
Supplementary Material

A Proof of Lemma 3

Proof of Lemma 3. We first prove necessity. For any f ∈ F and any empirical distribution zi ∼ Pn,
by Assumption 3, there exists λf,zi such that f(z′)− f(zi) ≤ λf,zidZ(zi, z

′) for any z′ ∈ Z , which
leads to supz′∈Z{f(z′) − λf,zidZ(zi, z

′) − f(zi)}) = 0. Let λ∗ = maxi{λzi,f}. Then, for any
zi ∼ Pn, we have supz′∈Z{f(z′)− λ∗dZ(zi, z

′)− f(zi)}) = 0. Therefore, ψf,Pn(λ∗) = 0 and the
set {λ : ψf,Pn(λ) = 0} is nonempty. The sufficiency is obvious by the definition of ψf,Pn(λ).

B Proofs of Lemma 4 and 5

Proof of Lemma 4. If εB ≥
M

λ+
f,Pn

, by Proposition 1, RεB,1(Pn, f) = λ̄εB +EPn [ϕλ̄,f (Z)] , we have

λ̄εB ≤ RεB,1(Pn, f).

Since f(z) ≤M for any z, we get RεB,1(Pn, f) ≤M . So λ̄ ≤ M

εB
.

For the other side, we first show that ψf,Pn(λ) is continuous and monotonically non-increasing. The
monotonicity is easy to verify from the definition. For continuity, for any λ2 > λ1, suppose that

ẑ = supz′∈Z{f(z′)− λ1dZ(z, z′)− f(z)}),
z∗ = supz′∈Z{f(z′)− λ2dZ(z, z′)− f(z)}).

Then we have

ψf,Pn(λ1)− ψf,Pn(λ2)
= EPn(supz′∈Z{f(z′)− λ1dZ(z, z′)− f(z)} − supz′∈Z{f(z′)− λ2dZ(z, z′)− f(z)})
≤ Epn ((λ2 − λ1)dZ(z, ẑ)) ≤ (λ2 − λ1)diam(Z)

.

So ψf,Pn(λ) is diam(Z)-Lipschitz and thus continuous.

Now we prove λ̄ ∈ [λ−f,Pn , λ
+
f,Pn

]. If λ > λ+
f,Pn

, by the monotonicity and nonnegativity of
ψf,Pn(λ), we have ψf,Pn(λ) = ψf,Pn(λ+

f,Pn
) = 0, which implies λεB +EPn [ϕλ,f (z)] ≥ λ+

f,Pn
εB +

EPn [ϕλ+
f,Pn

,f (z)]. Therefore the optimal λ̄ ≤ λ+
f,Pn

. To show λ̄ ≥ λ−f,Pn , first notice that ψf,Pn(λ)

belongs to [0,M ] for any λ. We define

λ−f,Pn := sup{λ : ψf,Pn(λ) = λ+
f,Pn
· εB}.

Note that this set {λ : ψf,Pn(λ) = λ+
f,Pn
· εB} might be empty if ψf,Pn(0) < λ+

f,Pn
· εB < M .

In this case, we just let λ−f,Pn = 0, and λ̄ must belong to [0, λ+
f,Pn

]. Otherwise, there must exist
some λ ∈ [0, λ+

f,Pn
] which satisfies ψf,Pn(λ) = λ+

f,Pn
· εB by the intermediate value theorem of a

continuous function. We choose λ−f,Pn to be the maximal one in that set. Then, for any λ < λ−f,Pn ,
since ψf,Pn(λ) is monotonically non-increasing, we have

EPn( sup
z′∈Z
{f(z′)− λdZ(z, z′)− f(z)}) ≥ λ+

f,Pn
· εB.

By rearranging the items on both sides, we obtain

λεB + EPn [ϕλ,f (z)] ≥ λ+
f,Pn
· εB + EPn(f(z))

for any λ < λ−f,Pn . Therefore, λ̄ ≥ λ−f,Pn , and we complete the proof.

Proof of Lemma 5. Define the Φ-indexed process X = (Xϕ)ϕ∈Φ by

Xϕ :=
1√
n

n∑
i=1

σiϕ(zi).
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Note that E[Xϕ] = 0 for all ϕ ∈ Φ. First we show that X is a subgaussian process with respect to the
pseudometric dΦ(ϕ,ϕ′), defined as

dΦ(ϕ,ϕ′) := ||f − f ′||∞ + diam(Z) · |λ− λ′|
for ϕ = ϕλ,f and ϕ′ = ϕλ′,f ′ . From the definition of ϕλ,f , it is easy to show that ||ϕ − ϕ′||∞ ≤
dΦ(ϕ,ϕ′). Then for any t ∈ R, we can get

E
[
exp(t(Xϕ −X ′ϕ))

]
= E

[
exp(

t√
n

∑n
i=1 σi(ϕ(zi)− ϕ′(zi)))

]
=

(
E
[
exp(

t√
n
σ1(ϕ(z1)− ϕ′(z1))

])n
≤ exp

(
t2d2

Φ(ϕ,ϕ′)

2

) ,

where the second equality is by the fact that (σi, zi) are i.i.d., and the final inequality uses Hoeffding’s
lemma. Therefore, X is subgaussian with respect to dΦ. And the expected Rademacher complexity
Rn(Φ) can be bounded by the Dudley entropy integral [43]:

Rn(Φ) ≤ 12√
n

∫ ∞
0

√
logN (Φ, dΦ, u)du,

where N (Φ, dΦ, ·) represents the covering numbers of (Φ, dΦ). By the definition of dΦ, it follows
that

N (Φ, dΦ, u) ≤ N (F , || · ||∞, u/2) · N ([a, b], | · |, u

2 · diam(Z)
)

and therefore

Rn(Φ) ≤ 12√
n

(∫ ∞
0

√
logN (F , || · ||∞, u/2)du+

∫ ∞
0

√
logN ([a, b], | · |, u/(2 · diam(Z)))du

)
.

The second integral term could be easily obtained as follows∫ ∞
0

√
logN ([a, b], | · |, u/(2 · diam(Z)))du ≤ (b− a) · diam(z)

∫ 1

0

√
log

1

u
du =

√
π

2
(b− a) · diam(z) .

Consequently,

Rn(Φ) ≤ 12√
n

∫ ∞
0

√
logN (F , || · ||∞, u/2)du+

6
√
π√
n

(b− a) · diam(Z) .

C Proof of Lemma 6

Proof of Lemma 6. For any f ∈ F , define
λ̄ := arg min

λ≥0
{λεB + EPn [ϕλ,f (Z)]}.

Then using Proposition 1, we can write
RεB,1(P, f)−RεB,1(Pn, f)

= minλ≥0

{
λεB +

∫
Z
ϕλ,f (z)P (dz)

}
−
(
λ̄εB +

∫
Z
ϕλ̄,f (z)Pn(dz)

)
≤
∫
Z
ϕλ̄,f (z)(P − Pn)(dz)

.

By Lemma 4, we have λ̄ ∈ [ζ−f,Pn , ζ
+
f,Pn

]. Define the function class Φ := {ϕλ,f : λ ∈ [ζ−, ζ+], f ∈
F}. Then, we have

RεB,1(P, f)−RεB,1(Pn, f) ≤ sup
ϕ∈Φ

[∫
Z
ϕ(z)(P − Pn)(dz)

]
.

Since all f ∈ F takes values in [0,M ], the same holds for all ϕ ∈ Φ. Therefore, by a standard
symmetrization argument [34],

RεB,1(P, f)−RεB,1(Pn, f) ≤ 2Rn(Φ) +M

√
log(1/δ)

2n

with probability at least 1 − δ, where Rn(Φ) := E[supϕ∈Φ

1

n

∑n
i=1 σiϕ(zi)] is the expected

Rademacher complexity of Φ. Using the bound of Lemma 5, we get the desired result

RεB,1(P, f)−RεB,1(Pn, f) ≤ 24C(F)√
n

+M

√
log( 1

δ )

2n
+

12
√
π√
n

ΛεB · diam(Z) .
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D Proof of Theorem 1

Proof of Theorem 1. By Proposition 1, RεB,1(Pn, f) can be written as

RεB,1(Pn, f) = min
λ≥0
{λεB + EPn [ϕλ,f (z)]} = min

λ≥0
{λεB + EPn [ϕλ,f (z)− f(z)]}+ EPn [f(z)]

= min
λ≥0
{λεB + ψf,Pn(λ)}+

1

n

n∑
i=1

f(zi)
,

where the last equality uses the definition of ψf,Pn(λ). Substituting the above equation into Lemma
6 and using inequality (1), we get result (3). To obtain (4), we make use of the following inequality

min
λ≥0
{λεB + ψf,Pn(λ)} ≤ λ+

f,Pn
εB + ψf,Pn(λ+

f,Pn
) = λ+

f,Pn
εB ,

where the equality follows from the definition of λ+
f,Pn

.

E Proof of Corollary 1

Proof of Corollary 1. We first verify the assumption conditions in Theorem 1. Assumption 1 is
evidently satisfied since diam(Z) ≤ (2r+1). For each f ∈ F , assumption 2 holds withM = 1+Λr.
To verify assumption 3, we can write
f(z′)− f(z) ≤ max{0, yw · x− y′w · x′} ≤ max{0, 2yw · x1(y 6=y′) + ||w||2||x′ − x||2}

≤ max{2yw · x, ||w||2}dZ(z, z′)
,

where z = (x, y). Then assumption 3 holds with λf,z = max{2yw ·x, ||w||2}. Let λ̃ = max
i
{2yiw ·

xi, ||w||2}. By the definition of ψf,Pn(·), we have ψf,Pn(λ̃) = 0. Since λ+
f,Pn

is the smallest λ which
satisfies ψf,Pn(λ) = 0, we get λ+

f,Pn
≤ max

i
{2yiw · xi, ||w||2}.

To evaluate the Dudley entropy integral, we need to estimate the covering numbersN (F , || · ||∞, u/2).
First observe, for any f1, f2 ∈ F , we have
||f1 − f2||∞ = supx∈X ,y∈Y |f1(x, y)− f2(x, y)| ≤ supx∈X ,y∈Y |yw1 · x− yw2 · x| ≤ ||w1 − w2||2r.

Since w1, w2 belong to a Λ-ball inRd,

N (F , || · ||∞, u/2) ≤
(

6Λr

u

)d
for 0 < u < 2Λr, and N (F , || · ||∞, u/2) = 1 for u ≥ 2Λr, which gives∫ ∞

0

√
logN (F , || · ||∞, u/2)du ≤

∫ 2Λr

0

√
d log(

6Λr

u
)du ≤ 6Λr

√
d .

Substituting this into expression (4), we get the desired result

RP (f,B) ≤ 1

n

∑n
i=1 f(zi) + λ+

f,Pn
εB +

144√
n

Λr
√
d+

12
√
π√
n

ΛεB · (2r + 1) + (1 + Λr)

√
log( 1

δ )

2n
.

F Proof of Corollary 2

The goal of this section is to prove the adversarial expected risk for neural networks. To this end, it is
necessary to first establish some properties of the margin operatorM(v, y) = vy −maxj 6=y vj and
the ramp loss lγ .
Lemma 7. For every j,M(·, j) is 2-Lipschitz with respect to || · ||2.

proof. Let u, v and y be given. If M(u, y) ≥ M(v, y), denote the index j which satisfies that
M(v, y) = vy − vj . Then,
M(u, y)−M(v, y) = uy −maxi 6=y ui − vy + vj ≤ uy − uj − vy + vj ≤ 2||u− v||∞ ≤ 2||u− v||2.

Otherwise, let j be the index satisfyingM(u, y) = uy − uj , and we obtain
−2||u− v||2 ≤M(u, y)−M(v, y).

Therefore,M(·, j) is 2-Lipschitz with respect to || · ||2.
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Lemma 8. For any f ∈ F , we have λ+
f,Pn

≤ C4 where C4 :=

maxj{
2

γ

∏L
i=1 ρi||Ai||σ,

1

γ

(
M(HA(xj), yj) + maxHA(xj)−minHA(xj)

)
}.

Proof. By the definition of f , for any z and z′, we have

f(z′)− f(z)
= lγ(−M(HA(x′), y′))− lγ(−M(HA(x), y))

≤ max{0, 1

γ
(M(HA(x), y)−M(HA(x′), y′))}

≤ max{0, 1

γ
(M(HA(x), y′)−M(HA(x′), y′)) +

1

γ
(M(HA(x), y)−M(HA(x), y′))}

≤ max{0, 2

γ
|HA(x)−HA(x′)|+ 1

γ
(M(HA(x), y)−M(HA(x), y′))}

≤ 2

γ

∏L
i=1 ρi||Ai||σ||x− x′||2 +

1

γ

(
M(HA(x), y) + maxHA(x)−minHA(x)

)
1y 6=y′

≤ max{ 2

γ

∏L
i=1 ρi||Ai||σ,

1

γ

(
M(HA(x), y) + maxHA(x)−minHA(x)

)
dZ(z, z′)

.

where the third inequality uses Lemma 7. Let C4 = maxj{
2

γ

∏L
i=1 ρi||Ai||σ,

1

γ

(
M(HA(xj), yj) +

maxHA(xj)−minHA(xj)
)
}. By the definition of ψf,Pn(·), we have ψf,Pn(C4) = 0. Therefore,

λ+
f,Pn
≤ C4.

Lemma 9. For any two feedforward neural network HA and HA′ where A = (A1, A2, · · · , AL)
and A′ = (A′1, A

′
2, · · · , A′L), we have the following

||HA(x)−HA′(x)||2 ≤
L∏
i=1

ρisiB

 L∑
j=1

||Ai −A′i||σ
si

 .

Proof. We prove this by induction. Let ∆i = ||HiA(x)−HiA′(x)||2. First observe

∆1 = ||σ1(A1x)− σ1(A′1x)||2 ≤ ρ1||A1x−A′1x||2 ≤ ρ1||A1 −A′1||σ||x||2 ≤ ρ1B||A1 −A′1||σ.

For any i ≥ 1, we have the following

∆i+1

= ||σi+1(Ai+1σi(Ai · · ·σ2(A2σ1(A1x))))− σi+1(A′i+1σi(A
′
i · · ·σ2(A′2σ1(A′1x))))||2

≤ ||σi+1(Ai+1σi(Ai · · ·σ2(A2σ1(A1x))))− σi+1(A′i+1σi(Ai · · ·σ2(A2σ1(A1x))))||2+
||σi+1(A′i+1σi(Ai · · ·σ2(A2σ1(A1x)))− σi+1(A′i+1σi(A

′
i · · ·σ2(A′2σ1(A′1x))))||2

≤ ρi+1||Ai+1 −A′i+1||σ||σi(Ai · · ·σ2(A2σ1(A1x)))||2 + ρi+1si+1∆i

≤ ρi+1||Ai+1 −A′i+1||σ
∏i
j=1 ρjsjB + ρi+1si+1∆i

.

Therefore, using the induction step, we get the following

∆i+1

≤ ρi+1||Ai+1 −A′i+1||σ
∏i
j=1 ρjsjB + ρi+1si+1∆i

≤ ρi+1||Ai+1 −A′i+1||σ
∏i
j=1 ρjsjB +

∏i+1
j=1 ρjsjB

(∑i
k=1

||Ak −A′k||σ
sk

)
=
∏i+1
j=1 ρjsjB

(∑i+1
k=1

||Ak −A′k||σ
sk

) .

We now return to the proof of Corollary 2.

Proof of Corollary 2. First we verify the three assumptions. Assumption 1 holds with diam(Z) ≤
2r + 1. Assumption 2 is self-satisfied by the definition of ramp loss with 0 ≤ f(z) ≤ 1. And

15



assumption 3 is guaranteed by Lemma 8 with λ+
f,Pn

≤ C4. Now we proceed to upper bound the
covering number for F . For any f and f ′,

||f − f ′||∞ = supz |f(z)− f ′(z)| = supz |lγ(−M(HA(x), y))− lγ(−M(HA′(x), y))|

≤ supx
2

γ
||HA(x)−HA′(x)||2 ≤

2

γ

∏L
i=1 ρisiB

(∑L
j=1

||Aj −A′j ||σ
si

)
,

where the last inequality applies Lemma 9. Since for any matrix A, we have ||A||σ ≤ ||A||F . The
above inequality can be written as

||f − f ′||∞ ≤
2

γ

L∏
i=1

ρisiB

 L∑
j=1

||Aj −A′j ||F
si

 .

Define uj , aj and ā as

uj =
sjuaj

4
γ

∏L
i=1 ρisiB

, aj =
1

ā

(
bj
sj

)1/2

, ā =

L∑
j=1

(
bj
sj

)1/2

.

So,

2

γ

L∏
i=1

ρisiB

 L∑
j=1

uj
sj

 =
u

2
.

Then, the covering number N (F , || · ||∞, u/2) can be bounded by

∫ ∞
0

√
logN (F , || · ||∞, u/2)du

≤
∫ ∞

0

√√√√ L∑
i=1

logN (Ai, || · ||F , ui)du

=

∫ ∞
0

√√√√ L∑
i=1

logN ({Ai : ||Ai||σ ≤ si, ||Ai||F ≤ bi}, || · ||F , ui)du

≤
∫ ∞

0

√√√√ L∑
i=1

logN ({Ai : ||Ai||F ≤ bi}, || · ||F , ui)du

≤
∫ ∞

0

L∑
i=1

√
logN ({Ai : ||Ai||F ≤ bi}, || · ||F , ui)du

.

Since Ai ∈ Rdi×di−1 , we can regard Ai as a vector in Rm with m = di · di−1 and || · ||F as the
standard Euclidean distance in Rm. Then the set {Ai : ||Ai||F ≤ bi} forms a bi-ball in Rm, and the
covering number for this ball could be upper bounded by

N ({Ai : ||Ai||F ≤ bi}, || · ||F , ui) ≤
(

3bi
ui

)m
≤
(

3bi
ui

)W 2
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for 0 < ui < bi, and N ({Ai : ||Ai||F ≤ bi}, || · ||F , ui) = 1 for ui ≥ bi. So,∫ ∞
0

√
logN (F , || · ||∞, u/2)du

≤
∑L
i=1

(∫ ∞
0

√
logN ({Ai : ||Ai||F ≤ bi}, || · ||F , ui)dui ·

4

γ

∏L
i=1 ρisiB

siai

)

≤
∑L
i=1

(∫ bi

0

√
logN ({Ai : ||Ai||F ≤ bi}, || · ||F , ui)dui ·

4

γ

∏L
i=1 ρisiB

siai

)

≤
∑L
i=1

4

γ

∏L
i=1 ρisiBW

siai

∫ bi

0

√
log

3bi
ui
dui

=
12

γ

∏L
i=1 ρisiBW

∑L
i=1

bi
siai

∫ 1
3

0

√
log

1

ui
dui

≤ 12

γ

∏L
i=1 ρisiBWā2

,

where the last inequality uses
∫ 1

3

0

√
log

1

ui
dui =

1

6
(2
√

log 3+3
√
πerfc(

√
log 3)) < 1. Substituting

it into Theorem 1, we obtain

RP (f,B) ≤ 1

n

∑n
i=1 f(zi) + λ+

f,Pn
εB +

√
log(1/δ)

2n
+

288

γ
√
n

∏L
i=1 ρisiBW

(∑L
i=1

(
bi
si

)1/2
)2

+

12
√
π√
n

ΛεB · (2B + 1)

.
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