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A.1 Instrumental variable

A.1.1 Comparison of IV assumptions

Here, we compare Hypothesis 1 with two alternative formulations of the IV assumption.

Z X Y

e

Figure 4: IV DAG

We refer to the first formulation in the introduction: conditional
independence. This formulation consists of the following as-
sumptions: exclusion Z |= Y |(X, e); unconfounded instrument
Z |= e; and relevance, i.e. ⇢(x|z) is not constant in z. The directed
acyclic graph (DAG) in Figure 4 encodes these assumptions. Def-
inition 7.4.1 of [49] provides a formal graphical criterion.

The second formulation is via potential outcomes [3]. Though
it is beyond the scope of this work, see [38, Chapter 7] for the
relation between DAGs and potential outcomes.

We use a third formulation, which belongs in the moment restriction framework for causal inference.
In the moment restriction approach, we encode causal assumptions via functional form restrictions and
conditional expectations set to zero. Hypothesis 1, introduced by [48], involves such statements. In
particular, it imposes additive separability of confounding noise e, and E[e|Z] = 0. Be imposing the
former, we can relax the independences Z |= Y |(X, e) and Z |= e to mean independence E[e|Z] = 0.

We recommend [52] for a comparison of the DAG, potential outcome, and moment restriction
frameworks for causal inference.

A.1.2 Linear vignette

To build intuition for the IV model, we walk through a classic vignette about the linear case. We
show how least squares (LS) has a different estimand than two-stage least squares (2SLS) when
observations are confounded, i.e. with confounding noise. We will see that the estimand of 2SLS is
the structural parameter of interest.

Consider the model
Y = �0X + e, E[Xe] 6= 0, E[e|Z] = 0

where Y, e 2 R, X 2 Rdx , Z 2 Rdz , and dz � dx. Data (X,Y ) are confounded but we have access
to instrument Z. We aim to recover structural parameter �. Denote the estimands of LS and 2SLS by
�LS and �2SLS , respectively. For clarity, we write the variables to which expectations refer.
Proposition 1. �LS

6= � = �2SLS

Proof. �LS is the projection of Y onto X .
�LS = EX [XX 0]�1EX,Y [XY ] = � + EX [XX 0]�1EX,e[Xe] 6= �

where the second equality substitutes Y = X 0� + e.

Define X̄(Z) := E[X|Z] and Ȳ (Z) := E[Y |Z]. �2SLS is the projection of Y onto X̄(Z).
�2SLS = EZ [X̄(Z)X̄(Z)0]�1EZ,Y [X̄(Z)Y ]

Finally we confirm that �2SLS = �. Taking E[·|Z] of the model LHS and RHS
Ȳ (Z) = X̄(Z)0� =) X̄(Z)Ȳ (Z) = X̄(Z)X̄(Z)0� =) EZ [X̄(Z)Ȳ (Z)] = EZ [X̄(Z)X̄(Z)0]�

Appealing to the definition of conditional expectation,
� = EZ [X̄(Z)X̄(Z)0]�1EZ [X̄(Z)Ȳ (Z)] = EZ [X̄(Z)X̄(Z)0]�1EZ,Y [X̄(Z)Y ]

The final equality in the proof makes an important point: in 2SLS, one may use projected outputs
Ȳ (Z) or original outputs Y in stage 2. Choice of the latter simplifies estimation and analysis.

In the present work, we extend this basic model and approach. We consider inputs  (X) instead of
X and instruments �(Z) instead of Z. Matching symbols, the model becomes

Y = h(X) + e = H (X) + e

where the structural operator H generalizes the structural parameter �. Whereas 2SLS regresses Y
on X̄(Z) = E[X|Z], KIV regresses Y on µ(Z) = E[ (X)|Z].
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A.2 Comparison of nonparametric IV bounds

In this section, we compare KIV with alternative nonparametric IV methods that have statistical
guarantees. Readers may find it helpful to familiarize themselves with our results in Section 5 before
reading this section.

A.2.1 Nadaraya-Watson IV

We first give a detailed account of the bound for nonparametric two-stage IV regression in [23],
which provides an explicit end-to-end rate for the combined stages 1 and 2. In this work, stage 1
requires estimates of the conditional density of the input X and output Y given the instrument Z.
Stage 2 is a ridge regression performed in the relevant space of square integrable functions; the ridge
penalty is not directly on RKHS norm, unlike the present work. Still, [23, Assumption A.2] requires
that the structural function h is an element of an RKHS defined from the right singular values of the
conditional expectation operator E in order to prove consistency. To facilitate comparison between
[23] and the present work, we present the operator equation in both notations

E[Y |Z] = Eh, r = T'

The stage 1 rate of [23, Assumption 3] directly follows from the convergence rate for the Nadaraya-
Watson conditional density estimate, expressed as a ratio of unconditional estimates. Definition 4.1
of [23] describes the density estimation kernels, which should not be confused with RKHS kernels.
The rate depends on the smoothness of the density (specifically, the number of derivatives that exist),
the dimension of the random variables, and the smoothness of the density estimation kernel used.
The combined stage 1 and 2 result in [23, Theorem 4.1, Corollary 4.2] requires a further smoothness
assumption on the stage 2 regression function h, as outlined in [23, Proposition 3.2]. Our smoothness
assumption in Hypothesis 9 plays an analogous role, though it takes a different form.

There are a number of significant differences between [23] and KIV. Consider stage 1 of the learning
problem. Density estimation is a more general task than computing conditional mean embeddings
µ(z) = EX|Z=z (X), which are all that stage 2 regression requires. In particular, density estimation
rapidly becomes more difficult with increasing dimension [67, Section 6.5], whereas the difficulty of
learning µ(z) depends solely on the smoothness of the regression function to HX ; recall Hypothesis 5.
Thus, when the input X and instrumental variable Z are in moderate to high dimensions, we expect
conditional density estimation in stage 1 of [23] to suffer a drop in performance unlike kernel ridge
regression in stage 1 of KIV. (As an aside, the approach to conditional density estimation that involves
a ratio of Nadaraya-Watson estimates is suboptimal; better direct estimates of conditional densities
exist [62, 5, 27].)

Finally, there is no discussion of whether the overall rate obtained in [23] is optimal under the
smoothess assumptions made. Relatedly, there is no discussion of what an efficient ratio of stage 1 to
stage 2 training samples might be. By contrast, our stage 2 result has a minimax optimal guarantee
accompanied by a recommended ratio of training sample sizes.

A.2.2 Kernel PSR

Next we describe a bound for two-stage IV regression derived in the context of predictive state
representations (PSRs) [37]. PSRs are a means of performing filtering and smoothing for a time
series of observations o1, . . . , ot. In this setting, future observations are summarized as a feature
vector 't := '(ot:t+k�1), and past observations as a feature vector ht := h(o1:t�1). The predictive
state is the expectation of future features given the history: qt := E['t|ht]. Features can be RKHS
feature maps [12]. In this case, the predictive state is a conditional mean embedding.

Given history qt, the goal of filtering is to predict the extended future state pt := E[⇠t|ht], where
⇠t := ⇠(ot:t+k) [37, eq. 2]. The relation with IV regression is apparent: both qt and pt are the result
of stage 1 regression, and the mapping between them is the result of stage 2 regression. Theorem 2 of
[37] gives a finite sample bound for the final stage 2 result, which incorporates convergence results
for stage 1 from [56, Theorem 6].

There are several key differences between the [37] bound and the KIV bound. First, the [37] bound
does not make full use of the structure of the conditional mean embedding regression problem [34].
Rather, [37] apply matrix concentration results from [39] to the operators used in constructing the
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regression function. As a consequence, the stage 2 rate is slower than the minimax optimal rate
proposed in [14].

Another consequence is that the analysis in [37] requires strong assumptions about the smoothness of
the input to stage 2 regression. By contrast, our regression-specific analysis requires assumptions on
the smoothness of the regression function; see [54, Theorem 2] and [14, Definition 1]. The proof of
[37] additionally assumes that the stage 2 regression is a Hilbert-Schmidt operator, which amounts to
a smoothness assumption, however this is insufficient for their bound.

We now show that the input smoothness assumptions from [37] make the bound inapplicable in our
case. Suppose we wish to make a counterfactual prediction ytest = H�test for some �test 2 HX .
From [37, Theorem 2], the required assumption is that 9ftest : X ! HX such that

�test =

Z ✓Z
 (x0)d⇢(x0

|z)

◆✓Z
ftest(x)d⇢(x|z)

◆
d⇢(z)

Our final goal of counterfactual prediction at a single point requires �test =  (xtest), which will
only hold in the trivial case when ⇢(x0

|z)⇢(z) represents a single point mass. In the PSR setting, the
assumption is not vacuous since �test will not be the kernel at a single test point; see [37, Lemma 3].
An identical issue arises in the stage 1 bound of [37, Proposition C.2], since it uses a result from [56,
Theorem 6] which makes an analogous input smoothness assumption. In summary, neither bound
applies in our setting.

Finally, [37, Theorem 2] does not explicitly determine an efficient ratio of stage 1 and stage 2 training
samples. Instead, analysis assumes an equal number of training samples in each stage. By contrast,
we give an efficient ratio between training sample sizes required to obtain the minimax optimal rate
in stage 2.

Despite the difference in setting, we believe our approach may be used to improve the results in [37].

A.3 Vector-valued RKHS

We briefly review the theory of vector-valued RKHS as it relates to the IV regression problem. The
primary reference is the appendix of [33].
Proposition 2 (Lemma 4.33 of [59]). Under Hypotheses 2-3, HX and HZ are separable.
Proposition 3 (Theorem A.2 of [33]). Let IHZ : HZ ! HZ be the identity operator. �(h, h0) =
hh, h0

iHX IHZ is a kernel of positive type.
Proposition 4 (Proposition 2.3 of [15]). Consider a kernel of positive type � : HX ⇥HX ! L(HZ),
where L(HZ) is the space of bounded linear operators from HZ to HZ . It corresponds to a unique
RKHS H� with reproducing kernel �.
Proposition 5 (Theorem B.1 of [33]). Each E 2 H� is a bounded linear operator E : HX ! HZ .
Proposition 6. H� = L2(HX ,HZ) and the inner products are equal.

Proof. [8, Theorem 13] and [34, eq. 12].

Proposition 7 (Theorem B.2 of [33].). If 9E,G 2 H� s.t. 8x 2 X , E (x) = G (x) then E = G.
Furthermore, if  (x) is continuous in x then it is sufficient that E (x) = G (x) on a dense subset
of X .
Proposition 8 (Theorem B.3 of [33]). 8E 2 H�, 9E⇤

2 H�⇤ where H�⇤ is the vector-valued RKHS
with reproducing kernel �⇤(l, l0) = hl, l0iHZ IHX . 8h 2 HX and 8` 2 HZ ,

hEh, `iHZ = hh,E⇤`iHX

The operator A � E = E⇤ is an isometric isomorphism from H� to H�⇤ ; H�
⇠= H�⇤ and kEkH� =

kE⇤
kH�⇤ .

Proposition 9 (Theorem B.4 of [33].). The set of self-adjoint operators in H� is a closed linear
subspace.
Proposition 10 (Lemma 15 of [20]). H�⇤ is isometrically isomorphic to H⌅, the vector-valued
RKHS with reproducing kernel ⌅(z, z0) = kZ(z, z0)IHX . 8µ 2 H⌅, 9!E⇤

2 H�⇤ s.t.

µ(z) = E⇤�(z), 8z 2 Z
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Proposition 11. HX is isometrically isomorphic to H⌦, the scalar-valued RKHS with reproducing
kernel ⌦ defined s.t.

⌦( (x), (x0)) = kX (x, x0)

Proof. [65, eq. 7] and Figure 1.

Proposition 12. Under Hypothesis 3,

EX|Z=zh(X) = [Eh](z) = hh, µ(z)iHX = Hµ(z)

Proof. Hypothesis 3 implies that the feature map is Bochner integrable [59, Definition A.5.20] for
the conditional distributions considered: 8z 2 Z , EX|Z=zk (X)k < 1.

The first equality holds by definition of the conditional expectation operator E. The second equality
follows from Bochner integrability of the feature map, since it allows us to exchange the order of
expectation and dot product.

EX|Z=zh(X) = EX|Z=zhh, (X)iHX

= hh,EX|Z=z (X)iHX

= hh, µ(z)iHX

To see the third equality, note that Riesz representation theorem implies that the inner product with a
given element h 2 HX is uniquely represented by a bounded linear functional H on HX .

Proposition 13. Our RKHS construction implies that

[E⇢h](·) = EX|Z=(·)[h(X)] 2 HZ , 8h 2 HX

Proof. After defining HX and HZ , we define the conditional expectation operator E : HX ! HZ

such that [Eh](z) = EX|Z=zh(X). By construction, EX|Z=(·)f(X) 2 HZ , 8f 2 HX . This is
precisely the condition required for the surrogate risk E1 to coincide with the natural risk for the
conditional expectation operator [34, 33]. As such, E⇢ = argmin E1(E) is the true conditional
expectation operator.

A.4 Covariance operator

A.4.1 Definitions

Definition 3. µ� : Z ! HX is the function that satisfies

µ�(z) = EX|Z=z (X), 8z 2 D⇢|Z

where D⇢|Z ⇢ Z is the support of Z, and µ�(z) = 0 otherwise.

Proposition 14 (Lemma 8 of [20]). Assume Hypotheses 2-3. µ�
2 L2(Z,HX , ⇢Z), where

L2(Z,HX , ⇢Z) is the space of square integrable functions from Z to HX with respect to mea-
sure ⇢Z .
Definition 4. Additional stage 1 population operators are

T̃1 = S⇤

1 � S1

R⇤

1 : HX ! L2(Z, ⇢Z)

: h 7! hh, µ�(·)iHX

R1 : L2(Z, ⇢Z) ! HX

: ˜̀ 7!

Z
µ�(z)˜̀(z)d⇢Z(z)

TZX = S1 �R
⇤

1

TZX is the uncentered cross-covariance operator of [30, Theorem 1]. The formulation as S1 � R⇤

1
relates this integral operator to the integral operators in [20].
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Definition 5. The stage 1 empirical operators are

Ŝ⇤

1 : HZ ! Rn

: ` 7!
1
p
n
{h`,�(zi)iHZ}

n

i=1

Ŝ1 : Rn
! HZ

: {vi}
n

i=1 7!
1
p
n

nX

i=1

�(zi)vi

T1 = Ŝ1 � Ŝ
⇤

1

T̃1 = Ŝ⇤

1 � Ŝ1

R̂⇤

1 : HX ! Rn

: h 7!
1
p
n
{hh, (xi)iHX }

n

i=1

R̂1 : Rn
! HX

: {vi}
n

i=1 7!
1
p
n

nX

i=1

 (xi)vi

TZX = Ŝ1 � R̂
⇤

1

Ŝ⇤

1 is the sampling operator of [54]. T1 is the scatter matrix, while KZZ = nT̃1 is the empirical
kernel matrix with respect to Z as in [20]. Note that TZX = g1 in Theorem 1.

A.4.2 Existence and eigendecomposition

We initially abstract from the problem at hand to state useful lemmas. Recall tensor product notation:
if a, b 2 H1 and c 2 H2 then [c ⌦ a]b = cha, biH1 . Denote by L2(H1,H2) the space of Hilbert-
Schmidt operators from H1 to H2.
Proposition 15 (eq. 3.6 of [32]). If H1 and H2 are separable RKHSs, then

kc⌦ akL2(H1,H2) = kakH1kckH2

and c⌦ a 2 L2(H1,H2).
Proposition 16 (eq. 3.7 of [32]). Assume H1 and H2 are separable RKHSs. If C 2 L2(H1,H2)
then

hC, c⌦ aiL2(H1,H2) = hc, CaiH2

In Hypothesis 2, we assume that input space X and instrument space Z are separable. In Hypothesis
3, we assume RKHSs HX and HZ have continuous, bounded kernels kX and kZ with feature maps
 and �, respectively. By Proposition 2, it follows that HX and HZ are separable, i.e. they have
countable orthonormal bases that we now denote {eX

i
}
1

i=1 and {eZ
i
}
1

i=1.

Denote by L2(HX ,HZ) the space of Hilbert-Schmidt operators E : HX ! HZ with inner product
hE,GiL2(HX ,HZ) =

P
1

i=1hEeX
i
, GeX

i
iHZ . Denote by L2(HZ ,HZ) the space of Hilbert-Schmidt

operators A : HZ ! HZ with inner product hA,BiL2(HZ ,HZ) =
P

1

i=1hAeZ
i
, BeZ

i
iHZ . When it is

contextually clear, we abbreviate both spaces as L2.
Proposition 17. Assume Hypotheses 2-3. 9TZX 2 L2(HX ,HZ) and 9T1 2 L2(HZ ,HZ) s.t.

hTZX , EiL2 = Eh�(Z)⌦  (X), EiL2

hT1, AiL2 = Eh�(Z)⌦ �(Z), AiL2

Proof. By Riesz representation theorem, TZX and T1 exist if the RHSs are bounded linear operators.
Linearity follows by definition. Boundedness follows since
|Eh�(Z)⌦  (X), EiL2 |  E|h�(Z)⌦  (X), EiL2 |  kEkL2Ek�(Z)⌦  (X)kL2  QkEkL2

|Eh�(Z)⌦ �(Z), AiL2 |  E|h�(Z)⌦ �(Z), AiL2 |  kAkL2Ek�(Z)⌦ �(Z)kL2  2kAkL2

by Jensen, Cauchy-Schwarz, Proposition 15, and boundedness of the kernels.
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Proposition 18. Assume Hypotheses 2-3.

h`, TZXhiHZ = E[`(Z)h(X)], 8` 2 HZ , h 2 HX

h`, T1`
0
iHZ = E[`(Z)`0(Z)], 8`, `0 2 HZ

Proof.

h`, TZXhiHZ = hTZX , `⌦ hiL2 = Eh�(Z)⌦  (X), `⌦ hiL2 = Eh`,�(Z)iHZ hh, (X)iHX

h`, T1`
0
iHZ = hT1, `⌦ `0iL2 = Eh�(Z)⌦ �(Z), `⌦ `0iL2 = Eh`,�(Z)iHZ h`

0,�(Z)iHZ

by Proposition 16, Proposition 17, and Proposition 16, respectively.

Proposition 19. Assume Hypotheses 2-3.

tr(TZX)  Q

tr(T1)  2

Proof.

tr(TZX) =
1X

i=1

heZ
i
, TZXeX

i
iHZ

=
1X

i=1

EheZ
i
,�(Z)iHZ he

X

i
, (X)iHX

= E
1X

i=1

heZ
i
,�(Z)iHZ he

X

i
, (X)iHX

= Ek�(Z)kHZk (X)kHX

 Q

tr(T1) =
1X

i=1

heZ
i
, T1e

Z

i
iHZ

=
1X

i=1

EheZ
i
,�(Z)i2

HZ

= E
1X

i=1

heZ
i
,�(Z)i2

HZ

= Ek�(Z)k2
HZ

 2

by definition of trace, the proof of Proposition 18, monotone convergence theorem [59, Theorem
A.3.5] with upper bounds Q and 2, Parseval’s identity, and boundedness of the kernels.

Since stage 1 covariance operator T1 has finite trace, its eigendecomposition is well-defined. Recall
that the stage 2 covariance operator T consists of functions from HX to Y = R. Since these functions
have finite-dimensional output, it is immediate that T has finite trace and its eigendecomposition is
well-defined [14, Remark 1].
Definition 6. The powers of operators T1 and T are defined as

T a

1 =
1X

k=1

⌫a
k
eZ
k
h·, eZ

k
iHZ

T a =
1X

k=1

�a
k
ekh·, ekiH⌦

where ({⌫k}, {eZk }) is the spectrum of T1 and ({�k}, {ek}) is the spectrum of T .
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A.4.3 Properties

Proposition 20. In this operator notation,

T1 =

Z

Z

�(z)⌦ �(z)d⇢Z(z)

T ⇤

ZX
=

Z

X⇥Z

 (x)⌦ �(z)d⇢(x, z)

TZX =

Z

X⇥Z

�(z)⌦  (x)d⇢(x, z)

Proof. [30, Appendix A.1] or [20, Proposition 13]. Note that

�(z)h (x), ·iHX = [�(z)⌦  (x)](·)

Proposition 21. Under Hypotheses 2-3

TZX = T1 � E⇢

Proof. [30, Theorem 2], appealing to Proposition 13.

Finally we state a property that will be useful for compositions involving covariance operators,
generalizing [7, Theorem 15].
Proposition 22. If G 2 L2(HX ,HZ) and B 2 L(HZ ,HZ) then

kB �GkL2  kBkLkGkL2

Proof.

kB �Gk
2
L2

=
1X

i=1

kB �GeX
i
k
2
HZ 

1X

i=1

�
kBkLkGeX

i
kHZ

�2
= kBk

2
L
kGk

2
L2

where L is the operator norm and L2 is the Hilbert-Schmidt norm, and the proof makes use of the
operator norm definition.

A.4.4 Related work

Our approach allows both HX and HZ to be infinite-dimensional spaces. Prior work on conditional
mean embeddings and RKHS regression has considered both finite [34, 33] and infinite [56, 55, 31,
37, 20] dimensional RKHS HX . In this section, we briefly review this literature (besides the PSR
case, which we covered in Section A.2.2).

First, we recall results from Appendix A.3. H� is a vector-valued RKHS consisting of operators
E : HX ! HZ with kernel �(h, h0) = hh, h0

iHX IHZ . H⌅ is a vector-valued RKHS consisting of
mappings µ : Z ! HX with kernel ⌅(z, z0) = kZ(z, z0)IHX . By Propositions 8 and 10, H� and
H⌅ are isometrically isomorphic. There is a fundamental equivalence between E and µ, illustrated in
Figure 1: µ(z) = E⇤�(z).

Next, we present additional notation for vector-valued RKHS H⌅.

⌅z : HX ! H⌅

: h 7! ⌅(·, z)h = kZ(·, z)h

⌅z is the point evaluator of [42, 15]. From this definition,

⌅(z, z0) = ⌅⇤

z
� ⌅z0

T⌅
z
= ⌅z � ⌅

⇤

z

T⌅
1 = ET⌅

z

and so T⌅
1 : H⌅ ! H⌅.
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With this notation, we can communicate the constructions and assumptions of [14, 34]. In [14,
Hypothesis 1], the authors assume ⌅z is a Hilbert-Schmidt operator. Definition 1 of [14] goes on to
define the prior with respect to operator T⌅

1 . The analysis of [34] inherits this framework. Section 6
of [34] further points out that ⌅z is not Hilbert-Schmidt if HX is infinite-dimensional since

k⌅zkL2 = kZ(z, z)
1X

i=1

heX
i
, IHX e

X

i
iHX = 1

Therefore the ‘main assumption’ [34, Table 1] is that HX is finite dimensional. The authors write, ‘It
is likely that this assumption can be weakened, but this requires a deeper analysis’.

In the present work, we differ in our constructions and assumptions at this juncture. We instead focus
on the covariance operator T1 : HZ ! HZ as defined in [30, Theorem 1], previously applied to
regression with an infinite-dimensional output space in [56, 55, 31, 37, 20]. Proposition 19 shows
tr(T1)  2 under the mild assumptions in Hypotheses 2-3, so its eigendecomposition is well-defined.
We place a prior with respect to T1, and provide analysis inspired by [53, 54] rather than [14].

Specifically, in Hypothesis 4 we require that the stage 1 problem is well-specified: E⇢ 2 H�. This
requirement is stronger than the property articulated in Proposition 13. Moreover, in Hypothesis 5 we
assume

E⇢ = T
c1�1

2
1 �G1

where G1 : HX ! HZ , T
c1�1

2
1 : HZ ! HZ , and E⇢ : HX ! HZ . By recognizing the equivalence

of E and µ, we provide a general theory of conditional mean embedding regression in which HX is
infinite. A question for further research is how to relax Hypothesis 4.

A number of previous works have studied consistency of the conditional expectation operator E
in the infinite-dimensional setting. Theorem 1 of [55] establishes consistency in Hilbert-Schmidt
norm. However, the proof requires a strong smoothness assumption: that T�3/2

1 � TZX is Hilbert-
Schmidt. Theorem 8 of [31] establishes consistency of E⇤ applied to embeddings of particular prior
distributions, as needed to calculate a posterior by kernel Bayes’ rule. The consistency results of [20,
Theorem 4, Theorem 5] for structured prediction are more relevant to our setting, and we discuss
them in Appendix A.8.2 after establishing additional notation.

Finally, we remark that previous work has considered infinite-dimensional feature space in a broad
variety of settings, beyond conditional mean embedding. In the setting of conditional density
estimation, [5] propose an infinite-dimensional natural parameter for a conditional exponential family
model, with a loss function derived from the Fisher score. See [5, Lemma 1] for analysis specific to
this particular loss.

A.5 Algorithm

A.5.1 Derivation

Proof of Algorithm 1. Rewrite the stage 1 regularized empirical objective as

En

�
= argmin

E2H�

E
n

�
(E)

E
n

�
(E) =

1

n

nX

i=1

k (xi)� E⇤�(zi)k
2
HX + �kEk

2
L2(HX ,HZ)

=
1

n
k X � E⇤�Zk

2
2 + �kEk

2
L2(HX ,HZ)
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where the ith column of  X is  (xi) and the ith column of �Z is �(zi). Hence by the standard
regression formula

(En

�
)⇤ =  X(KZZ + n�I)�1�0

Z

µn

�
(z) = (En

�
)⇤�(z)

=  X(KZZ + n�I)�1�0

Z
�(z)

=  X�(z)

=
nX

i=1

�i(z) (xi)

where
�(z) := (KZZ + n�I)�1�0

Z
�(z) = (KZZ + n�I)�1KZz

Note that this expression coincides with the expression in Theorem 1 after appealing to the proof of
[21, Proposition 2.1].

By the representer theorem, we know that the first stage estimator µn

�
2 span({ (xi)}) because we

are effectively regressing {�(zi)} on { (xi)} to learn the conditional expectation operator [66, 51].
Indeed we have already shown

µn

�
(·) =

nX

j=1

�j(·) (xj)

In the second stage, we are effectively regressing on {ỹi} on µn

�
(z̃i) to learn the structural function.

By the representer theorem, then, ĥm

⇠
2 span({µn

�
(z̃i)}). But µn

�
(z̃i) 2 span({ (xi)}), so ĥm

⇠
2

span({ (xi)}). Thus the solution will take the form

ĥm

⇠
(·) =

nX

i=1

↵i (xi)

Substituting in this functional form as well as the solution for µn

�
permits us to rewrite

[En

�
ĥm

⇠
](z) = hĥm

⇠
, µn

�
(z)iHX

=

⌧ nX

i=1

↵i (xi),
nX

j=1

�j(z) (xj)

�

HX

=
nX

i=1

nX

j=1

↵i�j(z)kX (xi, xj)

= ↵0KXX�(z)

= ↵0w(z)

where
w(z) := KXX�(z) = KXX(KZZ + n�I)�1KZz

Note that w depends on stage 1 sample matrices X and Z while z is a test value supplied by the stage
2 sample. The regularized empirical error written in terms of dual parameter ↵ is

Ê
m

⇠
(↵) =

1

m

mX

i=1

(ỹi � ↵0w(z̃i))
2 + ⇠↵0KXX↵

=
1

m
kỹ �W 0↵k22 + ⇠↵0KXX↵

where the ith column of W is w(z̃i). Note that W = KXX(KZZ + n�I)�1K
ZZ̃

. In this notation, ỹ
and Z̃ are stage 2 sample vector and matrix. Hence

↵̂ = (WW 0 +m⇠KXX)�1Wỹ

W = KXX(KZZ + n�I)�1K
ZZ̃
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A.5.2 Validation

Algorithm 1 takes as given the values of stage 1 and stage 2 regularization parameters (�, ⇠). Theo-
rems 2 and 4 theoretically determine optimal rates � = n

�1
c1+1 and ⇠ = m�

b
bc+1 , respectively. For

practical use, we provide a validation procedure to empirically determine values of (�, ⇠). In some
sense, the procedure implicitly estimates stage 1 prior parameter c1 and stage 2 prior parameters
(b, c).

The procedure is as follows. Train stage 1 estimator µn

�
on stage 1 observations (xi, zi) then select

stage 1 regularization parameter value �⇤ to minimize out-of-sample loss, calculated from stage
2 observations (x̃i, z̃i). Train stage 2 estimator ĥm

⇠
on stage 2 observations (ỹi, z̃i) then select

stage 2 regularization parameter value ⇠⇤ to minimize out-of-sample loss, calculated from stage
1 observations (yi, xi). Our approach assimilates the causal validation procedure of [36] with the
sample splitting inherent in KIV.
Algorithm 2. Let (xi, yi, zi) be n observations. Let (x̃i, ỹi, z̃i) be m observations.

�
Z̃
(�) = (KZZ + n�I)�1K

ZZ̃

L1(�) =
1

m
tr[K

X̃X̃
� 2K

X̃X
�
Z̃
(�) + (�

Z̃
(�))0KXX�Z̃(�)]

�⇤ = argminL1(�)

L(�, ⇠) =
1

n

nX

i=1

kyi � ĥm

⇠
(xi)k

2
Y

⇠⇤ = argminL(�⇤, ⇠)

where ĥm

⇠
is calculated by Algorithm 1 with � = �⇤.

Proof of Algorithm 2. From first principles, the stage 1 out-of-sample loss is

L1(�) =
1

m

mX

i=1

k (x̃i)� µn

�
(z̃i)k

2
HX

Recall from the proof of Algorithm 1

µn

�
(z) =  X�(z)

�(z) = (KZZ + n�I)�1KZz

Therefore

k (x̃i)� µn

�
(z̃i)k

2
HX = k (x̃i)� X�(z̃i)k

2
HX

= h (x̃i)� X�(z̃i), (x̃i)� X�(z̃i)iHX

= kX (x̃i, x̃i)� 2Kx̃iX�(z̃i) + (�(z̃i))
0KXX�(z̃i)

A.6 Stage 1: Lemmas

A.6.1 Probability

Proposition 23 (Lemma 2 of [54]). Let ⇠ be a random variable taking values in a real separable
Hilbert space K. Suppose 9M̃ s.t.

k⇠kK  M̃ < 1 a.s.

�2(⇠) := Ek⇠k2
K

Then 8n 2 N, 8⌘ 2 (0, 1),

P
����

1

n

nX

i=1

⇠i � E⇠
����
K


2M̃ ln(2/⌘)

n
+

r
2�2(⇠) ln(2/⌘)

n

�
� 1� ⌘
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A.6.2 Regression

Proposition 24. Under Hypothesis 3

E⇤

⇢
�(z) = µ(z)

Proof. For h 2 HX ,

hE⇤

⇢
�(z), hiHX = h�(z), E⇢hiHZ = h�(z),EX|Z=(·)h(X)iHZ = EX|Z=zh(X) = hµ(z), hiHX

The first equality is the definition of adjoint. The second holds by Proposition 13. The final equality
is by Proposition 12.

Proposition 25. Under Hypothesis 3

Ek(E⇤
� E⇤

⇢
)�(Z)k2

HX = E1(E)� E1(E⇢)

Proof.

E1(E) = Ek (X)� E⇤�(Z)k2
HX = Ek (X)� E⇤

⇢
�(Z) + E⇤

⇢
�(Z)� E⇤�(Z)k2

HX

Expanding the square we see that the cross terms are 0 by law of iterated expectation and Proposi-
tion 24.

Proposition 26. Under Hypotheses 3-4

E� = argmin
E2H�

Ek(E⇤
� E⇤

⇢
)�(Z)k2

HX + �kEk
2
H�

Proof. Corollary of Proposition 25.

A.7 Stage 1: Theorems

Proof of Theorem 1. [35, Appendix D.1], substituting the empirical covariance operators; or [20,
Lemma 17].

To quantify the convergence rate of kEn

�
� E⇢kH� , we decompose it into two terms: the sampling

error kEn

�
� E�kH� , and the approximation error kE� � E⇢kH� . To bound the sampling error, we

generalize [54, Theorem 1].
Theorem 5. Assume Hypotheses 2-4. 8� 2 (0, 1), the following holds w.p. 1� �:

kEn

�
� E�kH� 

4(Q+ kE⇢kH�) ln(2/�)
p
n�

Proof. Write

En

�
� E� =

✓
T1 + �I

◆�1

�

✓
TZX �T1 � E� � �E�

◆

Observe that

TZX �T1 � E� =
1

n

nX

i=1

�(zi)⌦  (xi)�
1

n

nX

i=1

[�(zi)⌦ �(zi)] � E�

�E� = TZX � T1 � E� =

Z
�(z)⌦  (x)d⇢�

Z
�(z)⌦ �(z)d⇢ � E�

where the second line holds since E� = (T1 + �I)�1
� TZX and by appealing to Proposition 20.

Write
⇠i = �(zi)⌦  (xi)� [�(zi)⌦ �(zi)] � E� = �(zi)⌦ [ (xi)� E⇤

�
�(zi)]

where the second equality holds since

�(zi)⌦  (xi)� [�(zi)⌦ �(zi)] � E� = �(zi)h (xi), ·iHX � �(zi)h�(zi), E�·iHZ

and by the definition of the adjoint operator.
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Thus the error bound can be rewritten as

En

�
� E� =

✓
T1 + �I

◆�1

�

✓
1

n

nX

i=1

⇠i � E⇠
◆

Observe that
✓
T1 + �I

◆�1

2 L(HZ ,HZ)

✓
1

n

nX

i=1

⇠i � E⇠
◆

2 L2(HX ,HZ)

where the latter is by Proposition 15. Therefore by Propositions 22 and 6,

kEn

�
� E�kH� 

1

�
�

� =

����
1

n

nX

i=1

⇠i � E⇠
����
H�

Note that

k⇠ikH�  Q+ 2kE⇤

�
kL2(HZ ,HX )

�2(⇠i) = Ek⇠ik2H�
 2Ek (X)� E⇤

�
�(Z)k2

HX = 2E1(E�)

By Proposition 26 with E = 0

Ek(E⇤

�
� E⇤

⇢
)�(Z)k2

HX + �kE�k
2
H�

 EkE⇤

⇢
�(Z)k2

HX

 kE⇤

⇢
k
2
L2(HZ ,HX )Ek�(Z)k2

HZ

 2kE⇢k
2
H�

Hence

Ek(E⇤

�
� E⇤

⇢
)�(Z)k2

HX  2kE⇢k
2
H�

kE⇤

�
kL2(HZ ,HX ) = kE�kH� 

kE⇢kH�
p
�

Moreover by the definition of E⇢ as the minimizer of E1,

E1(E⇢)  E1(0) = Ek (X)k2
HX  Q2

so by Proposition 25

E1(E�) = E1(E⇢) + Ek(E⇤

�
� E⇤

⇢
)�(Z)k2

HX  Q2 + 2kE⇢k
2
H�

In summary,

k⇠ikH�  Q+ 2
kE⇢kH�

p
�

= (Q+ 2kE⇢kH�/
p

�)

�2(⇠i)  2(Q2 + 2kE⇢k
2
H�

)

We then apply Proposition 23. With probability 1� �,

�  (Q+ 2kE⇢kH�/
p

�)
2 ln(2/�)

n
+

r
2(Q2 + 2kE⇢k

2
H�

)
2 ln(2/�)

n

There are two cases.
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1.


p
n�


1

4 ln(2/�)
< 1.

Because a2 + b2  (a+ b)2 for a, b � 0,

� <
2Q ln(2/�)

n
+

23kE⇢kH� ln(2/�)

n
p
�

+ (Q+ kE⇢kH�)

r
2 ln(2/�)

n

=
2Q ln(2/�)

n
+

22kE⇢kH� ln(2/�)
p
n


p
n�

+
(Q+ kE⇢kH�) ln(2/�)

p
n

s
2

ln(2/�)


2Q ln(2/�)

p
n

+
22kE⇢kH� ln(2/�)

p
n

+
2(Q+ kE⇢kH�) ln(2/�)

p
n

=
4(Q+ kE⇢kH�) ln(2/�)

p
n

Then recall
kEn

�
� E�kH� 

1

�
�

2.


p
n�

>
1

4 ln(2/�)
.

Observe that by the definition of En

�

1

n

nX

i=1

k (xi)� (En

�
)⇤�(zi)k

2
HX + �kEn

�
k
2
H�

= E
n

�
(En

�
)

 E
n

�
(0)

=
1

n

nX

i=1

k (xi)k
2
HX

 Q2

Hence

kEn

�
kH� 

Q
p
�

and
kEn

�
� E�kH� 

Q
p
�
+
kE⇢kH�

p
�

=
Q+ kE⇢kH�

p
�

Finally observe that

1

4 ln(2/�)
<


p
n�

()
Q+ kE⇢kH�

p
�

<
4(Q+ kE⇢kH�) ln(2/�)

p
n�

To bound the approximation error, we generalize [53, Theorem 4].
Theorem 6. Assume Hypotheses 2-5.

kE� � E⇢kH�  �
c1�1

2

p
⇣1

Proof. First observe that

eZ
k
heZ

k
, E⇢·iHZ = eZ

k
hE⇤

⇢
eZ
k
, ·iHX = [eZ

k
⌦ E⇤

⇢
eZ
k
](·)

By the definition of the prior, there exists a G1 s.t.

G1 = T
1�c1

2
1 � E⇢ =

X

k

⌫
1�c1

2
k

eZ
k
heZ

k
, E⇢·iHZ =

X

k

⌫
1�c1

2
k

eZ
k
⌦ [E⇤

⇢
eZ
k
]
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Hence by Proposition 6
kG1k

2
� =

X

k

⌫1�c1
k

kE⇤

⇢
eZ
k
k
2
HX

By Proposition 21, write
E� � E⇢ = [(T1 + �I)�1

� T1 � I] � E⇢

=
X

k

✓
⌫k

⌫k + �
� 1

◆
eZ
k
heZ

k
, E⇢·iHZ

=
X

k

✓
⌫k

⌫k + �
� 1

◆
eZ
k
⌦ [E⇤

⇢
eZ
k
]

Hence by Proposition 6

kE� � E⇢k
2
H�

=
X

k

✓
⌫k

⌫k + �
� 1

◆2

kE⇤

⇢
eZ
k
k
2
HX

=
X

k

✓
�

⌫k + �

◆2

kE⇤

⇢
eZ
k
k
2
HX

=
X

k

✓
�

⌫k + �

◆2

kE⇤

⇢
eZ
k
k
2
HX

✓
�

�
·
⌫k
⌫k

·
⌫k + �

⌫k + �

◆c1�1

= �c1�1
X

k

⌫1�c1
k

kE⇤

⇢
eZ
k
k
2
HX

✓
�

⌫k + �

◆3�c1
✓

⌫k
⌫k + �

◆c1�1

 �c1�1
X

k

⌫1�c1
k

kE⇤

⇢
eZ
k
k
2
HX

= �c1�1
kG1k

2
�

 �c1�1⇣1

Theorems 5 and 6 deliver the main stage 1 result, Theorem 2, as a consequence of triangle inequality
and optimizing the regularization parameter �.

Proof of Theorem 2. By triangle inequality,

kEn

�
� E⇢kH�  kEn

�
� E�kH� + kE� � E⇢kH� 

4(Q+ kE⇢kH�) ln(2/�)
p
n�

+ �
c1�1

2

p
⇣1

Minimize the RHS w.r.t. �. Rewrite the objective as

A��1 +B�
c1�1

2

then the FOC yields

� =

✓
2A

B(c1 � 1)

◆ 2
c1+1

=

✓
8(Q+ kE⇢kH�) ln(2/�)

p
n⇣1(c1 � 1)

◆ 2
c1+1

= O(n
�1

c1+1 )

Substituting this value of �, the RHS becomes

A

✓
2A

B(c1 � 1)

◆�
2

c1+1

+B

✓
2A

B(c1 � 1)

◆ c1�1
c1+1

=
B(c1 + 1)

4
1

c1+1

✓
A

B(c1 � 1)

◆ c1�1
c1+1

=

p
⇣1(c1 + 1)

4
1

c1+1

✓
4(Q+ kE⇢kH�) ln(2/�)

p
n⇣1(c1 � 1)

◆ c1�1
c1+1
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A.8 Stage 1: Corollary

We present a corollary necessary to link stage 1 with stage 2. In doing so, we relate our work to
conditional mean embedding regression.

A.8.1 Bound

Proposition 27. Assume the loss E⌅
1 (µ) := E(X,Z)k (X)� µ(Z)k2

HX
attains a minimum on H⌅.

Then the minimizer with minimal norm k · kH⌅ is
µ�(z) = E⇤

⇢
�(z)

E⇤

⇢
= T ⇤

ZX
� T †

1

E⇢ = T †

1 � TZX

where µ�(z) is given in Definition 3 and T †

1 is the pseudo-inverse of T1.

Proof. [20, Lemma 16]. Note that the first equation recovers Proposition 24. The third equation
recovers Proposition 21, which we know from [30, Theorem 2].

Proposition 28 (Lemma 17 of [20]). 8� > 0, the solution µn

�
2 H⌅ of the regularized empirical

objective
1

n

P
n

i=1 k (xi)� µ(zi)k2HX
+ �kµk2

H⌅
exists, is unique, and satisfies

µn

�
(z) = (En

�
)⇤�(z)

Corollary 1. 8� 2 (0, 1), the following holds w.p. 1� �: 8z 2 Z ,
kµn

�
(z)� µ�(z)kHX  rµ(�, n, c1) :=  · rE(�, n, c1)

Proof. By Propositions 21 and 27
µ�(z) = (T †

1 � TZX)⇤�(z) = (T †

1 � T1 � E⇢)
⇤�(z) = E⇤

⇢
�(z)

so by Proposition 28
kµn

�
(z)� µ�(z)kHX = k[En

�
� E⇢]

⇤�(z)kHX  kEn

�
� E⇢kH�k�(z)kHX

A.8.2 Related work

We relate µ to E directly–an insight from [33]. In Theorem 2, we generalize work by [53, 54] to
obtain a regression bound for E. In Corollary 1, we arrive at an RKHS-norm (and hence uniform)
bound for conditional mean embedding µ that adapts to the smoothness of conditional expectation
operator E, making use of Theorem 2. The uniform bound on µ is precisely what we will need in
Theorem 7.

Our strategy affords weaker input assumptions and tighter bounds than the stage 1 approach of [37],
which uses [56, Theorem 6]. See Section A.2.2 for a detailed comparison. We also make weaker
assumptions than [55, Theorem 1], as detailed in Section A.4.4.

Whereas Corollary 1 is a bound on RKHS-norm difference kµn

�
� µ�

kH⌅ , [20, Lemma 18] contains
a bound on excess risk E

⌅
1 (µ

n

�
) � E

⌅
1 (µ

�). To facilitate comparison, we translate the latter to our
notation. 8�  2 and � > 0, the following holds w.p. 1� �:

E
⌅
1 (µ
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�
)� E

⌅
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�) = k(En
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)⇤ � S1 �R1kL2(L2(Z,⇢Z),HX )
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p
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s
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�
p
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◆
ln2 8
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where
A

⌅
1 (�) := �kR1 � (T̃1 + �)�1

kL2(L2(Z,⇢Z),HX )

A
⌅
2 (�) := kT ⇤

ZX
� (T1 + �)�1

kL2(HZ ,HX )

Interestingly, the proof of [20, Lemma 18] does not require Hypothesis 5, and it uses different
techniques. In future work, we will leverage this result in the KIV setting and compare the consequent
rates.
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A.9 Stage 2: Lemmas

A.9.1 Probability

Proposition 29 (Proposition 4 of [25]). Let ⇠ be a random variable taking values in a real separable
Hilbert space K. Suppose 9L,� > 0 s.t.

k⇠kK  L/2 a.s

Ek⇠k2
K
 �2

Then 8m 2 N, 8⌘ 2 (0, 1),

P
����

1

m

mX

i=1

⇠i � E⇠
����
K

 2

✓
L

m
+

�
p
m

◆
ln(2/⌘)

�
� 1� ⌘

A.9.2 Regression

Proposition 30 (Lemma A.3.16 of [59]). The solution to the unconstrained structural operator
regression problem is well-defined and satisfies

H⇢µ(z) =

Z

Y

yd⇢(y|µ(z))

A.9.3 Bounds

Definition 7. The residual A(⇠), reconstruction error B(⇠), and effective dimension N (⇠) are

A(⇠) = k

p

T (H⇠ �H⇢)k
2
H⌦

B(⇠) = kH⇠ �H⇢k
2
H⌦

N (⇠) = Tr[(T + ⇠)�1
� T ]

Proposition 31. If ⇢ 2 P(⇣, b, c) then

A(⇠)  ⇣⇠c

B(⇠)  ⇣⇠c�1

N (⇠)  �1/b ⇡/b

sin(⇡/b)
⇠�1/b

Proof. The bounds for A(⇠) and B(⇠) follow from [14, Proposition 3] and the definition of a prior.
The bound for N (⇠) is from [63].

Proposition 32 (Theorem 2 of [65]). The excess error of the stage 2 estimator can be bounded by 5
terms.

E(Ĥm

⇠
)� E(H⇢)  5[S�1 + S0 +A(⇠) + S1 + S2]

where

S�1 = k

p

T � (T̂+ ⇠)�1(ĝ � g)k2
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Definition 8. Fix ⌘ 2 (0, 1) and define the following constants

C⌘ = 96 ln2(6/⌘)

M = 2(C + kH⇢kH⌦

p

B)

⌃ =
M

2
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The choice of C⌘ reflects a correction by [63] to [14]. The choices of (M,⌃) are as in [65, Theorem
2].

Proposition 33. If m �
2C⌘BN (⇠)

⇠
and ⇠  kTkL(H⌦) then w.p. 1� ⌘/3

⇥(⇠) := k(T �T) � (T + ⇠)�1
kL(H⌦)  1/2

Proof. Step 2.1 of [14, Theorem 4].

Proposition 34. If m �
2C⌘BN (⇠)

⇠
, ⇠  kTkL(H⌦), and Hypotheses 7-8 hold then w.p. 1� 2⌘/3
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Proof. Steps 2 and 3 of [14, Theorem 4], appealing to Propositions 29 and 33.

Proposition 35. S�1 and S0 may be bounded by
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Proof. Definition of k · kL(H⌦).

Proposition 36 (Supplement 9.1 of [65]). Suppose Hypotheses 7-8 hold. If m �
2C⌘BN (⇠)

⇠
and
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Proposition 37 (Supplement 7.1.1 and 7.1.2 of [65]). If kµn

�
(z) � µ�(z)kHX  rµ =  · rE w.p.
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Proof. [14, Step 2.1] and [64, Supplement A.1.11] use this spectral result, which we provide for
completeness. Observe that
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where {�}k are the eigenvalues of T . By arithmetic-geometric mean inequality,
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Proposition 39. If kµn

�
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Proof. [64, Supplement A.1.11] provides the following bound.
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Examine the RHS. By Proposition 38
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By a telescoping argument in [64, Supplement A.1.11]

k(T � T̂) � (T + ⇠)�1
kL(H⌦)  ⇥(⇠) + k(T� T̂) � (T + ⇠)�1

kL(H⌦)

Proposition 33 bounds the first term w.p. 1� ⌘/3. Examine the second term.
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where the second inequality is by Proposition 37 and the third inequality reflects a choice of m
sufficiently large. In particular, by Corollary 1 it is sufficient that
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A.10 Stage 2: Theorems

Proof of Theorem 3. [65, eq. 13, 14] provide the closed form solution. Existence and uniqueness
follow from [22, Proposition 8].

To quantity the convergence rate of E(Ĥm

⇠
)� E(H⇢), we modify the central results of [65], replacing

their first stage convergence argument with our own derived above.
Theorem 7. Assume Hypotheses 1-9. If m is large enough and ⇠  kTkL(H⌦) then 8� 2 (0, 1) and
8⌘ 2 (0, 1), the following holds w.p. 1� ⌘ � �:
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Note that the convergence rate is calibrated by c1, the smoothness of the conditional expectation
operator E⇢; c, the smoothness of the structural operator H⇢; and b, the effective input dimension.

Proof. By Propositions 31 to 39,
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Finally use Corollary 1 to write rµ =  · rE .

Proof of Theorem 4. Ignoring constants in Theorem 7 yields
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The last term in the bound on kHm
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implies that the bounding terms of S0 dominate those of S�1.
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, observe that 1
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m2⇠3�c ; 1
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m⇠2�c ; and 1 dominates ⇠c�1. These statements follow from the restrictions b > 1 and c 2 (1, 2]
in the definition of a prior as well as ⇠ ! 0. Likewise, the terms bounding S1 dominate the terms
bounding S2. In summary, we arrive at a statement analogous to [65, eq. 19].
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With this substitution, we arrive at a statement analogous to [65, eq. 20].
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The final result is [65, Theorem 5].
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A.11 Experiments

A.11.1 Designs
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Figure 5: Linear and sigmoid data generating processes. Training sample size is n+m = 1000

The linear and sigmoid simulation designs are from [17], adapted from [48]. One simulation consists
of a sample of n+m 2 {1000, 5000, 10000} observations. A given observation is generated from
the IV model

Y = h(X) + e, E[e|Z] = 0

where Y is the output, X is the input, Z is the instrument, and e is confounding noise. In particular,
for the linear design

h(x) = 4x� 2

while for the sigmoid design

h(x) = ln(|16x� 8|+ 1) · sgn(x� 0.5)

Data are sampled as
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We visualize 1 simulation, consisting of n+m = 1000 observations, in Figure 5. The blue curve
illustrates the structural function h. Grey dots depict noisy observations. The noise e has positively
sloped bias relative to the structural function h. From observations of (Y,X,Z), we estimate ĥ by
several methods. For each estimated ĥ, we measure out-of-sample error as the mean square error of ĥ
versus true h applied to 1000 evenly spaced values x 2 [0, 1]. We report log10(MSE).

The demand simulation design is from [36]. One simulation consists of a sample of n + m 2

{1000, 5000, 10000} observations. A given observation is generated from the IV model

Y = h(X) + e, E[e|Z] = 0

where Y is the output, X = (P, T, S) are inputs, and Z = (C, T, S) are instruments. Recall that Y
is sales, P is the endogenous input instrumented by supply cost-shifter C, and (T, S) are exogenous
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inputs interpretable as time of year and customer sentiment. While (P, T,C) are continuous random
variables, S is discrete–a novel feature of this design. e is confounding noise.

h(p, t, s) = 100 + (10 + p)s (t)� 2p
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
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Figure 6: Demand non-
linearity  (t)

Data are sampled as

S
i.i.d.
⇠ Unif{1, ..., 7}

T
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⇠ Unif [0, 10]
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e
i.i.d.
⇠ N(⇢V, 1� ⇢2)

P = 25 + (C + 3) (T ) + V

From observations of (Y, P, T, S, C), we estimate ĥ by several methods. For each estimated ĥ, we
measure out-of-sample error as the mean square error of ĥ versus true h applied to 2800 values of
(p, t, s). Specifically, we consider 20 evenly spaced values of p 2 [2.5, 14.5], 20 evenly spaced values
of t 2 [0, 10], and all 7 values s 2 {1, ..., 7}. We report log10(MSE).

A.11.2 Algorithms
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Figure 7: KernelReg on the sigmoid design

KernelReg. We implement kernel ridge regres-
sion using Gaussian kernel kX . We set the
kernel hyperparameter–the lengthscale–equal
to the median interpoint distance of inputs, a
standard practice. When inputs are multidimen-
sional as in the demand design, we use the
kernel obtained as the product of scalar ker-
nels for each input dimension. Each length-
scale is set according to the median interpoint
distance for that input dimension. We tune
the Tikhonov regularization parameter by cross-
validation with two folds. Figure 7 visualizes
the performance of KernelReg on the sigmoid
design with n+m = 1000. Kernel ridge regres-
sion ignores the instrument Z, and it is biased
away from the structural function due to con-
founding noise. The remaining algorithms make
use of instrument Z to overcome this issue.

SieveIV. We implement sieve IV with sample splitting using B-spline basis. We set the basis
hyperparameters according to the preferred specification of [17]: 4th order polynomial with 1
interior knot. We implement sieve IV without Tikhonov regularization (as originally formulated),
and with Tikhonov regularization. We tune Tikhonov regularization parameters (�, ⇠) according
to Algorithm 2. Figure 8a visualizes the performance of SieveIV on the sigmoid design with
n +m = 1000. Tikhonov regularization dramatically improves performance in both the sigmoid
and demand designs. There is still room for improvement, however, since SieveIV is constrained to
finite dictionaries of basis functions.

SmoothIV. We implement Nadaraya-Watson IV using the R command npregiv. We set the regu-
larization option to Tikhonov, in order to implement the estimator of [23]. Otherwise we maintain
default options. As in [36], we only apply this estimator to training samples of size n+m = 1000
due to its lengthy running time. Figure 8b visualizes the performance of SmoothIV on the sigmoid
design with n +m = 1000. SmoothIV is clearly an improvement on its predecessor, the original
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SieveIV. By imposing Tikhonov regularization in stage 2, the algorithm greatly reduces variance.
The Nadaraya-Watson style stage 1 estimator appears to be the reason why SmoothIV fails to learn
the structural function’s sigmoid shape. Overfitting in stage 1 could explain why the final estimate
has more inflection points than the true structural function.
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(b) SmoothIV

Figure 8: SieveIV and SmoothIV on the sigmoid design

DeepIV. We implement deep IV with sample splitting using the python software accompanying the
paper by [36]. We implement deep IV with and without biased gradients in the training optimization.
Figure 9a visualizes the performance of DeepIV on the sigmoid design with n+m = 1000. In both
the sigmoid and demand designs, unbiased gradients lead to better performance. Biased gradients
improve performance in a high-dimensional MNIST design that we do not implement here. Like other
neural network models, DeepIV requires a relatively large training sample size to achieve reliable
performance on simple tasks like learning a smooth curve.

KernelIV. We implement KIV with sample splitting using Gaussian kernels kX and kZ . We set
lengthscales according to median interpoint distance as described for KernelReg. When inputs are
multimensional, we use the product of scalar kernels as described for KernelReg. We tune Tikhonov
regularization parameters (�, ⇠) according to Algorithm 2. Figure 9b visualizes the performance of
KernelIV on the sigmoid design with n+m = 1000.
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Figure 9: DeepIV and KernelIV on the sigmoid design
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A.11.3 Results
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Figure 10: Linear and sigmoid designs

For each algorithm, design, and sample size, we implement 40 simulations and calculate MSE with
respect to the true structural function h. Figures 3 and 10 visualize results. In the linear design,
KernelIV performs about as well as SieveIV improved with Tikhonov regularization. Intuitively,
in the linear design the true structural function h is finite-dimensional, and the method that uses
a finite dictionary of basis functions (SieveIV) displays less variability across simulations when
training sample sizes are small. Insofar as SieveIV is a special case of KernelIV, one could interpret
this outcome as reflecting a more appropriate choice of kernel. In the sigmoid design, KernelIV
performs best across sample sizes. In the demand design, KernelIV performs best for sample size
n+m = 1000 and rivals DeepIV for sample size n+m = 5000.
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Figure 11: Robustness study

Finally, we conduct a robustness study to evalu-
ate the sensitivity of KernelIV to hyperparam-
eter tuning. We apply KernelIV to the sigmoid
design with n+m = 1000, varying the length-
scale for Guassian kernel kX . For each length-
scale value in {0.2, 0.4, 0.6, 0.8, 1.0}, we imple-
ment 40 simulations and calculate MSE with
respect to the true structural function h. For
comparison, the median interpoint distance rule
sets lengthscale to 0.3. Figure 11 visualizes re-
sults: alternative lengthscale values depreciate
performance of KernelIV, but KernelIV still
outperforms its competitors in Figure 10b. We
recommend that practitioners use the median
interpoint distance rule.
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