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Abstract

We present a theoretical and empirical study of the gradient dynamics of overparam-
eterized shallow ReLU networks with one-dimensional input, solving least-squares
interpolation. We show that the gradient dynamics of such networks are determined
by the gradient flow in a non-redundant parameterization of the network function.
We examine the principal qualitative features of this gradient flow. In particular, we
determine conditions for two learning regimes: kernel and adaptive, which depend
both on the relative magnitude of initialization of weights in different layers and
the asymptotic behavior of initialization coefficients in the limit of large network
widths. We show that learning in the kernel regime yields smooth interpolants,
minimizing curvature, and reduces to cubic splines for uniform initializations.
Learning in the adaptive regime favors instead linear splines, where knots cluster
adaptively at the sample points.

1 Introduction
An important open problem in the theoretical study of neural networks is to describe the dynamical
behavior of the parameters during training and, in particular, the influence of the dynamics on the
generalization error. To make progress on these issues, a number of studies have focused on a
tractable class of architectures, namely single hidden-layer neural networks. For a fixed number of
neurons, negative results establish that, even with random initialization, gradient descent may be
trapped in arbitrarily bad local minima [27, 31], which motivates an asymptotic analysis that studies
the optimization and generalization properties of these models as the number of neurons m grows.
Recently, several works [13, 2, 6, 12, 23] explained the success of gradient descent at optimizing
the loss in the over-parameterized regime, i.e., when the number of neurons in significantly higher
than the number of training samples. In parallel, another line of work established global convergence
of gradient descent using tools from optimal transport and mean-field theory [8, 26, 22, 29]. The
essential difference between these two approaches was pointed out in [7], and is related to the use of a
different scaling parameter as the number of neurons tends to infinity: in one case, the neural network
behaves asymptotically as a kernel machine [19], which in turn implies that as over-parameterization
increases, the parameters stay close to their initial value; in contrast, in the mean field setting,
parameters asymptotitically evolve following a PDE based on a continuity equation.
Although both scaling regimes explain the success of gradient descent optimization on over-
parametrized networks, they paint a different picture when it comes to generalization. The generaliza-
tion properties in the kernel regime borrow from the well established theory of kernel regression in
Reproducing Kernel Hilbert Spaces (RKHS), which has been applied to kernels arising from neural
networks in [17, 14, 20, 24, 10], and provide a somehow underwhelming answer to the benefit of neu-
ral networks compared to kernel methods. However, in practice, large neural networks do not exhibit
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the traits of kernel/lazy learnings, since filter weights significantly deviate from their initialization
despite the over-parameterization. Also, empirically, active learning provides better generalization
than kernel learning [7], although the theoretical reasons for this are still poorly understood.
In this paper, we consider a simplified setting, and study wide, single-hidden layer ReLU networks
defined with one-dimensional inputs. We show how the kernel and active dynamics define fundamen-
tally different function estimation models. For a fixed number of neurons, the network may follow
either of these dynamics, depending on the initialization. Specifically, we show that kernel dynamics
correspond to interpolation with cubic splines, whereas active dynamics yields adaptive linear splines,
where neurons accumulate at the discontinuities and yield piecewise linear approximations.

Further related work. Our work lies at the intersection between two lines of research: the works,
described above, that study the optimization and generalization for shallow neural networks, and the
works that attempt to shed light on these properties on low-dimensional inputs. In the latter category,
we mention [4] for their study of the abilities of ReLU networks to approximate low-dimensional
manifolds, and [32] for their empirical study of 3D surface reconstruction using precisely the intrinsic
bias of SGD in overparametrised ReLU networks. Another remarkable recent work is [11], where
the approximation power of deep ReLU networks is studied in the context of univariate functions.
Our analysis in the active regime (Sec. 3.1) is closely related to [21], in which the authors establish
convergence of gradient descent to piece-wise linear functions under initializations sufficiently close
to zero. We provide an Eulerian perspective using Wasserstein gradient flows that simplifies the
analysis, and is consistent with their conclusions. The implicit bias of SGD dynamics appears in
several works, such as [30, 15], and, closest to our setup, in [28], where the authors observe a link
between gradient dynamics and linear splines. They do not however observe the connection with
cubic splines, although they observe experimentally that the function returned by a network is often
smooth and not piecewise linear. Finally, we mention related work that studies the tesselation of
ReLU networks on the input space [16].

Main contributions. The goal of this paper is to describe the qualitative behavior of the dynamics
or 1D shallow ReLU networks. Our main contributions can be summarized as follows.
•We investigate the gradient dynamics of shallow 1D ReLU networks using a “canonical” parame-
terization (Sec. 3.1). We show that the dynamics in this case are are completely determined by the
evolution of the residuals. Furthermore, neurons will always accumulate at certain sample points
where the residual is large and of opposite sign compared to neighboring samples. This means that
the dynamics in the reduced parameterization biases towards functions that are piecewise-linear.
•We observe that the dynamics in full parameters are related to the dynamics in canonical parameters
by a change of metric that depends only on the network at initialization. This change of metric is
expressible in terms of invariants δi associated with each neuron. When δi � 0 the dynamics in full
parameters (locally) agree with the dynamics in reduced parameters; when δi � 0, the dynamics in
full parameters (locally) follow kernel dynamics, in which only the outer layer weights change.
•We consider the idealized kernel dynamics in the limit of infinite neurons, and we show that the
RKHS norm of a function f corresponds to a weighted L2 norm of the second derivative f ′′, i.e., a
form of linearized curvature. For appropriate initial distributions of neurons, the solution to kernel
learning is a smooth cubic spline (Theorem 5). This illustrates the qualitative difference between
the “reduced” and “kernel” regimes, which depend on parameter lift at initialization. Arbitrary
initializations will locally interpolate between these two regimes.
•We also discuss the effect of applying a scaling parameter α(m) the network function (where m is
the number of neurons), which becomes important as the number of neurons tends to infinity. As
argued in [7], when α(m) = o(m), the variation of each neuron will asymptotically go to zero (lazy
regime), so our local analysis translates into a global one.

2 Preliminaries
We consider the problem of training of a two-layer ReLU neural network with m scalar inputs and a
single scalar output using the least-squares loss:

min
z
L(z) =

1

2

s∑
j=1

|fz(xj)− yj |2

where fz(x) =
1

α(m)

m∑
i=1

ci[aix− bi]+, z = (a ∈ Rm, b ∈ Rm, c ∈ Rm).

(1)
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Figure 1: Left: A network function fz(x) interpolating input samples (blue x’s). The knots of fz(x)
as a piecewise linear function are plotted as green circles. Right: The canonical parameters of the
network visualized as in (6). Each particle represents a neuron and the color indicates the sign of εi.
The samples xj correspond to lines uxj + v = 0. The colored regions which correspond to different
activation patterns of neurons on the training data.

Here (xi, yi) ∈ R2, i = 1, . . . , s is a given set of samples, z is a vector of parameters, and α(m) is a
normalization factor that will be important as we consider the limit m→∞. We are interested in
the minimization of (1) performed by gradient descent over the parameters z. This scheme may be
analyzed through its continuous-time counterpart, the gradient flow

z(0) = z0, z′(t) = −∇L(z(t)). (2)
While (2) describes the dynamics of z(t) in parameter space, we are ultimately interested in the
trajectories of the function fz(t). Let F := {f : R → R} denote the space of square-integrable
scalar functions, and let ϕ be the function-valued mapping ϕ(z) := fz . Since L(z) = R(ϕ(z)) with
R(f) = 1

2

∑
j≤s |f(xj)− yj |2, we have by the chain rule that the dynamics of g(t) := ϕ(z(t)) =

fz(t) are described by

g(0) = fz0 , g′(t) = −∇ϕ(z(t))>∇ϕ(z(t))∇R(g(t)) . (3)
The dynamics in function space are thus controlled by a time-varying tangent kernel Kt :=
∇ϕ(z(t))>∇ϕ(z(t)). It was shown in [19] that under certain assumptions the kernel Kt remains
nearly constant throughout training.
It is immediate to see that the parameters z can be continuously rescaled without affecting the
function fz , according to (ai, bi, ci) 7→ (aiki, biki, ci/ki) with ki > 0. In order to eliminate this
ambiguity, we introduce the following canonical parameterization of the network’s functional space:

f̃w(x) =
1

m

m∑
i=1

ri〈x̃, d(θi)〉+, w = (r ∈ Rm,θ ∈ [0, 2π)m), x̃ = (x, 1). (4)

where d(θi) = (cos θi, sin θi) ∈ S1. The natural mapping into canonical parameters is given by

π(ai, bi, ci) =

(
m

α(m)
ci

√
a2
i + b2i , arctan(−bi/ai)

)
= (ri, θi). (5)

This mapping clearly satisfies f̃π(z) = fz . We can also define the loss with respect to this parameter-
ization as L̃(w) = L(z) where w = π(z). We will compare the dynamics of L(z) with those of
L̃(w) to study the impact on training of different choices of parameterization and initialization, as
well as the asymptotic behavior of (3) as m increases.

Visualizing a network function. We can visualize a network function fz(x) in two ways. First, we
can plot fz(x) as a scalar function (Figure 1, left). Note that fz(x) is a continuous piecewise linear
functions in x whose knots are the points where the operand inside a ReLU activation changes sign,
namely ei = bi/ai, ai 6= 0, i = 1, . . . ,m. Alternatively, we can visualize the canonical parameters
w = π(z) in R2, by plotting a neuron (ri, θi) as a particle with coordinates

(ui, vi) = (|ri| cos(θi), |ri| sin(θi)), (6)
and coloring each particle according to εi = sign(ri) (Figure 1, right). In this visualization, each
training sample point xj can be represented as the line uxj + v = 0, which identifies the half-space
of neurons that are active at xj . The collection of such lines for all samples partitions the plane into
activation regions, where neurons have a fixed activation pattern on the training data.
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3 Training Dynamics
Our goal is to solve (1) using the gradient flow (2) of the loss L(z)1. We begin in Section 3.1 by
investigating the gradient dynamics in the canonical parameterization:

w(0) = w0, w′(t) = −∇L̃(w(t)). (7)

While the relationship between flows (2) and (7) is nonlinear, we argue in Section 3.2 that these are
related by a simple change of metric.

3.1 Dynamics in the Canonical Parameters
We assume that the canonical parameters (ri, θi) are initialized i.i.d. from some base distribution
µ(r, θ). The function f̃w is well-defined pointwise as m → ∞, by the law of large numbers.
Following the mean-field formulation of single-hidden layer networks [22, 8, 26], we express the
function as an expectation with respect to the probability measure over the cylinder D = R× S1:

f̃w(x) =

∫
D
ϕ(w;x)µ(m)(dw) ,

where ϕ(w;x) := ri〈x̃, d(θi)〉+ and µ(m)(w) = 1
m

∑m
i=1 δwi

(w) is the empirical measure deter-
mined by the m particles wi, i = 1 . . .m. The least squares loss in this case becomes

L̃(w) =
1

2
‖f̃w − y‖2X

= Cy −
1

m

m∑
i=1

〈ϕwi , y〉X +
1

2m2

m∑
i,i′=1

〈ϕwi , ϕwi′ 〉X ,

where 〈f, g〉X :=
∑s
j=1 f(xj)g(xj) is the empirical dot-product. This loss may be interpreted as

the Hamiltonian of a system of m-interacting particles, under external field F and interaction kernel
K defined respectively by F (w) := 〈ϕw, y〉X ,K(w,w′) := 〈ϕw, ϕw′〉X . We may also express this
Hamiltonian in terms of the empirical measure, by abusing notation

L̃(µ(m)) = Cy −
∫
D
F (w)µ(m)(dw) +

1

2

∫∫
D2

K(w,w′)µ(m)(dw)µ(m)(dw′) .

A direct calculation shows that the gradient∇wi
L̃(w) can be written as

m

2
∇wi

L̃(w) = ∇wV (wi;µ
(m)) ,

where V is the potential function V (w;µ) := −F (w) +
∫
DK(w,w′)µ(dw′). The gradient flow in

the space of parameters w can now be interpreted in Eulerian terms as a gradient flow in the space
of measures over D, by using the notion of Wasserstein gradient flows [22, 8, 26]. Indeed, particles
evolve in D by “feeling” a velocity field∇V defined in D. This formalism allows us now to describe
the dynamics independently of the number of neurons m, by replacing the empirical measure µ(m)

by any generic probability measure µ in D. The evolution of a measure under a generic time-varying
vector field is given by the so-called continuity equation:2

∂tµt = div(∇V µt) . (8)

The global convergence of this PDE for interaction kernels arising from single-hidden layer neural
networks has been established under mild assumptions in [22, 8, 25]. Although the conditions for
global convergence hold in the mean field limit m → ∞, a propagation-of-chaos argument from
statistical mechanics gives Central Limit Theorems for the behavior of finite-particle systems as
fluctuations of order 1/

√
m around the mean-field solution; see [26, 25] for further details.

The dynamics in D are thus described by the velocity field∇V (w;µt), which depends on the current
state of the system through the measure µt(w), describing the probability of encountering a particle

1To be precise, we should replace the gradient ∇L(z) with the Clarke subdifferential ∂L(z) [9], since
L(z) is only piecewise smooth. At generic smooth points z, the subdifferential coincides with the gradient
∂L(z(t)) = {∇L(z)}.

2Understood in the weak sense, i.e., ∂t
(∫
D φ(w)µt(dw)

)
= −

∫
〈∇φ(w),∇V (w;µt)〉µt(dw), ∀φ ∈

C1
c (D) continuously differentiable and with compact support.
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at position w at time t. We emphasize that equation (8) is valid for any measure, including the
empirical measure µ(m), and is therefore an exact model for the dynamics in both the finite-particle
and infinite-particle regime. Let us now describe its specific form in the case of the empirical loss
given above.
Assume without loss of generality that the data points xj ∈ R, j ≤ s satisfy xj ≤ xj′ whenever
j < j′. Denote

Cj := {j′; j′ ≤ j} for j = 1 . . . s, Cs+j := {j′; j′ > j}, for j = 1 . . . s− 1 .

We observe that for each j, two angles α±j = arctan(xj)± π/2 partition the circle S1 into 2s− 1
regions Ak (visualized as the colored regions in Figure 1), which are in one-to-one correspondence
with the sets Ck, in the sense that θ ∈ Ak if and only if {j; 〈x̃j , d(θ)〉 ≥ 0} = Ck . We also denote by
Bj the half-circle where 〈x̃j , θ〉 ≥ 0. Let t(θ) be the tangent vector of S1 at θ (so t(θ) = d(θ)⊥) and
w = (r, θ), where we suppose θ ∈ Ak. A straightforward calculation (see Appendix B) shows that
the angular and radial components of∇V (w;µt) are given by

∇θV (w;µt) = r

〈∑
j∈Ck

ρj(t)x̃j , t(θ)

〉
, ∇rV (w;µt) =

〈∑
j∈Ck

ρj(t)x̃j , d(θ)

〉
, (9)

where ρj(t) =
∫
R×Bj

r〈x̃j , θ〉µt(dr, dθ)− yj is the residual at point xj at time t. These expressions
show that the dynamics are entirely controlled by the s-dimensional vector of residuals ρ(t) =
(ρ1(t), . . . ρs(t)), and that the velocity field is piece-wise linear on each cylindrical region R×Ak
(e.g. Figure 9 in Appendix D). Under the assumptions that ensure global convergence of (8), we
have limt→∞ L̃(µt) = 0, and therefore ‖ρ(t)‖ → 0. The oscillations of ρ(t) as it converges to zero
determine the relative orientation of the flow within each region. The exact dynamics for the vector
of residuals are given by the following proposition, proved in Appendix B:
Proposition 1. For each j,

ρ̇j(t) = −x̃>j
∑

k;Ak⊂Bj

Σk(t)

∑
j′∈Ck

ρj′(t)x̃j′

 , (10)

where Σk(t) =
∫
R×Ak

(
r2t(θ) t(θ)> + d(θ) d(θ)>

)
µt(dr, dθ) tracks the covariance of the measure

along each cylindrical region.
Equation (10) defines a system of ODEs for the residuals ρ(t), but its coefficients are time-varying,
and behave roughly as quadratic terms in ρ(t) (since they are second-order moments of the measure
whereas the residuals are first-order moments). It may be possible to obtain asymptotic control of the
oscillations ρ(t) by applying Duhamel’s principle, but this is left for future work.
Now let w = (r, θ) with θ at a boundary of two regions Ak, Ak+1. The velocity field is modified at
the transition by

∇V (w)|Ak
−∇V (w)|Ak+1

= ρj∗(t)

(
r〈x̃j∗, t(θ)〉
〈x̃j∗, θ〉

)
,

where j∗ is such that 〈x̃j∗, d(θ)〉 = 0, since θ is at the boundary of Ak. It follows that the only
discontinuity is in the angular direction, of magnitude |rρj∗(t)|‖x̃j∗‖. In particular, an interesting
phenomenon arises when the angular components of ∇V (w)|Ak

and ∇V (w)|Ak+1
have opposite

signs, corresponding to an “attractor” or “repulsor” that attracts/repels particles along the direction
given by x̃j∗ (See Figure 9 in Appendix D). Writing sk =

〈∑
j∈Ck ρj(t)x̃j , t(θ)

〉
, we deduce

from (9) that this occurs when |sk| < |ρj∗(t)|‖x̃j∗‖ and sign(sk) 6= sign(ρj∗(t)). We expand this
condition in the following Lemma.
Lemma 2. A data point xk is an attractor/repulsor if and only if

k−1∑
i=1

ρiρk〈x̃i, x̃k〉 > −ρ2
k‖x̃k‖2, or

s∑
i=k+1

ρiρk〈x̃i, x̃k〉 > −ρ2
k‖x̃k‖2.

In words, mass will concentrate towards input points where the residual is currently large and of
opposite sign from a weighted average of neighboring residuals. This is in stark contrast with the
kernel dynamics (Section 3.3), where there is no adaptation to the input data points. We point out that
this qualitative behavior has been established in [21] under appropriate initial conditions, sufficiently
close to zero, in line with our mean-field analysis. We also refer to Section B.2 of the Appendix,
where we describe the adaptive regime when the objective is augmented with TV regularization.
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Figure 2: The value of δ interpolates between different kinds of local trajectories of neurons. The
plots are in the coordinate frame (∇L̃,∇L̃⊥). Left: the neurons move radially towards and away
from the origin. Middle: the trajectories containing both radial and tangential components. Right: the
trajectories are parallel to the gradient∇L̃.

3.2 Dynamics in the Full Parameters

The dynamics of gradient flow (2) are different from the dynamics of the gradient flow (7). For
the gradient flow in canonical parameters we have observed adaptive learning behavior under the
assumption of iid distribution of parameter initialization. The full set of parameters z = (a, b, c),
may exhibit both kernel and adaptive behavior depending on the initialization. To characterize this
behavior we rely on the following lemma.

Lemma 3. If z(t) = (a(t), b(t), c(t)) is a solution of the gradient flow (2), then the quantities

δ = (ci(t)
2 − ai(t)2 − bi(t)2)mi=1 (11)

remain constant for all t. In particular, given a reduced neuron (ri, θi), we can uniquely recover the
original neuron parameters (ai, bi, ci) from δi computed from the initialization.

Lemma 3 allows us to analyze how canonical parameters evolve under full gradient flow in (a, b, c).
Overall, the behavior is qualitatively the same, except it is in addition dependent on the relative scale
of redundant parameters.

Proposition 4. Let z(t) be a solution of the gradient flow (2) of L(z), and let δ = (δi) ∈ Rm be
the vector of invariants (11), which depend only on the initialization z(0). If w(t) = (r(t),θ(t)) is
curve of canonical parameters corresponding to z(t), then we have that

ẇi(t) = Pi · ∇wi
L̃(w), i = 1, . . . ,m, (12)

where

Pi =

[
m2

α(m)2 (a2
i + b2i + c2i ) 0

0 1
a2i +b2i

]
. (13)

With respect to rescaled differentials dτ = rdθ, corresponding to representing the flow locally in a
Cartesian system aligned with the radial direction (pointing away from z = 0) and its perpendicular,
the flow can be written as[

dri
dτi

]
=

[
m2

α(m)2 (a2
i + b2i + c2i ) 0

0 c2i

]
.

[
∇riL̃(w)dt
∇τiL̃(w)dt

]
, i = 1, . . . ,m, (14)

From these equations, one can see that if c2i � a2
i + b2i for all i (i.e., δi � 0), then radial motion

will dominate. In other words, initializing the first layer with significantly larger values than the
second leads to kernel learning. On the other hand, if c2i � a2

i + b2i , then a solution of the gradient
flow (2) will follow the same trajectory as for the reduced gradient flow (7). Also, if α(m) = o(m),
the radial component will dominate as m increases. Figure 2 shows the trajectories corresponding to
different values of δi for each neuron, with α(m) = m. The extreme cases of δ = −∞ and δ = +∞
correspond to the “kernel” and “adaptive” regimes, respectively. Note that as δ increases, the neurons
cluster at sample points, as explained in our analysis in Section 3.1, and in accordance to [21].
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3.3 Kernel Dynamics
We now consider the dynamics in the special case where δ � 0, and we consider m→∞. To obtain
the kernel regime in this case, it is sufficient to consider a normalization α(m) = o(m). In particular,
when α(m) = 1, as shown in the previous section, the parameters a and b remain mostly fixed and
the parameters c change throughout training, corresponding to the so-called random-features (RF)
kernel of Rahimi and Recht [24].
In the limit case where a and b are completely fixed to their initial values, if we choose c close to
the zero vector, then the least squares problem (1) solved using gradient flow, is equivalent to the
minimal-norm constraint problem solution:

minimize ‖c‖2

subject to fz(xi) = yi, i = 1, . . . , s.
(15)

Given an initial distribution µ0 over the domain Da ×Db of parameters a and b, the random-feature
(RF) kernel associated with (15) is given by

KRF(x, x′) =

∫
Da×Db

[xa− b]+ · [x′a− b]+µ0(da,db) . (16)

The solution of (15) can now be written in terms of this RF kernel using the representer theo-
rem f̃z(x) =

∑s
j=1 αjKRF(xj , x), where α is a vector of minimal RKHS norm that fulfills the

interpolation constraints. Under appropriate assumptions, the solution to (15) is a cubic spline.
Theorem 5. Assume the measure µ0 has finite second moment σ2

µ0
:= E(a,b)∼µ0

(a2 + b2) <∞. Let
µ0(a, b) = q(a)µa(b) be the decomposition in terms of marginal and conditional, and assume µa is
bounded for each a. Define ν(u) =

∫
|a|µa(ab)dq(a). Then the solution (15) solves

min
f

‖f‖2RF :=

∫
Ω

|f ′′(u)|2

ν(u)
du s.t. f(xi) = yi , i = 1 . . . s , (17)

where Ω := supp(ν). Moreover, if µ0 is such that µ0(a, b) = q(a)1(b ∈ Ia), where Ia ⊂ R is an
arbitrary interval, then (15) will be a cubic spline.

Notice that the assumptions on µ0 to obtain an exact cubic spline kernel impose that if A,B is a
random vector distributed according to µ0, then B|A is uniform over an arbitrary interval IA that
can depend upon A. The proof illustrates that one may generalize the interval IA by any countable
union of intervals. In particular, independent uniform initialization yields cubic splines, but radial
distributions, such as A,B being jointly Gaussian, do not (see Section A.3 in the Appendix). We
remark that machine learning packages such as PyTorch use a uniform distribution for linear layer
parameter initialization by default. We verify that indeed, solutions to (1) converge to cubic splines
as m grows in Figure 3. We also point out that in Kernel Learning, early termination of gradient flow
acts as a regularizer favoring smooth, non-interpolatory solutions (see [19]).
The analysis and comparison of these kernels has recently been addressed in [5, 14] in the general
high-dimensional setting, by describing its spectral decay in terms of spherical harmonics. Our results
complement them in the particular one-dimensional setting thanks to the explicit functional form
of the resulting RKHS norms. Additionally, Savarese et al. [28] study the functional form of the
minimization in the variation norm, leading to a penality of the form

∫
|f ′′(u)|du. We have instead

L2 norms (RKHS) in the kernel regime. The L2 norms do not provide any adaptivity as opposed to
the L1 norm [3]. An interesting question is to precisely describe the transition between these two
regimes as a function of the initialization.

Numerical Experiments. For our numerical experiments, we use gradient descent with the pa-
rameterization (1) and α(m) =

√
m, appropriately scaling the weights a, b, c to achieve different

dynamical behaviors. We also refer to Section D in the Appendix for additional experiments.
Cubic Splines. We show in Figure 3 that when −δ � r2 (i.e., in the kernel regime), and as the
number of neurons grows, the network function fz converges to a cubic spline. For this experiment,
we used 10 points sampled from a square wave, and trained only the parameters c (i.e., δi =∞).
Network Dynamics as a Function of δ. We show in Figure 4 that as we vary δ, the network function
goes from being smooth and non-adaptive in the kernel regime (δ = −∞, i.e.training only the
parameter c) to very adaptive (δ =∞, i.e.training only the parameters a, b). Note that as δ increases,
clusters of knots emerge at the sample positions (collinear points in the uv diagrams).
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Figure 3: A cubic spline with vanishing second derivative at its endpoints (blue line) is approximated
by a neural network (δ = −100) while varying the number m of neurons.
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Figure 4: Comparison of fitting the network function to a sinusoid as δ varies (10000 epochs).

4 Concluding Remarks
We have studied the implicit bias of gradient descent in the approximation of univariate functions with
single-hidden layer ReLU networks. Despite being an extremely simplified learning setup, it provides
a clear illustration that such implicit bias can be drastically different depending on how the neural
architecture is parameterized, normalized, or even initialized. Building on recent theoretical work
that studies neural networks in the overparameterized regime, we show how the model can behave
either as a ‘classic’ cubic spline interpolation kernel, or as an adaptive interpolation method, where
neurons concentrate on sample points where the approximation most needs them. Moreover, in the
one-dimensional case, we complement existing works [29] to reveal a transition between these two
extreme training regimes, which roughly correspond to W 1,2 and W 2,2 Sobolev spaces respectively.
Although in our univariate setup there is no clear advantage of one functional space over the other,
our full description of the dynamics may prove useful in the high-dimensional regime, where the
curse of dimensionality affects Hilbert spaces defined by kernels [3]. We believe that the analysis
of the PDE resulting from the mean-field regime (where adaptation occurs) in the low-dimensional
setting will be useful to embark in the analysis of the high-dimensional counterpart. We note however
that naively extending our analysis to high-dimensions would result in an exponential increase in the
number of regions that define our piecewise linear flow, thus we anticipate that new tools might be
needed. Moreover, the interpretation of ReLU features in terms of Green’s functions (as first pointed
out in [29]) does not directly carry over to higher dimensions. Lastly, another important limitation of
the mean-field analysis is that it cannot be easily adapted to deep neural network architectures, since
neurons are no longer exchangeable as in the many-particle system described above.
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