1fθk+1

(s, a)− (β−1k Qωk(s, a) + τ−1k fθk(s, a))
)2]1/2 · Eσ̃k[∣∣∣∣dσ∗dσ̃k

− d(πθkν
∗)

dσ̃k

∣∣∣∣2]1/2
≤ τ−1k+1εk+1 · φ∗k, (E.5)

where in the last inequality we use the error bound in (4.3) and the definition of φ∗k in (4.2).

Upper Bounding (ii): By the Cauchy-Schwartz inequality, we have
|Eν∗ [〈β−1k Qωk(s, ·)− β−1k Qπθk (s, ·), π∗(· | s)− πθk(· | s)〉]|

=

∣∣∣∣∫
S×A

(β−1k Qωk(s, a)− β−1k Qπθk (s, a)) ·
(
π∗(a | s)
πθk(a | s)

− πθk(a | s)
πθk(a | s)

)
· ν
∗(s)

νk(s)
dσk(s, a)

∣∣∣∣
≤ Eσk [(β−1k Qωk(s, a)− β−1k Qπθk (s, a))2]1/2 · Eσk

[∣∣∣∣dσ∗dσk
− dν∗

dνk

∣∣∣∣2]1/2
≤ β−1k ε′k · ψ∗k, (E.6)

where in the last inequality we use the error bound in (4.4) and the definition of ψ∗k in (4.2). Finally,
combining (E.2), (E.3), (E.5), and (E.6), we have

|Eν∗ [〈log πθk+1
(· | s)− log πk+1(· | s), π∗(· | s)− πθk(· | s)〉]|

≤ τ−1k+1εk+1 · φ∗k + β−1k ε′k · ψ∗k,
which concludes the proof of Lemma 4.7.

Proof of Lemma 4.8. By the triangle inequality, we have
‖τ−1k+1fθk+1

(s, ·)− τ−1k fθk(s, ·)‖2∞
≤ 2‖τ−1k+1fθk+1

(s, ·)− τ−1k fθk(s, ·)− β−1k Qωk(s, ·)‖2∞ + 2‖β−1k Qωk(s, ·)‖2∞. (E.7)
For the first term on the right-hand side of (E.7), we have

Eν∗ [‖τ−1k+1fθk+1
(s, ·)− τ−1k fθk(s, ·)− β−1k Qωk(s, ·)‖2∞] ≤ |A| · τ−2k+1ε

2
k+1. (E.8)

For the second term on the right-hand side of (E.7), we have

Eν∗ [‖β−1k Qωk(s, ·)‖2∞] ≤ β−2k · Eν∗
[
max
a∈A

2(Qω0(s, a))2 + 2R2
f

]
= β−2k M, (E.9)

where we use the 1-Lipschitz continuity of Qω in ω and the constraint ‖ωk − ω0‖2 ≤ Rω . Then,
taking expectation with respect to s ∼ ν∗ on the both sides of (E.7) and plugging in (E.8) and (E.9),
we finish the proof of Lemma 4.8.

F Proof of Corollary 4.10

Proof. By Theorems 4.5 and 4.6, we have εk+1 = O(R2
fT
−1/2 + R

5/2
f m

−1/4
f + R3

fm
−1/2
f) and

ε′k = O(R2
QT
−1/2 +R

5/2
Q m

−1/4
Q +R3

Qm
−1/2
Q), which gives

τ−1k+1εk+1 · φ∗k+1 = O
(
kK−1/2 · φ∗k · (R2

fT
−1/2 +R

5/2
f m

−1/4
f)

)
,

|A| · τ−2k+1ε
2
k+1 = O

(
k2K−1 · |A| · (R2

fT
−1/2 +R

5/2
f m

−1/4
f)2

)
,

β−1k ε′k · ψ∗k = O
(
K−1/2 · ψ∗k · (R2

QT
−1/2 +R

5/2
Q m

−1/4
Q)

)
,

when mf = Ω(R2
f) and mQ = Ω(R2

Q).

22

Next, setting mf = R10
f · Ω(K6 · φ∗k

4 + K4 · |A|2), mQ = Ω
(
K2R10

Q · ψ∗k
4
)

and T = Ω(K3R4
f ·

φ∗k
2 +KR4

Q · ψ∗k
2), we further have

εk = τ−1k+1εk+1 · φ∗k + β−1k ε′k · ψ∗k = O(K−1). (F.1)
Meanwhile, setting mf = Ω(K4R10

f · |A|2) and T = Ω(K2R4
f · |A|), we have

ε′k = |A| · τ−2k+1ε
2
k+1 = O(K−1). (F.2)

Summing up (F.1) and (F.2) for k + 1 ∈ [K] and plugging it into Theorem 4.9, we obtain

min
0≤k≤K

{
L(π∗)− L(πθk)

}
≤ β2 log |A|+M +O(1)

(1− γ)β ·
√
K

,

which completes the proof of Corollary 4.10.

G Proofs of Section 5

Proof of Lemma 5.1. The proof follows that of Lemma 6.1 in [24]. By the definition of V π(s) in
(2.1), we have

Eν∗ [V π
∗
(s)] =

∞∑
t=0

γt · Eat∼π∗(· | st),st∼(Pπ∗)tν∗
[
(1− γ) · r(st, at)

]
(G.1)

=

∞∑
t=0

γt · Eat∼π∗(· | st),st∼(Pπ∗)tν∗
[
(1− γ) · r(st, at) + V π(st)− V π(st)

]
=

∞∑
t=0

γt · Est+1∼P(· | st,at),at∼π∗(· | st),st∼(Pπ∗)tν∗
[
(1− γ) · r(st, at) + γ · V π(st+1)− V π(st)

]
+ Eν∗ [V π(s)],

where the third inequality is obtained by taking Eν∗ [V π(s0)] = Eν∗ [V π(s)] out and, correspond-
ingly, delaying V π(st) by one time step to V π(st+1) in each term of the summation. Note that for
the advantage function, by definition of the action-value function, we have

Aπ(s, a) = Qπ(s, a)− V π(s) = (1− γ) · r(s, a) + γ · Es′∼P(· | s,a)[V π(s′)]− V π(s),
which together with (G.1) implies

Eν∗ [V π
∗
(s)] =

∞∑
t=0

γt · Eat∼π∗(· | st),st∼(Pπ∗)tν∗ [A
π(st, at)] + Eν∗ [V π(s)]

= (1− γ)−1 · Eσ∗ [Aπ(s, a)] + Eν∗ [V π(s)]. (G.2)
Here the second equality follows from (Pπ∗)tν∗ = ν∗ for any t ≥ 0 and σ∗ = π∗ν∗. Finally, note
that for any given s ∈ S,

Eπ∗ [Aπ(s, a)] = Eπ∗ [Qπ(s, a)− V π(s)] = 〈Qπ(s, ·), π∗(· | s)〉 − 〈Qπ(s, ·), π(· | s)〉
= 〈Qπ(s, ·), π∗(· | s)− π(· | s)〉. (G.3)

Plugging (G.3) into (G.2) and recalling the definition of L(π) in (4.6), we finish the proof of Lemma
5.1.

Proof of Lemma 5.2. First, we have
KL(π∗(· | s) ‖πθk(· | s))−KL(π∗(· | s) ‖πθk+1

(· | s))
=
〈
log(πθk+1

(· | s)/πθk(· | s)), π∗(· | s)
〉

=
〈
log(πθk+1

(· | s)/πθk(· | s)), π∗(· | s)− πθk+1
(· | s)

〉
+ KL(πθk+1

(· | s) ‖πθk(· | s))
=
〈
log(πθk+1

(· | s)/πθk(· | s))− β−1k Qπθk (s, ·), π∗(· | s)− πθk(· | s)
〉

+ β−1k · 〈Q
πθk (s, ·), π∗(· | s)− πθk(· | s)〉+ KL(πθk+1

(· | s) ‖πθk(· | s))
+
〈
log(πθk+1

(· | s)/πθk(· | s)), πθk(· | s)− πθk+1
(· | s)

〉
. (G.4)

Recall that πk+1 ∝ exp{τ−1k fθk + β−1k Qπθk } and Zk+1(s) and Zθk(s) are defined in (E.1). Also
recall that we have 〈logZθk(s), π(· | s) − π′(· | s)〉 = 〈logZk(s), π(· | s) − π′(· | s)〉 = 0 for all k,

23

π, and π′, which implies that, on the right-hand-side of (G.4),
〈log πθk(· | s) + β−1k Qπθk (s, ·), π∗(· | s)− πθk(· | s)〉

= 〈τ−1k fθk(s, ·) + β−1k Qπθk (s, ·), π∗(· | s)− πθk(· | s)〉 − 〈logZθk(s), π∗(· | s)− πθk(· | s)〉
= 〈τ−1k fθk(s, ·) + β−1k Qπθk (s, ·), π∗(· | s)− πθk(· | s)〉 − 〈logZk+1(s), π∗(· | s)− πθk(· | s)〉
= 〈log πk+1(· | s), π∗(· | s)− πθk(· | s)〉, (G.5)

and 〈
log(πθk+1

(· | s)/πθk(· | s)), πθk(· | s)− πθk+1
(· | s)

〉
= 〈τ−1k+1fθk+1

(s, ·)− τ−1k fθk(s, ·), πθk(· | s)− πθk+1
(· | s)〉

− 〈logZθk+1
(s), πθk(· | s)− πθk+1

(· | s)〉+ 〈logZθk(s), πθk(· | s)− πθk+1
(· | s)〉

= 〈τ−1k+1fθk+1
(s, ·)− τ−1k fθk(s, ·), πθk(· | s)− πθk+1

(· | s)〉. (G.6)
Plugging (G.5) and (G.6) into (G.4), we obtain
KL(π∗(· | s) ‖πθk(· | s))−KL(π∗(· | s) ‖πθk+1

(· | s)) (G.7)

=
〈
log(πθk+1

(· | s)/πk+1(· | s)), π∗(· | s)− πθk(· | s)
〉

+ β−1k · 〈Q
πθk (s, ·), π∗(· | s)− πθk(· | s)〉

+ 〈τ−1k+1fθk+1
(s, ·)− τ−1k fθk(s, ·), πθk(· | s)− πθk+1

(· | s)〉+ KL(πθk+1
(· | s) ‖πθk(· | s))

≥
〈
log(πθk+1

(· | s)/πk+1(· | s)), π∗(· | s)− πθk(· | s)
〉

+ β−1k · 〈Q
πθk (s, ·), π∗(· | s)− πθk(· | s)〉

+ 〈τ−1k+1fθk+1
(s, ·)− τ−1k fθk(s, ·), πθk(· | s)− πθk+1

(· | s)〉+ 1/2 · ‖πθk+1
(· | s)− πθk(· | s)‖21,

where in the last inequality we use the Pinsker’s inequality. Rearranging the terms in (G.7), we
finish the proof of Lemma 5.2.

24

	Introduction
	Background
	Neural PPO
	Main Results
	Errors of Policy Improvement and Policy Evaluation
	Error Propagation
	Global Convergence of Neural PPO

	Proof Sketch
	Algorithms in Section 3
	Supplementary Lemma in Section 3
	Proof of Proposition 3.1
	Proofs for Section 4.1
	Local Linearization
	Global Convergence

	Proofs for Section 4.2
	Proof of Corollary 4.10
	Proofs of Section 5

