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Abstract

Many decision-making problems naturally exhibit pronounced structures inherited
from the characteristics of the underlying environment. In a Markov decision pro-
cess model, for example, two distinct states can have inherently related semantics
or encode resembling physical state configurations. This often implies locally cor-
related transition dynamics among the states. In order to complete a certain task in
such environments, the operating agent usually needs to execute a series of tempo-
rally and spatially correlated actions. Though there exists a variety of approaches to
capture these correlations in continuous state-action domains, a principled solution
for discrete environments is missing. In this work, we present a Bayesian learn-
ing framework based on Pólya-Gamma augmentation that enables an analogous
reasoning in such cases. We demonstrate the framework on a number of common
decision-making related problems, such as imitation learning, subgoal extraction,
system identification and Bayesian reinforcement learning. By explicitly modeling
the underlying correlation structures of these problems, the proposed approach
yields superior predictive performance compared to correlation-agnostic models,
even when trained on data sets that are an order of magnitude smaller in size.

1 Introduction

Correlations arise naturally in many aspects of decision-making. The reason for this phenomenon is
that decision-making problems often exhibit pronounced structures, which substantially influence
the strategies of an agent. Examples of correlations are even found in stateless decision-making
problems, such as multi-armed bandits, where prominent patterns in the reward mechanisms of
different arms can translate into correlated action choices of the operating agent [7, 9]. However,
these statistical relationships become more pronounced in the case of contextual bandits, where
effective decision-making strategies not only exhibit temporal correlation but also take into account
the state context at each time point, introducing a second source of correlation [12].

In more general decision-making models, such as Markov decision processes (MDPs), the agent can
directly affect the state of the environment through its action choices. The effects caused by these
actions often share common patterns between different states of the process, e.g., because the states
have inherently related semantics or encode similar physical state configurations of the underlying
system. Examples of this general principle are omnipresent in all disciplines and range from robotics,
where similar actuator outputs result in similar kinematic responses for similar states of the robot’s
joints, to networking applications, where the servicing of a particular queue affects the surrounding
network state (Section 4.3.3). The common consequence is that the structures of the environment are
usually reflected in the decisions of the operating agent, who needs to execute a series of temporally
and spatially correlated actions in order to complete a certain task. This is particularly true when two or
more agents interact with each other in the same environment and need coordinate their behavior [2].
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Focusing on rational behavior, correlations can manifest themselves even in unstructured domains,
though at a higher level of abstraction of the decision-making process. This is because rationality itself
implies the existence of an underlying objective optimized by the agent that represents the agent’s
intentions and incentivizes to choose one action over another. Typically, these goals persist at least
for a short period of time, causing dependencies between consecutive action choices (Section 4.2).

In this paper, we propose a learning framework that offers a direct way to model such correlations in
finite decision-making problems, i.e., involving systems with discrete state and action spaces. A key
feature of our framework is that it allows to capture correlations at any level of the process, i.e., in the
system environment, at the intentional level, or directly at the level of the executed actions. We encode
the underlying structure in a hierarchical Bayesian model, for which we derive a tractable variational
inference method based on Pólya-Gamma augmentation that allows a fully probabilistic treatment of
the learning problem. Results on common benchmark problems and a queueing network simulation
demonstrate the advantages of the framework. The accompanying code is publicly available via Git.1

Related Work

Modeling correlations in decision-making is a common theme in reinforcement learning and related
fields. Gaussian processes (GPs) offer a flexible tool for this purpose and are widely used in a
broad variety of contexts. Moreover, movement primitives [18] provide an effective way to describe
temporal relationships in control problems. However, the natural problem domain of both are
continuous state-action environments, which lie outside the scope of this work.

Inferring correlation structure from count data has been discussed extensively in the context of topic
modeling [13, 14] and factor analysis [29]. Recently, a GP classification algorithm with a scalable vari-
ational approach based on Pólya-Gamma augmentation was proposed [30]. Though these approaches
are promising, they do not address the problem-specific modeling aspects of decision-making.

For agents acting in discrete environments, a number of customized solutions exist that allow to model
specific characteristics of a decision-making problem. A broad class of methods that specifically
target temporal correlations rely on hidden Markov models. Many of these approaches operate on the
intentional level, modeling the temporal relationships of the different goals followed by the agent [22].
However, there also exist several approaches to capture spatial dependencies between these goals.
For a recent overview, see [27] and the references therein. Dependencies on the action level have
also been considered in the past but, like most intentional models, existing approaches largely focus
on the temporal correlations in action sequences (such as probabilistic movement primitives [18])
or they are restricted to the special case of deterministic policies [26]. A probabilistic framework to
capture correlations between discrete action distributions is described in [25].

When it comes to modeling transition dynamics, most existing approaches rely on GP models [4, 3].
In the Texplore method of [8], correlations within the transition dynamics are modeled with the help of
a random forest, creating a mixture of decision tree outcomes. Yet, a full Bayesian description in form
of an explicit prior distribution is missing in this approach. For behavior acquisition, prior distributions
over transition dynamics are advantageous since they can easily be used in Bayesian reinforcement
learning algorithms such as BEETLE [21] or BAMCP [6]. A particular example of a prior distribution
over transition probabilities is given in [19] in the form of a Dirichlet mixture. However, the
incorporation of prior knowledge expressing a particular correlation structure is difficult in this model.

To the best of our knowledge, there exists no principled method to explicitly model correlations in
the transition dynamics of discrete environments. Also, a universally applicable inference tool for
discrete environments, comparable to Gaussian processes, has not yet emerged. The goal of our work
is to fill this gap by providing a flexible inference framework for such cases.

2 Background

2.1 Markov Decision Processes

In this paper, we consider finite Markov decision processes (MDPs) of the form (S,A, T , R), where
S = {1, . . . , S} is a finite state space containing S distinct states, A = {1, . . . , A} is an action space

1https://git.rwth-aachen.de/bcs/correlation_priors_for_rl
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comprising A actions for each state, T : S × S ×A → [0, 1] is the state transition model specifying
the probability distribution over next states for each current state and action, and R : S ×A → R is a
reward function. For further details, see [28].

2.2 Inference in MDPs

In decision-making with discrete state and action spaces, we are often faced with integer-valued
quantities modeled as draws from multinomial distributions, xc ∼ Mult(xc | Nc,pc), Nc ∈ N,
pc ∈ ∆K , where K denotes the number of categories, c ∈ C indexes some finite covariate space with
cardinality C, and pc parametrizes the distribution at a given covariate value c. Herein, xc can either
represent actual count data observed during an experiment or describe some latent variable of our
model. For example, when modeling the policy of an agent in an MDP, xc may represent the vector of
action counts observed at a particular state, in which case C = S , K = A, and Nc is the total number
of times we observe the agent choosing an action at state c. Similarly, when modeling state transition
probabilities, xc could be the vector counting outgoing transitions from some state s for a given
action a (in which case C = S ×A) or, when modeling the agent’s intentions, xc could describe the
number of times the agent follows a particular goal, which itself might be unobservable (Section 4.2).

When facing the inverse problem of inferring the probability vectors {pc} from the count data {xc},
a computationally straightforward approach is to model the probability vectors using independent
Dirichlet distributions for all covariate values, i.e., pc ∼ Dir(pc | αc) ∀c ∈ C, where αc ∈ RK>0 is
a local concentration parameter for covariate value c. However, the resulting model is agnostic to
the rich correlation structure present in most MDPs (Section 1) and thus ignores much of the prior
information we have about the underlying decision-making problem. A more natural approach would
be to model the probability vectors {pc} jointly using common prior model, in order to capture their
dependency structure. Unfortunately, this renders exact posterior inference intractable, since the
resulting prior distributions are no longer conjugate to the multinomial likelihood.

Recently, a method for approximate inference in dependent multinomial models has been developed
to account for the inherent correlation of the probability vectors [14]. To this end, the following prior
model was introduced,

pc = ΠSB(ψc·), ψ·k ∼ N (ψ·k | µk,Σ), k = 1, . . . ,K − 1. (1)

Herein, ΠSB(ζ) = [Π
(1)
SB(ζ), . . . ,Π

(K)
SB (ζ)]> is the logistic stick-breaking transformation, where

Π
(k)
SB(ζ) = σ(ζk)

∏

j<k

(1− σ(ζj)), k = 1, . . . ,K − 1, Π
(K)
SB (ζ) = 1−

K−1∑

k=1

Π
(k)
SB(ζ),

and σ is the logistic function. The purpose of this transformation is to map the real-valued Gaussian
variables {ψ·k} to the simplex by passing each entry through the sigmoid function and subsequently
applying a regular stick-breaking construction [10]. Through the correlation structure Σ of the latent
variables Ψ, the transformed probability vectors {pc} become dependent. Posterior inference for the
latent variables Ψ can be traced out efficiently by introducing a set of auxiliary Pólya-Gamma (PG)
variables, which leads to a conjugate model in the augmented space. This enables a simple inference
procedure based on blocked Gibbs sampling, where the Gaussian variables and the PG variables are
sampled in turn, conditionally on each other and the count data {xc}.
In the following section, we present a variational inference (VI) [1] approach utilizing this augmen-
tation trick, which establishes a closed-form approximation scheme for the posterior distribution.
Moreover, we present a hyper-parameter optimization method based on variational expectation-
maximization that allows us to calibrate our model to a particular problem type, avoiding the need
for manual parameter tuning. Applied in combination, this takes us beyond existing sampling-based
approaches, providing a fast and automated inference algorithm for correlated count data.

3 Variational Inference for Dependent Multinomial Models

The goal of our inference procedure is to approximate the posterior distribution p(Ψ | X), where
X = [x1, . . . ,xC ] represents the data matrix and Ψ = [ψ·1, . . . ,ψ·K−1] is the matrix of real-
valued latent parameters. Exact inference is intractable since the calculation of p(Ψ | X) requires
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marginalization over the joint parameter space of all variables Ψ. Instead of following a Monte Carlo
approach as in [14], we resort to a variational approximation. To this end, we search for the best
approximating distribution from a family of distributions QΨ such that

p(Ψ | X) ≈ q∗(Ψ) = arg min
q(Ψ)∈QΨ

KL (q(Ψ) ‖ p(Ψ | X)) . (2)

Carrying out this optimization under a multinomial likelihood is hard because it involves intractable
expectations over the variational distribution. However, in the following we show that, analogously to
the inference scheme of [14], a PG augmentation of Ψ makes the optimization tractable. To this end,
we introduce a family of augmented posterior distributions QΨ,Ω and instead consider the problem

p(Ψ,Ω | X) ≈ q∗(Ψ,Ω) = arg min
q(Ψ,Ω)∈QΨ,Ω

KL (q(Ψ,Ω) ‖ p(Ψ,Ω | X)) , (3)

where Ω = [ω1, . . . ,ωK−1] ∈ RC×K−1 denotes the matrix of auxiliary variables. Notice that the
desired posterior can be recovered as the marginal p(Ψ | X) =

∫
p(Ψ,Ω | X) dΩ.

First, we note that solving the optimization problem is equivalent to maximizing the evidence lower
bound (ELBO)

log p(X) ≥ L(q) = E [log p(Ψ,Ω,X)]− E [log q(Ψ,Ω)],
where the expectations are calculated w.r.t. the variational distribution q(Ψ,Ω). In order to arrive at a
tractable expression for the ELBO, we recapitulate the following data augmentation scheme derived
in [14],

p(Ψ,X) =

(
K−1∏

k=1

N (ψ·k | µk,Σ)

)(
C∏

c=1

Mult(xc | Nc,ΠSB(ψc·))

)

=

(
K−1∏

k=1

N (ψ·k | µk,Σ)

)(
C∏

c=1

K−1∏

k=1

Bin(xck | bck, σ(ψck))

)
, (4)

where the stick-breaking representation of the multinomial distribution has been expanded using
bck = Nc −

∑
j<k xcj . From Eq. (4), we arrive at

p(Ψ,X) =

(
K−1∏

k=1

N (ψ·k | µk,Σ)

)(
C∏

c=1

K−1∏

k=1

(
bck
xck

)
σ(ψck)xck(1− σ(ψck))bck−xck

)

and the PG augmentation, as introduced in [20], is obtained using the integral identity

=

∫ K−1∏

k=1

N (ψ·k | µk,Σ)

C∏

c=1

(
bck
xck

)
2−bck exp(κckψck) exp(−ωckψ2

ck/2) PG(ωck | bck, 0)

︸ ︷︷ ︸
p(Ψ,Ω,X)

dΩ.

Herein, κck = xck − bck/2 and PG(ζ | u, v) is the density of the Pólya-Gamma distribution, with

the exponential tilting property PG(ζ | u, v) =
exp(− v2

2 ζ) PG(ζ|u,0)
cosh−u(v/2)

and the first moment E [ζ] =
u
2v tanh(v/2). With this augmented distribution at hand, we derive a mean-field approximation for
the variational distribution as

q(Ψ,Ω) =

K−1∏

k=1

q(ψ·k)

C∏

c=1

q(ωck).

Exploiting calculus of variations, we obtain the following parametric forms for the components of
the variational distributions,

q(ψ·k) = N (ψ·k | λk,V k), q(ωck) = PG(ωck | bck, wck).

The optimal parameters and first moments of the variational distributions are

wck =
√

E[ψ2
ck], Vk = (Σ−1 + diag (E[ωk]))−1, λk = Vk(κk + Σ−1µk),

E[ψ2
ck] =

(
(Vk)cc + λ2ck

)
, E[ωck] =

bck
2wck

tanh(wck/2),

withωk = [ω1k, . . . , ωCk]> andκk = [κ1k, . . . , κCk]>. A detailed derivation of the these results and
the resulting ELBO is provided in Section A . The variational approximation can be optimized through
coordinate-wise ascent by cycling through the parameters and their moments. The corresponding
distribution over probability vectors {pc} is defined implicitly through the deterministic relationship
in Eq. (1).
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Hyper-Parameter Optimization

For hyper-parameter learning, we employ a variational expectation-maximization approach [15] to
optimize the ELBO after each update of the variational parameters. Assuming a covariance matrix Σθ

parametrized by a vector θ = [θ1, . . . , θJ ]>, the ELBO can be written as

L(q) =− K − 1

2
|Σθ|+

1

2

K−1∑

k=1

log |Vk| −
1

2

K−1∑

k=1

tr (Σ−1θ Vk)

− 1

2

K−1∑

k=1

(µk − λk)>Σ−1θ (µk − λk) + C(K − 1) +

K−1∑

k=1

C∑

c=1

log

(
bck
xck

)

−
K−1∑

k=1

C∑

c=1

bck log 2 +

K−1∑

k=1

λ>k κk −
K−1∑

k=1

C∑

c=1

bck log
(

cosh
wck
2

)
.

A detailed derivation of this expression can be found in Section A.2. The corresponding gradients
w.r.t. the hyper-parameters calculate to

∂L

∂µk
= Σθ

−1(µk − λk),
∂L

∂θj
= −1

2

K−1∑

k=1

(
tr (Σ−1θ

∂Σθ

∂θj
)− tr (Σ−1θ

∂Σθ

∂θj
Σ−1θ V k)

−(µk − λk)>Σ−1θ

∂Σθ

∂θj
Σ−1θ (µk − λk)

)
,

which admits a closed-form solution for the optimal mean parameters, given by µk = λk.

For the optimization of the covariance parameters θ, we can resort to a numerical scheme using the
above gradient expression; however, this requires a full inversion of the covariance matrix in each
update step. As it turns out, a closed-form expression can be found for the special case where θ
is a scale parameter, i.e., Σθ = θΣ̃, for some fixed Σ̃. The optimal parameter value can then be
determined as

θ =
1

KC

K−1∑

k=1

tr
(
Σ̃
−1 (

V k + (µk − λk)(µk − λk)>
))
.

The closed-form solution avoids repeated matrix inversions since Σ̃
−1

, being independent of all hyper-
parameters and variational parameters, can be evaluated at the start of the optimization procedure.
The full derivation of the gradients and the closed-form expression is provided in Section B.

For the experiments in the following section, we consider a squared exponential covariance function
of the form (Σθ)cc′ = θ exp

(
−d(c,c

′)2

l2

)
, with a covariate distance measure d : C × C → R≥0

and a length scale l ∈ R≥0 adapted to the specific modeling scenario. Yet, we note that for model
selection purposes multiple covariance functions can be easily compared against each other based on
the resulting values of the ELBO [15]. Also, a combination of functions can be employed, provided
that the resulting covariance matrix is positive semi-definite (see covariance kernels of GPs [23]).

4 Experiments

To demonstrate the versatility of our inference framework, we test it on a number of modeling scenar-
ios that commonly occur in decision-making contexts. Due to space limitations, we restrict ourselves
to imitation learning, subgoal modeling, system identification, and Bayesian reinforcement learning.
However, we would like to point out that the same modeling principles can be applied in many other
situations, e.g., for behavior coordination among agents [2] or knowledge transfer between related
tasks [11], to name just two examples. A more comprehensive evaluation study is left for future work.

4.1 Imitation Learning

First, we illustrate our framework on an imitation learning example, where we aspire to reconstruct the
policy of an agent (in this context called the expert) from observed behavior. For the reconstruction,
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Figure 1: Imitation learning example. The expert policy in (a) is reconstructed using the posterior
mean estimates of (b) an independent Dirichlet policy model and (c) a correlated PG model, based on
action data observed at the states marked in gray. The PG joint estimate of the local policies yields
a significantly improved reconstruction, as shown by the resulting Hellinger distance to the expert
policy and the corresponding value loss [27] in (d).

we suppose to have access to a demonstration data set D = {(sd, ad) ∈ S × A}Dd=1 containing D
state-action pairs, where each action has been generated through the expert policy, i.e., ad ∼ π(a | sd).
Assuming a discrete state and action space, the policy can be represented as a stochastic matrix
Π = [π1, . . . ,πS ], whose ith column πi ∈ ∆A represents the local action distribution of the expert
at state i in form of a vector. Our goal is to estimate this matrix from the demonstrations D. By
constructing the count matrix (X)ij =

∑D
d=1 1(sd = i ∧ ad = j), the inference problem can be

directly mapped to our PG model, which allows to jointly estimate the coupled quantities {πi}
through their latent representation Ψ by approximating the posterior distribution p(Ψ | X) in Eq. (2).
In this case, the covariate set C is described by the state space S .

To demonstrate the advantages of this joint inference approach over a correlation-agnostic estimation
method, we compare our framework to the independent Dirichlet model described in Section 2.2. Both
reconstruction methods are evaluated on a classical grid world scenario comprising S = 100 states
and A = 4 actions. Each action triggers a noisy transition in one of the four cardinal directions such
that the pattern of the resulting next-state distribution resembles a discretized Gaussian distribution
centered around the targeted adjacent state. Rewards are distributed randomly in the environment.
The expert follows a near-optimal stochastic policy, choosing actions from a softmax distribution
obtained from the Q-values of the current state. An example scenario is shown in Fig. 1a, where the
the displayed arrows are obtained by weighting the four unit-length vectors associated with the action
set A according to their local action probabilities. The reward locations are highlighted in green.

Fig. 1b shows the reconstruction of the policy obtained through the independent Dirichlet model. Since
no dependencies between the local action distributions are considered in this approach, a posterior esti-
mate can only be obtained for states where demonstration data is available, highlighted by the gray col-
oring of the background. For all remaining states, the mean estimate predicts a uniform action choice
for the expert behavior since no action is preferred by the symmetry of the Dirichlet prior, resulting in
an effective arrow length of zero. By contrast, the PG model (Fig. 1c) is able to generalize the expert
behavior to unobserved regions of the state space, resulting in significantly improved reconstruction
of the policy (Fig. 1d). To capture the underling correlations, we used the Euclidean distance between
the grid positions as covariate distance measure d and set l to the maximum occurring distance value.

4.2 Subgoal Modeling

In many situations, modeling the actions of an agent is not of primary interest or proves to be
difficult, e.g., because a more comprehensive understanding of the agent’s behavior is desired (see
inverse reinforcement learning [16] and preference elicitation [24]) or because the policy is of
complex form due to intricate system dynamics. A typical example is robot object manipulation,
where contact-rich dynamics can make it difficult for a controller trained from a small number of
demonstrations to appropriately generalize the expert behavior [31]. A simplistic example illustrating
this problem is depicted in Fig. 2a, where the agent behavior is heavily affected by the geometry
of the environment and the action profiles at two wall-separated states differ drastically. Similarly
to Section 4.1, we aspire to reconstruct the shown behavior from a demonstration data set of the form
D = {(sd, ad) ∈ S × A}Dd=1, depicted in Fig. 2b. This time, however, we follow a conceptually
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Figure 2: Subgoal modeling example. The expert policy in (a) targeting the green reward states is
reconstructed from the demonstration data set in (b). By generalizing the demonstrations on the inten-
tional level while taking into account the geometry of the problem, the PG subgoal model in (c) yields
a significantly improved reconstruction compared to the corresponding action-based model in (d) and
the uncorrelated subgoal model in (e). Red color encodes the Hellinger distance to the expert policy.

different line of reasoning and assume that each state s ∈ S has an associated subgoal gs that the agent
is targeting at that state. Thus, action ad is considered as being drawn from some goal-dependent
action distribution p(ad | sd, gsd). For our example, we adopt the normalized softmax action model
described in [27]. Spatial relationships between the agent’s decisions are taken into account with
the help of our PG framework, by coupling the probability vectors that govern the underlying subgoal
selection process, i.e., gs ∼ Cat(ps), where ps is described through the stick-breaking construction
in Eq. (1). Accordingly, the underlying covariate space of the PG model is C = S.

With the additional level of hierarchy introduced, the count data X to train our model is not directly
available since the subgoals {gs}Ss=1 are not observable. For demonstration purposes, instead of
deriving the full variational update for the extended model, we follow a simpler strategy that leverages
the existing inference framework within a Gibbs sampling procedure, switching between variational
updates and drawing posterior samples of the latent subgoal variables. More precisely, we iterate be-
tween 1) computing the variational approximation in Eq. (3) for a given set of subgoals {gs}Ss=1, treat-
ing each subgoal as single observation count, i.e., xs = OneHot(gs) ∼ Mult(xs | Ns = 1,ps) and
2) updating the latent assignments based on the induced goal distributions, i.e., gs ∼ Cat(ΠSB(ψs·)).

Fig. 2c shows the policy model obtained by averaging the predictive action distributions of M = 100

drawn subgoal configurations, i.e., π̂(a | s) = 1
M

∑M
m=1 p(a | s, g

〈m〉
s ), where g〈m〉s denotes the mth

Gibbs sample of the subgoal assignment at state s. The obtained reconstruction is visibly better than
the one produced by the corresponding imitation learning model in Fig. 2d, which interpolates the
behavior on the action level and thus fails to navigate the agent around the walls. While the Dirichlet-
based subgoal model (Fig. 2e) can generally account for the walls through the use of the underlying
softmax action model, it cannot propagate the goal information to unvisited states. For the considered
uninformative prior distribution over subgoal locations, this has the consequence that actions assigned
to such states have the tendency to transport the agent to the center of the environment, as this is the
dominating move obtained when blindly averaging over all possible goal locations.

4.3 System Identification & Bayesian Reinforcement Learning

Having focused our attention on learning a model of an observed policy, we now enter the realm of
Bayesian reinforcement learning (BRL) and optimize a behavioral model to the particular dynamics of
a given environment. For this purpose, we slightly modify our grid world from Section 4.1 by placing
a target reward of +1 in one corner and repositioning the agent to the opposite corner whenever the
target state is reached (compare “Grid10” domain in [6]). For the experiment, we assume that the
agent is aware of the target reward but does not know the transition dynamics of the environment.

4.3.1 System Identification

For the beginning, we ignore the reward mechanism altogether and focus on learning the transition
dynamics of the environment. To this end, we let the agent perform a random walk on the grid,
choosing actions uniformly at random and observing the resulting state transitions. The recorded
state-action sequence (s1, a1, s2, a2, . . . , aT−1, sT ) is summarized in the form of count matrices
[X(1), . . . ,X(A)], where the element (X(a))ij =

∑T
t=1 1(at = a ∧ st = i ∧ st+1 = j) represents
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Figure 3: Bayesian reinforcement learning results. (a) Estimation error of the transition dynamics
over the number of observed transitions. Shown are the Hellinger distances to the true next-state
distribution and the standard deviation of the estimation error, both averaged over all states and
actions of the MDP. (b) Expected returns of the learned policies (normalized by the optimal return)
when replanning with the estimated transition dynamics after every fiftieth state transition.

the number of observed transitions from state i to j for action a. Analogously to the previous two
experiments, we estimate the transition dynamics of the environment from these matrices using
an independent Dirichlet prior model and our PG framework, where we employ a separate model
for each transition count matrix. The resulting estimation accuracy is described by the graphs in
Fig. 3a, which show the distance between the ground truth dynamics of the environment and those
predicted by the models, averaged over all states and actions. As expected, our PG model significantly
outperforms the naive Dirichlet approach.

4.3.2 Bayesian Reinforcement Learning

Next, we consider the problem of combined model-learning and decision-making by exploiting
the experience gathered from previous system interactions to optimize future behavior. Bayesian
reinforcement learning offers a natural playground for this task as it intrinsically balances the
importance of information gathering and instantaneous reward maximization, avoiding the exploration-
exploitation dilemma encountered in classical reinforcement learning schemes [5].

To determine the optimal trade-off between these two competing objectives computationally, we
follow the principle of posterior sampling for reinforcement learning (PSRL) [17], where future
actions are planned using a probabilistic model of the environment’s transition dynamics. Herein, we
consider two variants: (1) In the first variant, we compute the optimal Q-values for a fixed number of
posterior samples representing instantiations of the transition model and choose the policy that yields
the highest expected return on average. (2) In the second variant, we select the greedy policy dictated
by the posterior mean of the transition dynamics. In both cases, the obtained policy is followed for a
fixed number of transitions before new observations are taken into account for updating the posterior
distribution. Fig. 3b shows the expected returns of the so-obtained policies over the entire execution
period for the three prior models evaluated in Fig. 3a and both PSRL variants. The graphs reveal that
the PG approach requires significantly fewer transitions to learn an effective decision-making strategy.

4.3.3 Queueing Network Modeling

As a final experiment, we evaluate our model on a network scheduling problem, depicted in Fig. 4a.
The considered two-server network consists of two queues with buffer lengths B1 = B2 = 10.
The state of the system is determined by the number of packets in each queue, summarized by the
queueing vector b = [b1, b2], where bi denotes the number of packets in queue i. The underlying
system state space is S = {0, . . . , B1} × {0, . . . , B2} with size S = (B1 + 1)(B2 + 1).

For our experiment, we consider a system with batch arrivals and batch servicing. The task for
the agent is to schedule the traffic flow of the network under the condition that only one of the
queues can be processed at a time. Accordingly, the actions are encoded as a = 1 for serving
queue 1 and a = 2 for serving queue 2. The number of packets arriving at queue 1 is modeled as
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Figure 4: BRL for batch queueing. (a) Considered two-server queueing network. (b) Expected
returns over the number of learning episodes, each consisting of twenty state transitions.

q1 ∼ Pois(q1 | ϑ1) with mean rate ϑ1 = 1. The packets are transferred to buffer 1 and subsequently
processed in batches of random size q2 ∼ Pois(q2 | ϑ2), provided that the agent selects queue 1.
Therefore, ϑ2 = β1 1(a = 1), where we consider an average batch size of β1 = 3. Processed
packets are transferred to the second queue, where they wait to be processed further in batches
of size q3 ∼ Pois(q3 | ϑ3), with ϑ3 = β2 1(a = 2) and an average batch size of β2 = 2. The
resulting transition to the new queueing state b′ after one processing step can be compactly written as
b′ = [(b1 + q1− q2)B1

0 , (b2 + q2− q3)B2
0 ], where the truncation operation (·)B0 = max(0,min(B, ·))

accounts for the nonnegativity and finiteness of the buffers. The reward function, which is known to
the agent, computes the negative sum of the queue lengths R(b) = −(b1 + b2). Despite the simplistic
architecture of the network, finding an optimal policy for this problem is challenging since determining
the state transition matrices requires nontrivial calculations involving concatenations of Poisson
distributions. More importantly, when applied in a real-world context, the arrival and processing rates
of the network are typically unknown so that planning-based methods cannot be applied.

Fig. 4b shows the evaluation of PSRL on the network. As in the previous experiment, we use a separate
PG model for each action and compute the covariance matrix Σθ based on the normalized Euclidean
distances between the queueing states of the system. This encodes our prior knowledge that the queue
lengths obtained after servicing two independent copies of the network tend to be similar if their
previous buffer states were similar. Our agent follows a greedy strategy w.r.t. the posterior mean of the
estimated model. The policy is evaluated after each policy update by performing one thousand steps
from all possible queueing states of the system. As the graphs reveal, the PG approach significantly
outperforms its correlation agnostic counterpart, requiring fewer interactions with the system while
yielding better scheduling strategies by generalizing the networks dynamics over queueing states.

5 Conclusion

With the proposed variational PG model, we have presented a self-contained learning framework for
flexible use in many common decision-making contexts. The framework allows an intuitive consider-
ation of prior knowledge about the behavior of an agent and the structures of its environment, which
can significantly boost the predictive performance of the resulting models by leveraging correlations
and reoccurring patterns in the decision-making process. A key feature is the adjustment of the model
regularization through automatic calibration of its hyper-parameters to the specific decision-making
scenario at hand, which provides a built-in solution to infer the effective range of correlations from
the data. We have evaluated the framework on various benchmark tasks including a realistic queueing
problem, which in a real-world situation admits no planning-based solution due to unknown system
parameters. In all presented scenarios, our framework consistently outperformed the naive baseline
methods, which neglect the rich statistical relationships to be unraveled in the estimation problems.
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[27] A. Šošić, E. Rueckert, J. Peters, A. M. Zoubir, and H. Koeppl. Inverse reinforcement learning via
nonparametric spatio-temporal subgoal modeling. Journal of Machine Learning Research, 19(69):1–45,
2018.

[28] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 2018.

[29] M. K. Titsias. The infinite Gamma-Poisson feature model. In Advances in Neural Information Processing
Systems, pages 1513–1520, 2008.

[30] F. Wenzel, T. Galy-Fajou, C. Donner, M. Kloft, and M. Opper. Efficient Gaussian process classification
using Pòlya-Gamma data augmentation. In AAAI Conference on Artificial Intelligence, volume 33, pages
5417–5424, 2019.

[31] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell, N. de Fre-
itas, et al. Reinforcement and imitation learning for diverse visuomotor skills. arXiv:1802.09564,
2018.

11



Correlation Priors for Reinforcement Learning
— Supplementary Material —

Bastian Alt Adrian Šošić Heinz Koeppl
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A Optimizing the Evidence Lower Bound (ELBO)

In this section, we provide the detailed calculation for optimizing the ELBO of the presented model.
First, we derive the optimal variational distributions and their parameters in Section A.1. Then, we
derive the ELBO as function of the variational parameters in Section A.2.

The ELBO for the proposed model with PG augmentation scheme is

L(q) = E [log p(Ψ,Ω,X)]− E [log q(Ψ,Ω)]. (5)

The joint distribution of the model is given by

p(Ψ,Ω,X) =

K−1∏

k=1

N (ψ·k | µk,Σ)

×
C∏

c=1

(
bck
xck

)
2−bck exp(κckψck) exp(−ωckψ2

ck/2) PG(ωck | bck, 0).

(6)

For the derivation, we assume a factorized approximation with

q(Ψ,Ω) =

K−1∏

k=1

q(ψ·k)

C∏

c=1

q(ωck). (7)

A.1 Parameteric Forms of the Variational Distributions

Calculating the Variational Distribution q(ψ·k)

First, we calculate the optimal forms of the variational distributions q(ψ·k), k = 1, . . . ,K − 1.
Collecting all terms in Eq. (5) that depend on ψ·k gives

L(q) = L(q(ψ·k)) + Lconst.

Due to the factorization in Eq. (7) together with Eq. (6), we have

L(q(ψ·k)) = E [logN (ψ·k | µk,Σ)] +

C∑

c=1

E [ψck]κck −
C∑

c=1

E [ωckψ
2
ck/2]− E [log q(ψ·k)].

The optimal distribution can be calculated by introducing the Lagrangian

L(q(ψ·k), ν) = E [logN (ψ·k | µk,Σ)] +

C∑

c=1

E [ψck]κck −
C∑

c=1

E [ωckψ
2
ck/2]

−E [log q(ψ·k)] + ν

(∫
q(ψ·k) dψ·k − 1

)
,
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which ensures that q(ψ·k) is a proper density, using ν as a Lagrange multiplier to enforce the
normalization constraint. The Euler Lagrange equation and optimality condition are

δL
δq

= 0,
∂L
∂ν

= 0. (8)

The functional derivative of the Lagrangian yields

δL
δq

= logN (ψ·k | µk,Σ) +

C∑

c=1

ψckκck −
C∑

c=1

E [ωck]ψ2
ck/2− log q(ψ·k)− 1 + ν.

By solving the Euler Lagrange equation for q(ψ·k), we obtain

q(ψ·k) = exp

(
ν − 1 + logN (ψ·k | µk,Σ) +

C∑

c=1

ψckκck −
C∑

c=1

E [ωck]ψ2
ck/2

)
.

The optimality condition (normalization constraint) in Eq. (8) yields

q(ψ·k) ∝ N (ψ·k | µk,Σ) exp

(
−1

2

C∑

c=1

E [ωck]ψ2
ck +

C∑

c=1

ψckκck

)

∝ N (ψ·k | µk,Σ)

C∏

c=1

N (
κck

E [ωck]
| ψck, 1/E [ωck])

= N (ψ·k | µk,Σ)N (diag (E [ωk])
−1
κk | ψ·k,diag (E [ωk])

−1
).

Therefore, the optimal distribution q(ψ·k) can be identified as a Gaussian by completing the square

q(ψ·k) = N (ψ·k | λk,Vk), (9)

with the variational parameters

Vk = (Σ−1 + diag (E [ωk]))−1, λk = Vk(κk + Σ−1µk). (10)

Calculating the Variational Distribution q(ωck)

The distribution for q(ωck) is calculated in a similar fashion. The ELBO in Eq. (5) in terms dependent
on ωck can be written as

L(q(ωck)) = L(q(ωck)) + Lconst,

with
L(q(ωck)) = −E [ωck]E [ψ2

ck]/2 + E [log PG(ωck | bck, 0)]− E [log q(ωck)].

The Lagrangian for the distribution q(ωck) is

L(q(ωck), ν) = −E [ωck]E [ψ2
ck]/2 + E [log PG(ωck | bck, 0)]− E [log q(ωck)]

+ν

(∫
q(ωck) dωck − 1

)

The functional derivative of the Lagrangian yields
δL
δq

= −ωck E [ψ2
ck]/2 + log PG(ωck | bck, 0)− log q(ωck)− 1 + ν.

Solving the Euler Lagrange equation δL
δq = 0 for q(ωck), we find

q(ωck) = exp
(
ν − 1 + log PG(ωck | bck, 0)− ωck E [ψ2

ck]/2
)
.

The normalization constraint is used to identify

q(ωck) ∝ PG(ωck | bck, 0) exp
(
−ωck E [ψ2

ck]/2
)
.

By exploiting the exponential tilting property of the PG distribution, that is,

PG(ζ | u, v) ∝ exp(−v
2

2
ζ) PG(ζ | u, 0),

we obtain
q(ωck) = PG(ωck | bck, wck), (11)

with the variational parameter wck =
√

E [ψ2
ck].
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A.2 The ELBO for the Optimal Distributions

The ELBO
L(q) = E [log p(Ψ,Ω,X)]− E [log q(Ψ,Ω)]

in terms of the previously derived optimal distributions calculates to

E [log p(Ψ,Ω,X)] =

K−1∑

k=1

E [logN (ψ·k | µk,Σ)] +

K−1∑

k=1

C∑

c=1

log

(
bck
xck

)

−
K−1∑

k=1

C∑

c=1

bck log 2 +

K−1∑

k=1

λ>k κk

+

K−1∑

k=1

C∑

c=1

E [log PG(ωck | bck, wck)]

−
K−1∑

k=1

C∑

c=1

bck log
(

cosh
wck
2

)
,

E [log q(Ψ,Ω)] =

K−1∑

k=1

E [logN (ψ·k | λk,Vk)] +

K−1∑

k=1

C∑

c=1

E [log PG(ωck | bck, wck)].

Canceling out the terms E [log PG(ωck | bck, wck)] and rewriting the prior and variational terms as
Kullback-Leibler (KL) divergence, we obtain

L(q) = −
K−1∑

k=1

KL (N (ψ·k | λk,Vk) ‖ N (ψ·k | µk,Σ)) +

K−1∑

k=1

C∑

c=1

log

(
bck
xck

)

−
K−1∑

k=1

C∑

c=1

bck log 2 +

K−1∑

k=1

λ>k κk −
K−1∑

k=1

C∑

c=1

bck log
(

cosh
wck
2

)
.

Finally, by computing the KL divergence, the ELBO can be expressed in terms of the variational
parameters as

L(q) =− K − 1

2
|Σ|+ 1

2

K−1∑

k=1

log |Vk| −
1

2

K−1∑

k=1

tr (Σ−1Vk)

− 1

2

K−1∑

k=1

(µk − λk)>Σ−1(µk − λk) + C(K − 1) +

K−1∑

k=1

C∑

c=1

log

(
bck
xck

)

−
K−1∑

k=1

C∑

c=1

bck log 2 +

K−1∑

k=1

λ>k κk −
K−1∑

k=1

C∑

c=1

bck log
(

cosh
wck
2

)
.

(12)

B Hyper-Parameter Optimization

In this section, we provide a derivation for the optimization of the hyper-parameters. By maximizing
the ELBO L(q) w.r.t. the parameters µk and the parameterized covariance matrix Σθ, we obtain
equations for the variational expectation maximization algorithm.

The ELBO as a function of the mean µk and covariance Σθ can be written as

L(Σθ,µk) =− K − 1

2
|Σθ| −

1

2

K−1∑

k=1

tr (Σ−1θ Vk)

− 1

2

K−1∑

k=1

(µk − λk)>Σ−1θ (µk − λk) + Lconst.

(13)
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B.1 Derivation of the Optimal Value for the Mean µk

We calculate the gradient of Eq. (13) as

∂L

∂µk
= Σ−1θ (µk − λk) .

Setting the gradient to zero, we obtain
µk = λk. (14)

B.2 Derivation of the Optimal Hyper-Parameters of Σθ

We calculate the gradient of Eq. (13) as

∂L

∂θj
= −K − 1

2
tr (Σ−1θ

∂Σθ

∂θj
) +

1

2

K−1∑

k=1

tr (Σ−1θ

∂Σθ

∂θj
Σ−1θ V k)

+
1

2

K−1∑

k=1

(µk − λk)>Σ−1θ

∂Σθ

∂θj
Σ−1θ (µk − λk).

(15)

When considering the special case of a scaled covariance matrix Σθ = θΣ̃, we can find the optimizing
hyper-parameter θ in closed form. Note that ∂Σθ

∂θ = Σ̃ and Σ−1θ = 1
θ Σ̃
−1

. Therefore, the gradient
computes to

∂L

∂θ
= −K

2θ
tr (I) +

1

2θ2

K−1∑

k=1

tr (Σ̃
−1

Vk) +
1

2θ2

K−1∑

k=1

(µk − λk)>Σ̃
−1

(µk − λk).

Setting the derivative to zero and solving for θ, we obtain the closed-form expression

θ =
1

KS

K−1∑

k=1

tr
(
Σ̃
−1 (

V k + (µk − λk)(µk − λk)>
))
. (16)
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