Supplementary Material

A Proof of Lemma 3

Proof of Lemma 3. We first prove necessity. For any f € F and any empirical distribution z; ~ P,,
by Assumption 3, there exists Ay ., such that f(2') — f(2;) < Ay ., dz(z;, 2') forany 2’ € Z, which
leads to sup,,cz{f(2') — A .. dz(2,2") — f(2)}) = 0. Let \* = max;{\., s}. Then, for any
zi ~ P, wehave sup,,c z{f(2) — AN*dz (2, 2") — f(2:)}) = 0. Therefore, ¢s p, (A*) = 0 and the
set {\ : ¢¢ p, (\) = 0} is nonempty. The sufficiency is obvious by the definition of ¥¢ p, (A).

B Proofs of Lemma 4 and 5

M _
Proof of Lemma 4. If eg > )\;F%P, by Proposition 1, Ry 1(Pn, f) = Aes +Ep, [¢5 (Z)] , we have
5\6[5 < Reg,l(an f)
. - M
Since f(z) < M for any z, we get Re, 1(Py, f) < M. So A < —
€B

For the other side, we first show that ¢ p, () is continuous and monotonically non-increasing. The
monotonicity is easy to verify from the definition. For continuity, for any A\ > A1, suppose that

2 =supcz{f(¥) — Mdz(z,2) — f(2)}),
28 =supuez{f(2) = Aadz(2,2") - f(2)}).

Then we have

Vs, (A1) = 5P, (A2)
=Ep, (sup.rez{f(2) = Mdz(z,2') = f(2)} —sup.icz{f () = Aadz(2,2) — f(2)}) .
<E,, (A2 —M)dz(z,2)) < (A2 — A\1)diam(Z)

So ¢ p, (A) is diam(Z)-Lipschitz and thus continuous.
Now we prove A € [)\JT P",)\j{ plo A > /\}" p,» by the monotonicity and nonnegativity of

¥y,p, (N), we have ¢y p, (X) = ¥7,p, (A} p. ) = 0, which implies Aes +Ep, [px £ (2)] > A} p e+
Ep, [ AL, #(2)]. Therefore the optimal A < X} ,, . To show A > A7 p, . first notice that ¢ ¢ p, (\)

belongs to [0, M| for any A. We define
Arp, = sup{A : ¥y p, (N) = )‘}T,Pn cesl}.

Note that this set {\ : ¥; p, (A) = /\;l',Pﬁ - €g} might be empty if ¢; p (0) < A}_,Pn ~eg < M.
In this case, we just let /\; p, = 0, and A must belong to [0, )\}' P"]. Otherwise, there must exist
some \ € [0, )\}“’ p, ] Which satisfies 1y p, (A) = )\}“’ p, * €5 by the intermediate value theorem of a
continuous function. We choose /\JT’ p, to be the maximal one in that set. Then, for any A < /\JT, P>
since 9 ¢, p, (A) is monotonically non-increasing, we have

B, (sup (f() = Mz(2.) = F(2))) = N, -5

By rearranging the items on both sides, we obtain

Xes +Ep, [orf(2)] > M p - e5+Ep, (f(2))
for any A < )\; p,- Therefore, \ > /\Z P> and we complete the proof.
Proof of Lemma 5. Define the ®-indexed process X = (X, ), e by

1 n
X@ = —— ZO’IQO(Z,L)
\/ﬁ i=1
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Note that E[X )] = 0 for all ¢ € ®. First we show that X is a subgaussian process with respect to the
pseudometric dg (¢, ¢'), defined as

do(p,¢") = ||f = f'lloc + diam(Z) - |A = X|
for ¢ = @y and ¢’ = @y p. From the definition of ¢, ¢, it is easy to show that |[¢ — ¢'||oc <
de (@, ¢'). Then for any ¢ € R, we can get

b
E [explt(X, — X0))] = B [exp(—= T2y ov(o(s) — /)|
t n t2d2 / )
— (B e Lmortoe) - ¢ ) <o (BB
where the second equality is by the fact that (o, z;) are i.i.d., and the final inequality uses Hoeffding’s

lemma. Therefore, X is subgaussian with respect to dg. And the expected Rademacher complexity
R, (P) can be bounded by the Dudley entropy integral [43]:

%R, (B) < % /0 " JlogN(®, do u)du,

where N (®, dg, -) represents the covering numbers of (P, dg). By the definition of dg, it follows
that

N (@, dg,u) < N(F, || lloou/2) - N([a,0], | -, #m(Z))

and therefore

R (P)

</ (/0 ¢logN(F7\|~\loo,u/2)du+/O \/log./\f([a,b],-|,u/(2-dzam(Z)))du> :

The second integral term could be easily obtained as follows

- Sl - diam U —a) - diam(z 1 olu:ﬁ —a)-diam(z) -
| VieaN et T T @ diam Z)du < (b= a) - diam(z) [\ log cdu = 76— a) - diam(:)

Consequently,

R, (P) < % /OOO VIOgN (F, ||+ loc, u/2)du + 6\\;5(19 —a) - diam(Z) .

C Proof of Lemma 6

Proof of Lemma 6. For any f € F, define
A= argr)gig{)\eg +Ep,[¢xf(2)]}.

Then using Proposition 1, we can write
R€B,1(Pa f) - Re&l(Pna f)

= miny>g {AeB+/Z<pA,f(z)P(dz)} - (Xeg+ /Z@M(Z)Pn(dz)> < /Zgoj\’f(z)(P—Pn)(dz) :

By Lemma 4, we have \ € (5 p, s C?'P“]. Define the function class ® := {py r: A€ [(7, (1], f €
F}. Then, we have
Reoa(Pf) = Bega(Paf) < 500 | [ 0P = P
ped [/ Z
Since all f € F takes values in [0, M], the same holds for all ¢ € ®. Therefore, by a standard
symmetrization argument [34],

Res,l(Pvf)fRszs,l(Pnaf) San(q))+M w

1
with probability at least 1 — , where :%,,(®) := E[sup,cq — ».;—; 0i(2i)] is the expected
n
Rademacher complexity of ®. Using the bound of Lemma 5, we get the desired result
24¢(F) o log(3) 12w
Vn 2n Vn

Rey 1 (P, f) = Reg,1 (P, f) < Aey - diam(Z) -
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D Proof of Theorem 1

Proof of Theorem 1. By Proposition 1, R, 1(P,, f) can be written as
Reg1(Py, f) = min{Aes +Ep, [pa r(2)]} = min{Aes +Ep, [pa(2) = f(2)]} + Ep, [f(2)]

1 — ,
= rglzig{)\eg + s p, (A} + o ; f(z)

where the last equality uses the definition of 1¢ p, (A). Substituting the above equation into Lemma
6 and using inequality (T), we get result (3). To obtain (), we make use of the following inequality

minfAes +¢r.p, (W)} < Mopes+vrp,(\p)=Afp s

)

where the equality follows from the definition of )\;{ P,

E Proof of Corollary 1

Proof of Corollary 1. We first verify the assumption conditions in Theorem 1. Assumption 1 is
evidently satisfied since diam(Z) < (2r+1). Foreach f € F, assumption 2 holds with M = 1+ Ar.
To verify assumption 3, we can write

f(Z') = f(z) < max{0,yw -z — y'w- 2’} < max{0,2yw - xL(yy) + |J0][2]|2" — 2[[2}
< max{2yw - z, ||w||]2}dz(z, 2’) ’

where z = (z,y). Then assumption 3 holds with \; , = max{2yw -z, ||w||2}. Let A\ = max{2y;w -
i, ||w||2}. By the definition of 1 p, (-), we have ¢5 p, (A) = 0. Since )‘}L,Pn is the smallest A which
satisfies ¢7 p, (A) = 0, we get Af p < miax{Qyiw - @i, [Jwl|2}.

To evaluate the Dudley entropy integral, we need to estimate the covering numbers N (F, || || c0, ©/2).
First observe, for any f1, fo € F, we have

11 = Felloo = supzex yey [1(2,4) = f2(2,y)] < suprex yey [ywr - & — yws - zf < [Jwr — wallar.

Since wy , wy belong to a A-ball in R?,

Nl < ()

for 0 < u < 2Ar, and N(F, || - ||oo, u/2) = 1 for u > 2Ar, which gives

o 2Ar
/ ViGN, e /2)du < / Vt10eau < 6ArVa
0 0

Substituting this into expression (@), we get the desired result

log(3)

1 —n 144 12
Rp(£.B) € L3I £ + X e + v+ 2N 1) 4 (14 Ar)y

vn vn
F Proof of Corollary 2

The goal of this section is to prove the adversarial expected risk for neural networks. To this end, it is
necessary to first establish some properties of the margin operator M (v, y) = v, — max;, v; and
the ramp loss (.

Lemma 7. For every j, M(-, j) is 2-Lipschitz with respect to || - ||2.
proof. Let u,v and y be given. If M(u,y) > M(v,y), denote the index j which satisfies that
M(v,y) = vy — v;. Then,
M(u,y) — M(v,y) = Uy — MaXizy u; — Uy +0; < Uy — uj — vy + 05 < 2l|u — vl|oc < 2[Ju — v]|2.
Otherwise, let j be the index satisfying M(u,y) = u, — u;, and we obtain
=2|u = vl[z < M(u,y) — M(v,y).
Therefore, M(-, j) is 2-Lipschitz with respect to || - ||2.
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Lemma 8. For any f € F, we have )\j{ P, < Cy where Cy =
maxg{ L1 pillAillo, = (M(Haly), ;) + max Ha(w;) — minHa(z;))}.

Q\'—‘

Proof. By the definition of f, for any z and z’, we have
) — £(2)
= L(=MHAE), 1) ~ b (MA@, 9)
< max{0, —~(M(Ha(z),y) — M(Ha(z"),y))}
< max{0, - (M(Ha(x), ') — M(Ha(x'),y)) + %(M(’HA(@, y) — M(Ha(2),9/)}
< max{0, = Ha(e) = Hala)] + %(M(Hw), y) — M(Ha(x), )}
< %HL pill dillo Il — o/]la + %(M(HA( £),y) + maxHa(z) — minHa(x)) Lz

2 1 . /
< max{; 1=, pill Aills, ;(M(HA(x),w +maxHa(z) — minHa(z))dz(z,2)

2
where the third inequality uses Lemma 7. Let Cy = max;{ = [T1~, pillAillo, = (M(Hoa(z;),y;) +
5 .

=2 |~

max H 4(z;) — min H 4(z;))}. By the definition of ¢5 p, (-), we have 1¢ p, (Cy) = 0. Therefore,
Afp, < Cu. O
Lemma 9. For any two feedforward neural network H 4 and H 4 where A = (A1, Ag, -+ , AL)

and A" = (A}, AS,--- | A}), we have the following

3 L )14 - Al
HHA(%)—'HA/(;C)HQ SHPZ’SZ'B 237
=1 j=1 7

Proof. We prove this by induction. Let A; = ||H’ (z) — H4, (x)||2. First observe
Ay = llo1(Ar1z) — o1 (A1z) |2 < prl|Asz — Alzllz < po]|Ar — Afllo||zll2 < p1Bl[Ar — Allo.
For any ¢ > 1, we have the following

AiJrl

= |[oit1(Aig10i(A; - - 02(A201(A12)))) — 0iy1 (Al 10i(A] - - 02(A501(AT))))|[2

<N|oig1(Aig10i(A;i - - 02(A201(A17)))) — 01 (Afy103(Ai - - - 02(Az01(Arx))))| |2+
l|oiy1(Afq0i(Ai "02(A201(A133))) —0iy1(Af10i(A] - 02(Ay01(A]2))))]]2

< pitil[Aiv1 — Aiallolloi(Ai - - - 02(A201(A1z))[|2 + piv1sit1A:

< pig1l|Aiz1 — Z+1||UH _1PiSiB + piy15ip1

Therefore, using the induction step, we get the following
Aita
< pillAips — A llo [Ty pisiB + pir1si1 A
1Ak — ALl
< pitl|Ai1 — Aialo HJ 15 B+ Hg 1P5; B (22_1 Tka :

1 i1 |[Ax — ALl
_H; 10j5; B < 2:1 P z

We now return to the proof of Corollary 2.

Proof of Corollary 2. First we verify the three assumptions. Assumption 1 holds with diam(Z) <
2r + 1. Assumption 2 is self-satisfied by the definition of ramp loss with 0 < f(z) < 1. And
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assumption 3 is guaranteed by Lemma 8§ with )\; p, < C4. Now we proceed to upper bound the
covering number for 7. For any f and f’,

1=l = . ) = /6 = sup. M) — b (M) )
<sup, 2[Hate) = Ha )l < 2T, pis (zle ) :

54

where the last inequality applies Lemma 9. Since for any matrix A, we have ||A||, < ||A||r. The
above inequality can be written as

L L I
2 |14, — Ajllr

/ J
Hf—fHooS;il;[le'SiB 2731

j=1

Define u;, a; and a as

S;UQ 4
— J J —
Uj = o —fp——,

b 1/2 L b 1/2
a; = 2 a4 = (J> )
% Hf:l pzSzB ! <5j) ; Sj

Q| =

So,
2L B uj | u
Al |20 =5

Then, the covering number N (F, || - ||, u/2) can be bounded by

/0 " Vg N v/ du

o L
< [ St v ui)du
0 i=1

o | L
=/0 > log N({A; : | Aillo < siu | Aillp < bid || - |l o) du.
i=1

o | L
< [\ Xt A 1Al < b1l w
0 i=1

o L
< / S Ve N({A:  [Aillr < biJ, |- Tle, wi)du
0 ;=1

Since A; € R%*di-1 we can regard A; as a vector in R™ with m = d; - d;_; and || - || as the
standard Euclidean distance in R™. Then the set { A; : ||A;||F < b;} forms a b;-ball in R™, and the
covering number for this ball could be upper bounded by

36\ _ (36"
N Al <bhl- e < (32) < (32)

% Uy
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for 0 < u; < by, and N({4; : ||Ail|lr < b}, || - ||F,ui) = 1 foru; > b;. So,

AMV%QM03WHmWUMU

4
. S ; HiLzl pisiB
< Xt (/O V9og N({Ai : [[Aillr < b}, |- [y wi)dus - sa)
4
; b 5 1, pisiB
szmg/ VRN Tl < BT v —— )

— L2, pisi BW 3,
< Ef 1 Jz v / 1/log —dul
= S Hz 1 PiSi BI/VZZ oa l/ wllogu—zdul

12
< 5 [T, pisiBWa?

s
where the last inequality uses / log —du; = 2\/10g 3+3v/merfc(y/log3)) < 1. Substituting
0 Uj

it into Theorem 1, we obtain

N\ 172\ 2
Rp(f,B) < - ZZ )+ A s + log(i/‘s) jjS»H ~ pisiBW (zl 1(2) > +
12ﬁA '

7 es'(2B+1)
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