
A Preliminaries

A.1 Summary of Key Notations

Data T0 = {(Xt, Yt, Zt)}mt=1 is the logged data. T̃k = {(Xt, Ỹt, Zt)}m+nk
t=m+nk−1+1 (1 ≤ k ≤ K)

is the online data collected in the k-th iteration of size τk = nk − nk−1, and Ỹt equals either the
actual label Yt drawn from the data distribution D or the inferred label ĥk−1(Xt) according to the
candidate set Ck−1at iteration k − 1. S̃k = T0 ∪ T̃1 ∪ · · · ∪ T̃k.

For convenience, we additionally define Tk = {(Xt, Yt, Zt)}m+nk
t=m+nk−1+1 to be the data set with the

actual labels Yt drawn from the data distribution, and Sk = T0 ∪ T1 ∪ · · · ∪ Tk. The algorithm only
observes S̃k and T̃k, and Sk, Tk are used for analysis only.

For 1 ≤ k ≤ K,nk = τ1 + · · ·+ τk, and we define n0 = 0, n = nK , τ0 = m. We assume τk ≤ τk+1

for 1 ≤ k < K.

Recall that {(Xt, Yt, Zt)}m+n
t=1 is an independent sequence, and furthermore {(Xt, Yt)}m+n

t=1 is an
i.i.d. sequence drawn from D. For (X,Z) ∈ Tk (0 ≤ k ≤ K), Qk(X) = Pr(Z = 1 | X).
Unless otherwise specified, all probabilities and expectations are over the random draw of all random
variables {(Xt, Yt, Zt)}m+n

t=1 .

Loss and Second Moment The test error l(h) = Pr(h(X) 6= Y ), the optimal classifier
h? = arg minh∈H l(h), and the optimal error ν = l(h?). At the k-th iteration, the Multiple
Importance Sampling (MIS) weight wk(x) = m+nk

mQ0(Xt)+
∑k
i=1 τiQi(Xt)

. The clipped MIS loss esti-

mator l(h;Sk,M) = 1
m+nk

∑m+nk
i=1 wk(Xi)Zi1{h(Xi) 6= Yi}1{wk(Xi) ≤M}. The (unclipped)

MIS loss estimator l(h;Sk) = l(h;Sk,∞).

The clipped second moment V(h; k,M) = E [wk(X)1{h(X) 6= Y }1{wk(X) ≤M}],
V(h1, h2; k,M) = E [wk(X)1{h1(X) 6= h2(X)}1{wk(X) ≤M}]. The clipped second-
moment estimators V̂(h;Sk,M) = 1

m+nk

∑m+nk
i=1 w2

k(Xi)Zi1{h(Xi) 6= Yi}1{wk(Xi) ≤
M}, V̂(h1, h2;Sk,M) = 1

m+nk

∑m+nk
i=1 w2

k(Xi)Zi1{h1(X) 6= h2(X)}1{wk(Xi) ≤
M}. The unclipped second moments (V(h; k),V(h1, h2; k)) and second moment estimators
(V̂(h;Sk),V̂(h1, h2;Sk)) are defined similarly.

Disagreement Regions The r-ball around h is defined as B(h, r) := {h′ ∈ H | Pr(h(X) 6=
h′(X)) ≤ r}, and the disagreement region of C ⊆ H is DIS(C) := {x ∈ X | ∃h1 6= h2 ∈
C s.t. h1(x) 6= h2(x)}.
The candidate set Ck and its disagreement region Dk are defined in Algorithm 1. The empirical risk
minimizer (ERM) at k-th iteration ĥk = arg minh∈Ck l(h, S̃k).

The modified disagreement coefficient θ̃(r, α) := 1
r Pr

(
DIS(B(h?, r)) ∩

{
x : Q0(x) ≤ 1

α

})
. θ̃ =

supr>2ν θ̃(r,
2m
n ).

Other Notations q0 = infxQ0(x). Qk+1(x) = 1{mQ0(x)+
∑k
i=1 τiQi(x) < m

2 Q0(x)+nk+1}.
Mk = inf{M ≥ 1 | 2M

m+nk
log |H|δk ≥ Pr( m+nk

mQ0(X)+nk
> M/2)}. ξ = min1≤k≤K{Mk/

m+nk
mq0+nk

}.
M̄ = max1≤k≤KMk.

A.2 Elementary Facts

Proposition 7. Suppose a, c ≥ 0, b ∈ R. If a ≤ b+
√
ca, then a ≤ 2b+ c.

Proof. Since a ≤ b+
√
ca,
√
a ≤

√
c+
√
c+4b

2 ≤
√

c+c+4b
2 =

√
c+ 2b where the second inequality

follows from the Root-Mean Square-Arithmetic Mean inequality. Thus, a ≤ 2b+ c.

11



A.3 Facts on Disagreement Regions and Candidate Sets

Lemma 8. For any k = 0, . . . ,K, M ≥ 0, if h1, h2 ∈ Ck, then l(h1;Sk,M) − l(h2;Sk,M) =

l(h1; S̃k,M)− l(h2; S̃k,M) and V̂(h1, h2;Sk,M) = V̂(h1, h2; S̃k,M).

Proof. For any (Xt, Yt, Zt) ∈ Sk that Zt = 1, if Xt ∈ DIS(Ck), then Yt = Ỹt, so 1{h1(Xt) 6=
Yt} − 1{h2(Xt) 6= Yt} = 1{h1(Xt) 6= Ỹt} − 1{h2(Xt) 6= Ỹt}. If Xt /∈ DIS(Ck), then h1(Xt) =

h2(Xt), so 1{h1(Xt) 6= Yt} − 1{h2(Xt) 6= Yt} = 1{h1(Xt) 6= Ỹt} − 1{h2(Xt) 6= Ỹt} = 0.
Thus, l(h1;Sk,M)− l(h2;Sk,M) = l(h1; S̃k,M)− l(h2; S̃k,M).

V̂(h1, h2;Sk,M) = V̂(h1, h2; S̃k,M) holds since V̂(h1, h2;Sk,M) and V̂(h1, h2; S̃k,M) do not
involve labels Y or Ỹ .

The following lemmas are immediate from the definition.

Lemma 9. For any 1 ≤ k ≤ K, if h ∈ Ck, then l(h; S̃k,M) ≤ l(h;Sk,M) ≤ l(h;Sk), and
V̂(h; S̃k,M) ≤ V̂(h;Sk,M) ≤ V̂(h;Sk).

Remark 10. The inequality on the second moment regularizer V̂, which will be used to prove the
error bound (Theorem 4) of Algorithm 1, is due to the decomposition property V̂(h;Sk,M) =
|Sk∩DIS(Ck)|

m+nk
V̂(h;Sk ∩ DIS(Ck),M) + |Sk∩DIS(Ck)c|

m+nk
V̂(h;Sk ∩ DIS(Ck)c,M). It does not hold for

estimated variance V̂ar(h;Sk,M) := V̂(h;Sk,M) − l(h;Sk,M)2. This explains the necessity of
introducing the second moment regularizer.

Lemma 11. For any r ≥ 2ν, any α ≥ 1, Pr(DIS(B(h?, r) ∩ {x : Q0(x) ≤ 1
α}) ≤ rθ̃(r, α).

A.4 Facts on Multiple Importance Sampling Estimators

Proposition 12. Let f : X × Y → R. For any k, the following equations hold:

E[
1

m+ nk

∑
(X,Y,Z)∈Sk

wk(X)Zf(X,Y )] = E[f(X,Y )],

E[
1

m+ nk

∑
(X,Y,Z)∈Sk

w2
k(X)Zf(X,Y )] = E[wk(X)f(X,Y )].

Proof.

E[
∑

(X,Y,Z)∈Sk

wk(X)Zf(X,Y )] =

k∑
i=0

E[
∑

(X,Y,Z)∈Ti

E[wk(X)f(X,Y )Z | X,Y ]]

=

k∑
i=0

E[
∑

(X,Y,Z)∈Ti

wk(X)f(X,Y )E[Z | X,Y ]]

(a)
=

k∑
i=0

E[
∑

(X,Y,Z)∈Ti

wk(X)f(X,Y )E[Z | X]]

=

k∑
i=0

E[
∑

(X,Y,Z)∈Ti

wk(X)f(X,Y )Qi(X)]

(b)
=

k∑
i=0

τiE[wk(X)f(X,Y )Qi(X)]

= E[wk(X)f(X,Y )

k∑
i=0

τiQi(X)]

(c)
= (m+ nk)E[f(X,Y )]
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where (a) follows from E[Z | X] = E[Z | X,Y ] as Z, Y are conditionally independent given X ,
(b) follows since Ti is a sequence of i.i.d. random variables, and (c) follows from the definition
wk(X) = m+nk∑k

i=0 τiQi(X)
.

The proof for the second equality is similar and skipped.

A.5 Facts on the Sample Selection Bias Correction Query Strategy

The query strategy Qk can be simplified as follows.
Proposition 13. For any 1 ≤ k ≤ K, x ∈ X , Qk(x) = 1{2nk −mQ0(x) > 0}.

Proof. The k = 1 case can be easily verified. Suppose it holds for Qk, and we next show it holds for
Qk+1. Recall by definition Qk+1(x) = 1{mQ0(x) +

∑k
i=1 τiQi(x) < m

2 Q0(x) + nk+1}.

If Qk(x) = 1, then mQ0(x) +
∑k−1
i=1 τiQi(x) < m

2 Q0(x) + nk, so

mQ0(x) +

k∑
i=1

τiQi(x) <
m

2
Q0(x) + nk + τk

≤ m

2
Q0(x) + nk+1

where the last inequality follows by the assumption on the epoch schedule τk ≤ τk+1 = nk+1 − nk.
This implies Qk+1(x) = 1. In this case, 1{2nk+1 −mQ0(x) > 0} = 1 as well, since nk+1 ≥ nk
implies 2nk+1 −mQ0(x) ≥ 2nk −mQ0(x) > 0.

The above argument also implies if Qk(x) = 0, then Q1(x) = Q2(x) = · · · = Qk−1(x) = 0. Thus,
if Qk(x) = 0, then Qk+1(x) = 1{mQ0(x) < m

2 Q0(x) +nk+1} = 1{2nk+1−mQ0(x) > 0}.

The following proposition gives an upper bound of the multiple importance sampling weight, which
will be used to bound the second moment of the loss estimators with the sample selection bias
correction strategy.
Proposition 14. For any 1 ≤ k ≤ K, wk(x) = m+nk

mQ0(x)+
∑k
i=1 τiQi(x)

≤ m+nk
1
2mQ0(x)+nk

.

Proof. The k = 1 case can be easily verified. Suppose it holds for wk, and we next show it holds for
wk+1.

Now, ifQk+1(x) = 0, then by Proposition 13, 2nk+1−mQ0(x) ≤ 0, somQ0(x)+
∑k+1
i=1 τiQi(x) ≥

mQ0(x) ≥ 1
2mQ0(x) + nk+1.

If Qk+1(x) = 1, then by the induction hypothesis, mQ0(x) +
∑k+1
i=1 τiQi(x) ≥ 1

2mQ0(x) + nk +

τk+1 = 1
2mQ0(x) + nk+1.

Thus, in both cases, mQ0(x) +
∑k+1
i=1 τiQi(x) ≥ 1

2mQ0(x) +nk+1, so wk+1(x) ≤ m+nk+1
1
2mQ0(x)+nk+1

.

A.6 Lower Bound Techniques

We present a lower bound for binomial distribution tails, which will be used to prove generalization
error lower bounds.
Lemma 15. Let 0 < t < p < 1/2, B ∼ Bin(n, p) be a binomial random variable, and δ =√

4n (t−p)2
p . Then, Pr(B < nt) ≥ 1√

2π
δ

δ2+1 exp(− 1
2δ

2).

This Lemma is a consequence of following lemmas.

Lemma 16. Suppose 0 < p, q < 1, KL(p, q) = p log p
q + (1− p) log 1−p

1−q . Then KL(p, q) ≤ (p−q)2
q(1−q) .

Proof. Since log x ≤ x−1, p log p
q +(1−p) log 1−p

1−q ≤ p(
p
q −1)+(1−p)( 1−p

1−q −1) = (p−q)2
q(1−q) .
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Lemma 17. ([5]) Suppose X ∼ N(0, 1), and define Φ(t) = Pr(X ≤ t). If t > 0, then Φ(−t) ≥
1√
2π

t
t2+1 exp(− 1

2 t
2).

Lemma 18. ([28]) Let B ∼ Bin(n, p) be a binomial random variable and 0 < k < np. Then,

Pr(B < k) ≥ Φ(−
√

2nKL( kn , p)).

B Deviation Bounds

In this section, we demonstrate deviation bounds for our error estimators on Sk.

We use following Bernstein-style concentration bound:
Fact 19. Suppose X1, . . . , Xn are independent random variables such that |Xi| ≤ M . Then with
probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Xi −
1

n

n∑
i=1

EXi

∣∣∣∣∣ ≤ 2M

3n
log

2

δ
+

√√√√ 2

n2

n∑
i=1

EX2
i log

2

δ
.

Theorem 20. For any k = 0, . . . ,K, any δ > 0, if 2M log
|H|
δ

m+nk
≥ Pr( m+nk

mQ0(X)+nk
≥ M

2 ), then with
probability at least 1− δ, for all h1, h2 ∈ H, the following statements hold simultaneously:

|(l(h1;Sk,M)− l(h2;Sk,M))− (l(h1)− l(h2))| ≤
10 log 2|H|

δ

3(m+ nk)
M +

√
4 log 2|H|

δ

m+ nk
V(h1, h2; k,M);

(1)

|l(h1;Sk,M)− l(h1)| ≤
10 log 2|H|

δ

3(m+ nk)
M +

√
4 log 2|H|

δ

m+ nk
V(h1; k,M).

(2)

Proof. We show proof for k > 0. The k = 0 case can be proved similarly.

First, define the clipped expected loss l(h; k,M) = E[1{h(X) 6= Y }1{wk(X) ≤M}]. We have

|(l(h1)− l(h2))− (l(h1; k,M)− l(h2; k,M))|
= |E [(1{h1(X) 6= Y } − 1{h2(X) 6= Y })1{wk(X) > M}]|
≤E [1[wk(X) > M ]]

≤E[1{ m+ nk
mQ0(X) + nk

>
M

2
}]

≤ 2M

m+ nk
log
|H|
δ

(3)

where the second inequality follows from Proposition 14, and the last inequality follows from the
assumption on M .

Next, we bound (l(h1;Sk,M)− l(h2;Sk,M))− (l(h1; k,M)− l(h2; k,M)).

For any fixed h1, h2 ∈ H, define N := |Sk|, Ut := wk(Xt)Zt1{wk(Xt) ≤ M}(1{h1(Xt) 6=
Yt} − 1{h2(Xt) 6= Yt}).

Now, {Ut}Nt=1 is an independent sequence. 1
N

∑N
t=1 Ut = l(h1;Sk,M) − l(h2;Sk,M), and

E 1
N

∑N
t=1 Ut = l(h1; k,M) − l(h2; k,M) by Proposition 12. Moreover, since (1{h1(Xt) 6=

Yt} − 1{h2(Xt) 6= Yt})2 = 1{h1(Xt) 6= h2(Xt)}, we have 1
N

∑N
t=1 U

2
t = V̂(h1, h2;Sk,M) and

E 1
N

∑N
t=1 U

2
t = V(h1, h2; k,M) by Proposition 12. Applying Bernstein’s inequality (Fact 19) to

{Ut}, we have with probability at least 1− δ
2 ,∣∣∣∣∣ 1

N

N∑
t=1

Ut − E
1

N

N∑
t=1

Ut

∣∣∣∣∣ ≤ 2M

3N
log

4

δ
+

√
2

N
V(h1, h2; k,M) log

4

δ
,
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so |(l(h1;Sk,M)− l(h2;Sk,M))− (l(h1; k,M)− l(h2; k,M))| ≤ 2M
3(m+nk) log 4

δ +√
2

m+nk
V(h1, h2; k,M) log 4

δ . By a union bound over H, with probability at least 1 − δ
2

for all h1, h2 ∈ H,

|(l(h1;Sk,M)− l(h2;Sk,M))− (l(h1; k,M)− l(h2; k,M))|

≤ 4M

3(m+ nk)
log

2|H|
δ

+

√
4

m+ nk
V(h1, h2; k,M) log

2|H|
δ

. (4)

(1) follows by combining (3) and (4).

The proof for (2) is similar and skipped.

We use following bound for the second moment which is an immediate corollary of Lem-
mas B.1 and B.2 in [18]:

Fact 21. Suppose X1, . . . , Xn are independent random variables such that |Xi| ≤ M . Then with
probability at least 1− δ,

−
√

2M2

n
log

1

δ
− M2

n
≤

√√√√ 1

n

n∑
i=1

X2
i −

√√√√E
1

n

n∑
i=1

X2
i ≤

√
2M2

n
log

1

δ
.

Recall by Lemma 12, E[V̂(h1, h2;Sk,M)] = V(h1, h2; k,M) and E[V̂(h1;Sk,M)] = V(h1; k,M).
The following Corollary follows from the bound on the second moment.

Corollary 22. For any k = 0, . . . ,K, any δ,M > 0, with probability at least 1 − δ, for all
h1, h2 ∈ H, the following statements hold:

∣∣∣∣√V̂(h1, h2;Sk,M)−
√

V(h1, h2; k,M)

∣∣∣∣ ≤
√

4M2

m+ nk
log

2|H|
δ

+
M2

m+ nk
, (5)

∣∣∣∣√V̂(h1;Sk,M)−
√

V(h1; k,M)

∣∣∣∣ ≤
√

4M2

m+ nk
log

2|H|
δ

+
M2

m+ nk
. (6)

Corollary 23. There is an absolute constant γ1, for any k = 0, . . . ,K, any δ > 0, if 2M log
|H|
δ

m+nk
≥

Pr( m+nk
mQ0(X)+nk

≥ M
2 ), then with probability at least 1 − δ, for all h1, h2 ∈ H, the following

statements hold:

|(l(h1;Sk,M)− l(h2;Sk,M))− (l(h1)− l(h2))| ≤γ1
M

m+ nk
log
|H|
δ

+ γ1
M2

(m+ nk)
3
2

√
log
|H|
δ

(7)

+ γ1

√
log |H|δ
m+ nk

V̂(h1, h2;Sk,M);

l(h1;Sk,M) ≤ 2l(h1) + γ1
M

m+ nk
log
|H|
δ
. (8)

Proof. Let event E be the event that (1), (2), and (5) hold for all h1, h2 ∈ H with confidence 1− δ
3

respectively. Assume E happens (whose probability is at least 1− δ).

(7) is immediate from (1) and (5).
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For the proof of (8), apply (2) to h1, we get

l(h1;Sk,M) ≤ l(h1) +
10 log 6|H|

δ

3(m+ nk)
M +

√
4 log 6|H|

δ

m+ nk
V(h1; k,M).

Now, V(h1; k,M) = E [wk(X)1{h1(X) 6= Y }1{wk(X) ≤M}] ≤ ME[1{h1(X) 6= Y }], so√
4 log

6|H|
δ

m+nk
V(h1; k,M) ≤

√
4M log

6|H|
δ

m+nk
l(h1) ≤ l(h1)+

M log
6|H|
δ

(m+nk) where the last inequality follows

from
√
ab ≤ a+b

2 for a, b ≥ 0, and (8) thus follows.

C Technical Lemmas for Disagreement-Based Active Learning

For any 0 ≤ k < K and δ > 0, define event Ek,δ to be the event that the conclusions of Theorem 20
and Corollary 22 hold for k with confidence 1− δ/2 respectively. We have Pr(Ek,δ) ≥ 1− δ, and
that Ek,δ implies inequalities (7) and (8).

Recall that σ1(k, δ,M) = M
m+nk

log |H|δ + M2

(m+nk)
3
2

√
log |H|δ ;σ2(k, δ) = 1

m+nk
log |H|δ ; δk =

δ
2(k+1)(k+2) .

We first present a lemma which can be used to guarantee that h? stays in candidate sets with high
probability by induction.

Lemma 24. For any k = 0, . . .K, any δ > 0, any M ≥ 1 such that 2M log
|H|
δ

m+nk
≥ Pr( m+nk

mQ0(X)+nk
≥

M
2 ), on event Ek,δ , if h? ∈ Ck, then,

l(h?; S̃k,M) ≤ l(ĥk; S̃k,M) + γ1σ1(k, δ,M) + γ1

√
σ2(k, δ)V̂(h?, ĥk; S̃k,M).

Proof.

l(h?; S̃k,M)− l(ĥk; S̃k,M)

=l(h?;Sk,M)− l(ĥk;Sk,M)

≤γ1σ1(k, δ,M) + γ1

√
σ2(k, δ)V̂(h?, ĥk;Sk,M)

=γ1σ1(k, δ,M) + γ1

√
σ2(k, δ)V̂(h?, ĥk; S̃k,M)

The first and the second equalities follow by Lemma 8. The inequality follows by Corollary 23.

Next, we present a lemma to bound the probability mass of the disagreement region of candidate sets.

Lemma 25. Let ĥk,M = arg minh∈Ck l(h; S̃k,M), and Ck+1(δ,M) := {h ∈ Ck | l(h; S̃k,M) ≤
l(ĥk,M ; S̃k,M) + γ1σ1(k, δ,M) + γ1

√
σ2(k, δ)V̂(h, ĥk,M ; S̃k,M)}. There is an absolute con-

stant γ2 > 1 such that for any k = 0, . . . ,K, any δ > 0, any M ≥ 1 such that 2M log
|H|
δ

m+nk
≥

Pr( m+nk
mQ0(X)+nk

≥ M
2 ), on event Ek,δ , if h? ∈ Ck, then for all h ∈ Ck+1(δ,M),

l(h)− l(h?) ≤ γ2σ1(k, δ,M) + γ2

√
σ2(k, δ)Ml(h?).
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Proof. For any h ∈ Ck+1(δ,M), we have

l(h)− l(h?)

≤l(h;Sk,M)− l(h?;Sk,M) +
10M log 4|H|

δ

3(m+ nk)
+

√
4

V(h?, h; k,M)

m+ nk
log

4|H|
δ

=l(h; S̃k,M)− l(h?; S̃k,M) +
10M log 4|H|

δ

3(m+ nk)
+

√
4

V(h?, h; k,M)

m+ nk
log

4|H|
δ

=l(h; S̃k,M)− l(ĥk,M ; S̃k,M) + l(ĥk,M ; S̃k,M)− l(h?; S̃k,M) +
10M log 4H|

δ

3(m+ nk)
+

√
4

V(h?, h; k,M)

m+ nk
log

4|H|
δ

≤γ1σ1(k, δ,M) + γ1

√
σ2(k, δ)V̂(h, ĥk,M ; S̃k,M) +

10M log 4|H|
δ

3(m+ nk)
+

√
4

V(h?, h; k,M)

m+ nk
log

4|H|
δ

(9)

where the first equality follows from Lemma 8, the first inequality follows from Theorem 20, and the
second inequality follows from the definition of Ck(δ,M) and that l(ĥk,M ; S̃k,M) ≤ l(h?; S̃k,M).

Next, we upper bound
√

V̂(h, ĥk,M ; S̃k,M). We have√
V̂(h, ĥk,M ; S̃k,M) ≤

√
V̂(h, h?; S̃k,M) + V̂(h?, ĥk,M ; S̃k,M)

≤
√

V̂(h, h?; S̃k,M) +

√
V̂(h?, ĥk,M ; S̃k,M)

where the first inequality follows from the triangle inequality that V̂(h, ĥk,M ; S̃k,M) ≤
V̂(h, h?; S̃k,M)+V̂(h?, ĥk,M ; S̃k,M) and the second follows from the fact that

√
a+ b ≤

√
a+
√
b

for a, b ≥ 0.

For the first term, we have
√

V̂(h, h?; S̃k,M) =
√

V̂(h, h?;Sk,M) ≤
√

V(h, h?; k,M) +√
4M2

m+nk
log 4|H|

δ + M2

m+nk
by Corollary 22.

For the second term, we have

√
V̂(h?, ĥk,M ; S̃,M) ≤

√
M(l(h?; S̃k,M) + l(ĥk,M ; S̃k,M))

≤
√

2Ml(h?; S̃k,M)

≤
√

2Ml(h?;Sk,M)

≤

√
2M(2l(h?) + γ1

M

m+ nk
log
|H|
δ

)

≤

√
2γ1M2

m+ nk
log
|H|
δ

+ 2
√
Ml(h?)

where the first inequality follows since w2
k(X)Z1{h?(X) 6= ĥk,M (X)}1[wk(X) ≤ M ] ≤

M(wk(X)Z1{h?(X) 6= Y } + wk(X)Z1{ĥk,M (X) 6= Y }), the second inequality follows since
l(ĥk,M ; S̃k,M) ≤ l(h?; S̃k,M), the third follows by Lemma 9 since we assume h? ∈ Ck, the fourth
follows by Corollary 23, and the last follows by

√
a+ b ≤

√
a+
√
b.

Therefore,
√

V̂(h, ĥk,M ; S̃k,M) ≤
√

V(h, h?; k,M) + (2 +
√

2γ1)
√

M2

m+nk
log 4|H|

δ + M2

m+nk
+

2
√
Ml(h?). Continuing (9), we have
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l(h)− l(h?) ≤ (
10

3
+ 3γ1 + 2

√
2γ

3
2
1 )

M

m+ nk
log

4|H|
δ

+ γ1
M2

(m+ nk)
3
2

√
log

4|H|
δ

+ (γ1 + 2)

√
V(h?, h; k,M)

m+ nk
log

4|H|
δ

+ 2γ1

√
Ml(h?)

m+ nk
log

4|H|
δ

.

Now, since w2
k(X)Z1{h?(X) 6= ĥk(X)}1[wk(X) ≤ M ] ≤ M(wk(X)Z1{h?(X) 6= Y } +

wk(X)Z1{ĥk(X) 6= Y }), we have
√

V(h?,h;k,M)
m+nk

log 4|H|
δ ≤

√
M(l(h)−l(h?)+2l(h?))

m+nk
log 4|H|

δ ≤√
M(l(h)−l(h?))

m+nk
log 4|H|

δ +
√

2Ml(h?)
m+nk

log 4|H|
δ where the second follows by

√
a+ b ≤

√
a+
√
b for

a, b ≥ 0.

Thus, l(h)− l(h?) ≤ ( 10
3 +3γ1 +2

√
2γ

3
2
1 ) M

m+nk
log 4|H|

δ +γ1
M2

(m+nk)
3
2

√
log 4|H|

δ +(2γ1 +
√

2γ1 +

2
√

2)
√

Ml(h?)
m+nk

log 4|H|
δ + (γ1 + 2)

√
M(l(h)−l(h?))

m+nk
log 4|H|

δ .

The result follows by applying Lemma 7 to l(h)− l(h?).

D Proofs for Section 5.2

Proof. (of Theorem 4) Define event E(0) :=
⋂K
k=0 Ek,δk . By a union bound, Pr(E(0)) ≥ 1 − δ/2.

On event E(0), by induction and Lemma 24, for all k = 0, . . . ,K, h? ∈ Ck.

l(ĥ)− l(h?) ≤l(ĥ;SK ,MK)− l(h?;SK ,MK) + γ1σ1(K, δK ,MK) + γ1

√
σ2(K, δK)V̂(ĥ, h?;SK ,MK)

=l(ĥ; S̃K ,MK)− l(h?; S̃K ,MK) + γ1σ1(K, δK ,MK) + γ1

√
σ2(K, δK)V̂(ĥ, h?; S̃K ,MK)

≤l(ĥ; S̃K ,MK) + γ1

√
σ2(K, δK)V̂(ĥ; S̃K ,MK)− l(h?; S̃K ,MK)− γ1

√
σ2(K, δK)V̂(h?; S̃K ,MK)

+ γ1σ1(K, δK ,MK) + 2γ1

√
σ2(K, δK)V̂(h?; S̃K ,MK)

≤γ1σ1(K, δK ,MK) + 2γ1

√
σ2(K, δK)V̂(h?; S̃K ,MK)

≤γ1σ1(K, δK ,MK) + 2γ1

√
σ2(K, δK)V̂(h?;SK ,MK)

≤3γ1σ1(K, δK ,MK) + 2γ1

√
σ2(K, δK)V(h?;K,MK)

where the equality follows from Lemma 8, the first inequality follows from Corollary 23,

the second follows as
√

V̂(ĥ, h?; S̃K ,MK) ≤
√

V̂(ĥ; S̃K ,MK) + V̂(h?; S̃K ,MK) ≤√
V̂(ĥ; S̃K ,MK)+

√
V̂(h?; S̃K ,MK), the third follows from the definition of ĥ, the forth follows

from Lemma 9, and the last follows from Corollary 22.

Proof. (of Theorem 6) Define event E(0) :=
⋂K
k=0 Ek,δk . On this event, by induction and Lemma 24,

for all k = 0, . . . ,K − 1, h? ∈ Ck, and consequently by Lemma 25, Dk+1 ⊆ DIS(B(h?, 2ν + εk))

where εk = γ2σ1(k, δk,Mk) + γ2

√
σ2(k, δk)Mkν.

For any k = 0, . . .K−1, the number of label queries at iteration k is Uk :=
∑m+nk+1

t=m+nk+1 Zt1{Xt ∈
Dk+1} where the RHS is a sum of i.i.d. Bernoulli random variables with expectation E[Zt1{Xt ∈
Dk+1}] = Pr(Dk+1 ∩ {x : Q0(x) < 2nk+1

m }) since Zt = Qk+1(x) = 1{2nk+1 −mQ0(x) > 0}
by Proposition 13. A Bernstein inequality implies that on an event E(1,k) of probability at least
1− δk/2, Uk ≤ 2τk+1 Pr(Dk+1 ∩ {x : Q0(x) < 2nk+1

m }) + 2 log 4
δk

.
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Define E(1) :=
⋂K−1
k=0 E(1,k), and E(2) := E(0) ∩ E(1). By a union bound, we have Pr(E(2)) ≥ 1− δ.

Now, on event E(2), for any k < K, Dk+1 ⊆ DIS(B(h?, 2ν+ εk)), so by Lemma 11 Pr(Dk+1∩{x :

Q0(x) < 2nk+1

m }) ≤ (2ν + εk)θ̃(2ν + εk,
2nk+1

m ). Therefore, the total number of label queries

K−1∑
k=0

Uk ≤τ1 +

K−1∑
k=1

2τk+1 Pr(Dk+1 ∩ {x : Q0(x) <
2nk+1

m
}) + 2K log

4

δK

≤1 + 2

K−1∑
k=1

τk+1(2ν + εk)θ̃(2ν + εk,
2nk+1

m
) + 2K log

4

δK

≤1 + 2K log
4

δK
+ 2θ̃(2ν + εK−1,

2n

m
) ·

(
2nν

+γ2

K−1∑
k=1

(
τk+1Mk

m+ nk
log
|H|
δk

+
τk+1M

2
k

(m+ nk)
3
2

√
log
|H|
δk

+ τk+1

√
Mk

m+ nk
ν log

|H|
δk

)

 .

Recall that α = m
n ,τk = 2k, ξ = min1≤k≤K{Mk/

m+nk
mq0+nk

}, M̄ = max1≤k≤KMk. We have∑K−1
k=1

τk+1Mk

m+nk
≤
∑K−1
k=1

ξτk
mq0+nk

≤
∑K
k=1

ξnk
αnkq0+nk

≤ Kξ
αq0+1 where the first inequality follows

as Mk

m+nk
≤ ξ

mq0+nk
, and the second follows by m = nα ≥ nkα. Besides,

∑K−1
k=1

τkM
2
k

(m+nk)
3
2
≤∑K−1

k=1
τkMkξ√

m+nk(mq0+nk)
≤
∑K−1
k=1

M̄ξ√
m+nk

≤ KM̄ξ√
nα

where the first inequality follows as Mk

m+nk
≤

ξ
mq0+nk

, and the second follows as Mk ≤ M̄ and τk ≤ mq0 + nk. Finally,
∑K
k=1 τk

√
Mk

m+nk
≤∑K

k=1

√
τkξ

αq0+1 ≤
√

nξ
αq0+1 where the first inequality follows as Mk

m+nk
≤ ξ

mq0+nk
and mq0 + nk ≥

τk(αq0 + 1).

Therefore,

K−1∑
k=0

Uk ≤1 + 2K log
4

δK
+ 2θ̃(2ν + εK−1,

2n

m
)

(
2nν

+γ2(
Kξ

αq0 + 1
log

K2|H|
δ

+
KM̄ξ√
nα

√
log

K2|H|
δ

+

√
nξν

αq0 + 1
log

K2|H|
δ

)

)
.

E Proofs and Examples for Sections 4 and 5

Generalization Error Bound

Theorem 1 and Corollary 3 are immediate from the following theorem.

Theorem 26. Let ĥM = arg minh∈H l(h;S,M) +
√

λ
m V̂(h;S,M). For any δ > 0, M ≥ 1,

λ ≥ 4 log |H|δ , with probability at least 1− δ over the choice of S,

l(ĥM )− l(h?) ≤2λM

m
+

16M

3m
log
|H|
δ

+
M2

m
3
2

√
4 log

|H|
δ

(10)

+

√
λ

m
E
1{h?(X) 6= Y }

Q0(X)
1[

1

Q0(X)
≤M ] + Pr

X
(

1

Q0(X)
> M).

Proof. The proof is similar to the proofs for Theorem 4 and 20, and is omitted.
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Second Moment Regularizer

Proof. (of Theorem 2) For any 0 < ν < 1
3 , m > 49

ν2 , set q0 = 1
40ν, c = 1

3 , ε =
c2+
√
c4+4c2q0νm

2q0m
. It

can be checked that ε < ν and m = c2 ν+ε
q0ε2

. Let X = {x1, x2, x3}, and define Pr(X = x1) = ν,
Pr(X = x2) = ν + ε, Pr(X = x3) = 1 − 2ν − ε, and Pr(Y = 1) = 1. Let H = {h1, h2} where
h1(x1) = −1, h1(x2) = h1(x3) = 1, and h2(x2) = −1, h2(x1) = h2(x3) = 1. Define the logging
policy Q0(x1) = Q0(x3) = 1, Q0(x2) = q0. Let S = {(Xt, Yt, Zt)}mt=1 be a dataset of size m
generated from the aforementioned distribution. Clearly, we have l(h1) = ν and l(h2) = ν + ε. We
next prove that Pr(l(h1, S) > l(h2, S)) ≥ 1

100 . This implies that with probability at least 1
100 ,h2 is

the minimizer of the importance weighted loss l(h, S), and its population error Pr(h2(X) 6= Y ) =

ν + ε = ν + 1
q0m

+
√

ν
q0m

.

We have

Pr(l(h1, S) > l(h2, S)) ≥ Pr(l(h1, S) > ν − ε

2
and l(h2, S) < ν − ε

2
)

= 1− Pr(l(h1, S) ≤ ν − ε

2
or l(h2, S) ≥ ν − ε

2
)

≥ 1− Pr(l(h1, S) ≤ ν − ε

2
)− Pr(l(h2, S) ≥ ν − ε

2
)

= Pr(l(h2, S) < ν − ε

2
)− Pr(l(h1, S) ≤ ν − ε

2
)

Observe that by our construction, ml(h1, S) =
∑m
i=1 1{Xi = x1} follows the binomial distribution

Bin(m, ν). By a Chernoff bound, Pr(l(h1, S) ≤ ν − ε
2 ) ≤ e−

1
2mε

2

. Since ε ≥
√

c2ν
q0m
≥
√

40c2

m ,

e−
1
2mε

2 ≤ e−20c2 = e−
20
9 .

By our construction, we also have that q0ml(h2, S) =
∑m
i=1 1{Xi = x2, Zi = 1} which follows

the binomial distribution Bin(m, q0(ν + ε)). Thus, Pr(l(h2, S) ≤ ν − ε
2 ) = Pr(q0ml(h2, S) ≤

q0m(ν + ε)− 3
2q0mε) ≥ 1√

2π
3c

9c2+1e
− 9

2 c
2

= 1
2
√

2π
e−

1
2 where the inequality follows by Lemma 15.

Therefore, Pr(l(h1, S) > l(h2, S)) ≥ Pr(l(h2, S) < ν− ε
2 )−Pr(l(h1, S) ≤ ν− ε

2 ) ≥ 1
2
√

2π
e−

1
2 −

e−
20
9 ≥ 1

100 .

Remark 27. A similar result for general cost-sensitive empirical risk minimization is proved in
[17, 18]. In [17, 18], they construct examples where Var(h?) = 0 and learning h? with unregularized

ERM gives Ω̃(
√

1
m ) error, while regularized ERM gives Õ( 1

m ) error. However, their construction

does not work in our setting because the bound for unregularized ERM [25] also gives Õ( 1
m ) error

when Var(h?) = 0 (since Var(h?) = 0 implies l(h?) = 0), so more careful construction and analysis
are needed.

Clipping

The clipping threshold M0 is chosen to minimize an error bound for the clipped second-moment regu-
larized ERM. According to Theorem 26, we would like to choose M that minimizes the RHS of (10).
We set λ = 4 log |H|δ in Theorem 26, focus on the low order terms with respect to m, and minimize

e(M) :=

√
4 log

|H|
δ

m E 1
Q0(X)1[ 1

Q0(X) ≤M ] + PrX( 1
Q0(X) > M) instead since 1{h?(X) 6= Y }

could not be determined with unlabeled samples. In this sense, the following proposition shows that
our choice of M is nearly optimal.
Proposition 28. Suppose random variable 1

Q0(X) has a probability density function, and there exists

M0 ≥ 1 such that 2 log
|H|
δ

m M0 = PrX( 1
Q0(X) > M0). Then e(M0) ≤

√
2 infM≥1 e(M).

Proof. Define f1(M) =
4 log

|H|
δ

m E 1
Q0(X)1[ 1

Q0(X) ≤M ], and f2(M) = PrX( 1
Q0(X) > c). We first

show that f1(M0) + f2(M0)2 ≤ infM>1 f1(M) + f2(M)2.
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Let g(x) be the probability density function of random variable 1/Q0(X). We have f1(M) =
4 log

|H|
δ

m

∫M
0
xg(x) dx and f2(M) =

∫∞
M
g(x) dx, so f ′1(M) =

4 log
|H|
δ

m Mg(M), and f ′2(M) =

−g(M). Define f(M) = f1(M) + f2(M)2. We have

f ′(M) = f ′1(M) + 2f ′2(M)f2(M)

= 2g(M)(
2 log |H|δ

m
M − f2(M)).

Recall we assume there exists M0 ≥ 1 such that 2 log
|H|
δ

m M0 = f2(M0). Since 2 log
|H|
δ

m M is strictly
increasing w.r.t.M and f2(M) is non-increasing w.r.t. M , it follows that f(M) achieves its minimum
at M0, that is, for any c ≥ 1, f1(M0) + f2

2 (M0) ≤ f1(M) + f2
2 (M).

Now,
√
f1(M0) + f2

2 (M0) ≥ 1√
2
(
√
f1(M0) + f2(M0)) since

√
a+ b ≥ 1√

2
(
√
a +
√
b) for any

a, b ≥ 0, and
√
f1(M) + f2

2 (M) ≤
√
f1(M) + f2(M) since

√
a+ b ≤

√
a+
√
b for any a, b ≥ 0.

Thus 1√
2
(
√
f1(M0)+f2(M0)) ≤

√
f1(M)+f2(M) for allM > 0, which concludes the proof.

Remark 29. Since 1
M PrX( 1

Q0(X) > M) is monotonically decreasing with respect to M and its

range is (0, 1), the existence and uniqueness of M0 are guaranteed if 2
m log |H|δ < 1.

The following example shows that our choice of M indeed avoids outputting suboptimal classifiers.

Example 30. Let X = {x0, x1, x2, x3, x4}, H = {h1, h2, h3, h4}. Suppose Pr(Y = 1) = −1,
ν < 1

10 , α < 0.01, and ε = ν
1+1/100α . The marginal distribution on X , the prediction of each

classifier, and the logging policy Q0 is defined in Table 1.

Table 1: An example for clipping
x0 x1 x2 x3 x4

h1(·) 1 1 -1 -1 -1

h2(·) 1 -1 1 -1 -1

h3(·) 1 -1 -1 1 -1

h4(·) -1 -1 -1 -1 1

PrX(·) ν − ε ε 4ε 16ε 1− ν − 20ε

Q0(·) 1 α α 4α 4α

We have l(h1) = ν, l(h2) = ν + 3ε, l(h3) = ν + 15ε, l(h4) = 1 − ν − 20ε. Next, we consider
when examples with Q0 equals α, i.e. examples on x1 and x2, should be clipped. We set the failure
probability δ = 0.01.

If m ≥ 28
αε , without clipping our error bound guarantees that (by minimizing a regularized training

error) learner can achieve an error of less than ν + 3ε, so it would output the optimal classifier h1

with high probability. On the other hand, if M < 1
α , then all examples on x1 and x2 are ignored

due to clipping, so the learner would not be able to distinguish between h1and h2, and thus with
constant probability the error of the output classifier is at least l(h2) = ν+3ε. This means if m ≥ 28

αε ,
examples on x1 and x2 should not be clipped.

If m ≥ 2
αε and examples on x1 and x2 are clipped, our error bound guarantees learner can achieve

an error of less than ν + 16ε, which means the learner would output either h1 or h2 and achieve an
actual error of at most ν + 3ε. However, without clipping, the learner would require m ≥ 4

αε to
achieve an error of less than ν + 16ε. Thus, if m ≤ 4

αε , examples on x1 and x2 should be clipped.

To sum up, examples with Q0 equals α (i.e. x1 and x2) should be clipped if m ≤ 4
αε and not be

clipped if m ≥ 28
αε . Our choice of the clipping threshold clips x1 and x2 whenever m ≤ 24

5αε , which
falls inside the desired interval.
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Sample Selection Bias Correction Strategy

The following example shows the sample selection bias correction strategy indeed improves label
complexity.
Example 31. Let λ > 1 be any constant. Suppose X = {x1, x2}, Q0(x1) = 1, Q0(x2) = α,
Pr(x1) = 1− µ, Pr(x2) = µ and assume µ ≤ 1

4λ and α ≤ µ2

2λ . Assume the logged data size m is
greater than twice as the online stream size n. Without the sample selection bias correction strategy,

after seeing n examples, the learner queries all n examples and achieves an error bound of 4 log
2|H|
δ

3(mα+n) +√
4( cµ
m+n + µ

mα+n ) log 2|H|
δ by minimizing the regularized MIS loss. With the sample selection

bias correction strategy, the learner only queries x2, so after seeing n examples, it queries only µn

examples in expectation and achieves an error bound of 4 log
2|H|
δ

3(mα+n) +
√

4( cµm + µ
mα+n ) log 2|H|

δ . With

some algebra, it can be shown that to achieve the same error bound, if λαµ m ≤ n ≤ µ
2m, then the

number of queries requested by the learner without the sample selection bias correction correction
strategy is at least λ times more than the number of queries for the learner with the bias correction
strategy. Since this holds for any λ ≥ 1, the decrease of the number of label queries due to our sample
selection bias correction strategy can be significant.

F Experiments

We conduct experiments to compare the performance of the proposed active learning algorithm
against some baseline methods. Our experiment results confirm our theoretical analysis that the test
error of the proposed algorithm drops faster than alternative methods as the number of label queries
increases.

F.1 Methodology

Algorithms and Implementations

We consider the following algorithms:

• PASSIVE: A passive learning algorithm that queries labels for all examples. It directly optimizes
an importance weighted estimator;

• ACTIVE18: The active learning algorithm proposed in [25]. It applies the disagreement-based
active learning framework, multiple importance sampling, and a sample selection bias correction
strategy.

• ACTIVEVC: Algorithm 1 proposed in this paper. It applies the variance controlled disagreement-
based active learning framework, multiple importance sampling, and an improved sample selection
bias correction strategy.

Similar to [25], our implementation of disagreement-based active learning framework follows the
Vowpal Wabbit ([1]) package. In particular,

• We set the hypothesis space to be the set of linear classifiers, and replace the 0-1 loss with a squared
loss.

• We do not explicitly maintain the candidate set Ck or the disagreement region Dk. To compute ĥk
in line 6 of Algorithm 1, we ignore the constraint h ∈ Ck and conduct online gradient descent with
step size

√
η
η+t . To approximately check whether x ∈ Dk+1 in line 15, let wk be the normal vector

for ĥk, and a be current step size. We claim x ∈ Dk+1 if |2w
>
k x|

ax>x
≤
√

C·V̂ (ĥk;S̃k,Mk)
m+nk

+ C·Mk

m+nk
.

Here C is a parameter that captures the model capacity (this corresponds to the log |H|δ term in the
error bound; as noted in [12], this is often loose and needs to be tuned as a parameter in practice)
and we tune this parameter in experiments.

Besides, we incorporate variance-controlled importance sampling into active learning through the
following way:
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(a) Certainty (b) Uncertainty

Figure 1: Test error vs the number of labels under different logging policies with the best parameters.

• In order to find the clipping threshold Mk (line 5 of Algorithm 1), we empirically estimate
Pr( m+nk

mQ0(X)+nk
> M/2) on the logged observational data (note that this estimation does not

involve labels).
• We follow [22] to approximately calculate the online gradient for optimization with a variance

regularizer.

Data

We generate a synthetic dataset where 6000 examples are drawn uniformly at random from [0, 1]30,
and labels are assigned by a linear separator and get flipped with probability 0.05. We randomly
split the dataset into 80% training data and 20% test data. Among the training dataset, we randomly
choose around 50% as logged observational data, and apply a synthetic logging policy to choose
which labels in the observational data set are revealed to the algorithm. Our experiments use the
following two policies:

• Certainty: We first find a linear hyperplane that approximately separates the data. Then, we reveal
the label with a higher probability (i.e., larger Q0 value) if the example is further away from this
hyperplane.

• Uncertainty: We first find a linear hyperplane that approximately separates the data. Then, we
reveal the label with a higher probability (i.e., larger Q0 value) if the example is closer to this
hyperplane.

Parameter Tuning

We follow [13] and [25] to tune the model capacity C and learning rate η, and report the best result
for each algorithm under each logging policy.

In particular, let e(i, A, p, l) be the test error of algorithm A with parameter set p = (C, η) after
making l label queries during the i-th trial (i = 1, 2, . . . , N ). We evaluate the performance of the
algorithmAwith parameter set p by following Area Under the error-label Curve metric: AUC(A, p) =

1
2N

∑N
i=1

∑
l(e(i, A, p, l+1)+e(i, A, p, l)). At the end, for each algorithm, we report the error-label

curve achieved with the parameter set p that minimizes AUC(A, p).

In our experiments, we try C in {0.01 × 2i | i = 0, 2, 4, · · · , 10}, and η in {0.0001 × 2i | i =
0, 2, 4, · · · , 12}. For each algorithm, policy, and parameter set, the experiments are repeated for
N = 16 times.

F.2 Results

We plot test error as a function of the number of labels in Figure 1. It shows that test errors achieved
by the proposed method drop faster than both the passive learning baseline, and the prior work [25]
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which does not apply variance control techniques. Additionally, as the number of labels grows, the
gap widens.
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