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A Proofs and Auxiliary Theoretical Results

Lemma A.1. For p P RN with U
T
p “ x ` �⇠ P Rd, ⇠ „ Unifptx P Rd : ||x||2 “ 1uq :

B pft
Bx “ d

�
¨ E✏,⇠

“
Rtppq⇠

‰

Proof. Since we have: E✏rRtppqs “ ftpx ` �⇠q, this result follows directly from Lemma 2.1 in
Flaxman et al. [2005].

Theorem A.1 (Flaxman et al., 2005). Suppose for t “ 1, . . . , T , each ft P r´B,Bs is a convex,
L-Lipschitz function of x P Rd, and the set of feasible actions U Ä Rd is convex, with Euclidean balls
of radius rÒ and rÓ containing and contained-within U , respectively. Let x1, . . . ,xT P Rd denote the
iterates of the GDG algorithm applied to f1, . . . , fT (i.e. online projected stochastic gradient descent
applied to the pft as defined in (5)). If we choose ⌘, �,↵ as in Theorem A.2, then:

E
«

Tÿ

t“1

ftpxtq ´ min
xPU

Tÿ

t“1

ftpxq
�

§ 2T 3{4
d

3BrÒ

ˆ
L ` B

rÓ

˙
d

A.1 Alternative OPOK Regret Bound

We provide another bound on the regret of our pricing algorithm that is similar to Theorem 1, but only
relies on direct properties of the prices and revenue functions rather than properties of our assumed
low-rank structure.

The following assumptions are adopted (revenue functions are bounded/smooth, and the set of feasible
prices is bounded/well-scaled):

(A6) U
T pSq contains a Euclidean ball of radius rÓ and is contained within a ball of radius rÒ • rÓ

(A7) T °
` 3drÒ

2rÓ

˘2 (the number of pricing rounds is large)

(A8)
ˇ̌
ErRtppqs

ˇ̌
§ B for all p P S , t “ 1, . . . , T

(A9) ftpxq is L-Lipschitz over x P U
T pSq for t “ 1, . . . , T

Theorem A.2. If conditions (A6)-(A9) are met and we choose ⌘ “ rÒ
B

?
T

, � “ T
´1{4

b
BdrÒrÓ

3pLrÓ`Bq ,

↵ “ �
rÓ

, then there exists C ° 0 such that for any p P S:

E✏,⇠

«
Tÿ

t“1

Rtpptq ´
Tÿ

t“1

Rtppq
�

§ CT
3{4

d

BdrÒ

ˆ
L ` B

rÓ

˙

for the prices p1, . . . ,pT selected by the OPOK algorithm.

Proof. Condition (A8) implies the range of ft bounded by B over x P U
T pSq. Recall that each

ft is a convex function of x (as we required each Vt © 0) and for any p P S, we can define
x “ U

T
p P U

T pSq such that: E✏rRtppqs “ ftpxq. Since convexity of S implies UT pSq is also
convex, the proof of our result immediately follows from Theorem 3.3 in Flaxman et al. [2005],
which is also restated here as Theorem A.1. Finally, we note that since both S and U

T pSq are convex,
our choice of ⌘, �,↵ ensures rxt P U

T pSq and hence pt P S for all t.
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A.2 Proof of Theorem 1

Theorem 1. Under assumptions (A1)-(A5), if we choose ⌘ “ 1
bp1`dq

?
T

, � “ T
´1{4

b
dr2p1`rq

9r`6 ,

↵ “ �
r , then there exists C ° 0 such that for any p P S:

E✏,⇠

«
Tÿ

t“1

Rtpptq ´
Tÿ

t“1

Rtppq
�

§ Cbrpr ` 1qT 3{4
d
1{2

for the prices p1, . . . ,pT selected by the OPOK algorithm.

Proof. We show that (A1)-(A5) imply Theorem A.2 holds with rÒ “ rÓ “ r, B “ rbp1 ` rq, and
L “ p2r ` 1qb. Bounding and simplifying the inequality then produces the desired result. Note that
(A8) holds since:

ftpxq § ||x||22||Vt||op ` ||zt||2||x||2 § r
2
b ` rb

We also have Lipschitz continuity as required in (A9), since for all x P U
T pSq:

||rxftpxq||2 “ ||pVT
t ` Vtqx ´ zt||2 § 2||Vt||op||x||2 ` ||zt||2 § 2br ` b

Finally, Lemma A.2 below implies (A6) holds with rÒ “ rÓ “ r.

Lemma A.2. For any orthogonal N ˆ d matrix U and p P S , condition (A5) implies:

U
T pSq “ tx P Rd : ||x||2 § ru and UU

T ppq P S

Proof. Consider the orthogonal extension of U, a matrix W “ rU, rUs P RNˆN formed by append-
ing N ´ d additional orthonormal columns to U that are also orthogonal to the columns of U. For
any p P RN , we have:

||UU
T
p||2 “ ||UT

p||2 since orthogonality implies U is an isometry

§ ||WT
p||2 because ||WT

p||22 “ ||UT
p||22 ` || rUT

p||22
“ ||WW

T
p||2 since W is also an isometry

“ ||p||2 due to the fact that WT “ W
´1 as W is square and orthogonal

Combined with (A5), this implies UU
T ppq P S and ||x||2 § r for any x P U

T pSq. Now fix
arbitrary x P Rd which satisfies ||x||2 § r. By orthogonality of U:

||Ux||2 “ ||x||2 § r ùñ Ux P S, and U
T
Ux “ x ùñ x P U

T pSq

A.3 Proof of Lemma 1

Lemma 1. For any orthogonal matrix pU and any x P pUT pSq, define pp “ pUx P RN .
Under condition (A5): pp P S and pp “ FINDPRICE(x, pU,S,0).

Proof. Given x P pUT pSq, there exists p P S with pUT
p “ x. The proof of Lemma A.2 implies

||pp||2 § ||p||2 and pp “ pUx “ pUpUT
p P S when this set is a centered Euclidean ball. Finally, we

note that pUT pp “ x since pUT pU “ Idˆd, so pp is the minimum-norm vector in S which is mapped to
x by pUT .
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A.4 Proof of Theorem 2

Theorem 2. Suppose spanp pUq “ spanpUq, i.e. our orthogonal estimate has the same column-span
as the underlying (rank d) latent product-feature matrix. Let p1, . . . ,pT P S denote the prices
selected by our modified OPOK algorithm with pU used in place of the underlying U and ⌘, �,↵

chosen as in Theorem 1. Under conditions (A1)-(A5), there exists C ° 0 such that for any p P S:

E✏,⇠

«
Tÿ

t“1

Rtpptq ´
Tÿ

t“1

Rtppq
�

§ Cbrpr ` 1qT 3{4
d
1{2

Proof. Define sp “ argmin
pPS

E✏

Tÿ

t“1

Rtppq, p
˚ “ UU

T sp. Note that E✏

”∞T
t“1 Rtpp˚q

ı
“

E✏

”∞T
t“1 Rtpspq

ı
and p

˚ P S by Lemma A.2, so p
˚ is an equivalently optimal setting of the product

prices. Since U and pU share the same column-span, there exists low-dimensional action x
˚ P Rk

such that p˚ “ pUx
˚. By orthogonality of pU: pUT rp “ pUT pUx

˚ “ x
˚, so x

˚ P pUT pSq is a feasible
solution to our modified OPOK algorithm. For x P Rd and p “ pUx P RN , we re-express the
expected revenue at this price vector by introducing ft, pU as a function of x parameterized by pU, as
similarly done in (3):

ft, pUpxq “ E✏rRtppqs “ x
T pUT

UVtU
T pUx ´ x

T pUT
Uzt (7)

Convexity of Rt in p implies ft, pU is convex in x for any pU. Note that our modified OPOK algorithm
is (in expectation) running online projected gradient descent on a smoothed version of each ft, pU,
defined similarly as in (5). Via the same argument employed in the previous section (based on
Theorem A.1 and the proof of Theorem 1), we can show that for x˚ P pUT pSq:

E⇠

«
Tÿ

t“1

ft, pUprxtq ´
Tÿ

t“1

ft, pUpx˚q
�

§ Cbrpr ` 1qT 3{4
d
1{2

where rxt are the low-dimensional actions chosen in Step 5 of our modified OPOK algorithm, such
that pt “ pUrxt for the prices output by this method. To conclude the proof, we recall that for the
OPOK-selected pt:

E
Tÿ

t“1

Rtpptq “E
Tÿ

t“1

ft, pUprxtq, E
Tÿ

t“1

Rtpp˚q “
Tÿ

t“1

ft, pUpx˚q

A.5 Proof of Lemma 2

Lemma 2. Suppose that for t “ 1, . . . , T : ✏t “ 0 and Vt ° 0. If each pt is independently
uniformly distributed within some (uncentered) Euclidean ball of strictly positive radius, then
spanpq1, . . . ,qdq “ spanpUq almost surely.

Proof. In Lemma 2, we suppose that each pt “ rpt ` ⇣t, where each ⇣t is uniformly drawn
from a centered Euclidean ball of nonzero radius in RN and zt,Vt, rpt are fixed independently
of the randomness in ⇣t. Note that each qt “ Ust where st “ zt ´ VtU

T
pt P Rd. Thus,

spanpq1, . . . ,qdq Ñ spanpUq and the two spans must be equal if s1, . . . , sd are linearly independent.

To show linear independence holds almost surely, we proceed inductively by proving
Prpst P spanps1, . . . , st´1qq “ 0 for any 1 † t § d. We first note that st “ zt´VtU

T rpt´VtU
T ⇣t.

Since Vt ° 0 is invertible and U is orthogonal, VtU
T ⇣t is uniformly distributed over a nonde-

generate ellipsoid E Ä Rd with nonzero variance under any projection in Rd. Since this includes
directions orthogonal to the pt´1q-dimensional subspace spanned by s1`V1U

T rp1´z1, . . . , st´1`
Vt´1U

T rpt´1 ´ zt´1, this subspace has measure zero under the uniform distribution over E (for
t § d).
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Theorem A.3 (Yu et al., 2015). Let �1 ° ¨ ¨ ¨ ° �d ° 0 denote the nonzero singular values of rank
d matrix Q P RNˆd, whose left singular vectors are represented as columns in matrix U P RNˆd

(such that Q has SVD: U⌃V
T ). If pU P RNˆd similarly contains the left singular vectors of some

other N ˆ d matrix pQ, then there exists orthogonal matrix pO P Rdˆd such that

|| pUpO ´ U||F § 2
?
2d

�2
d

`
2�1 ` || pQ ´ Q||op

˘
|| pQ ´ Q||op

A.6 Proof of Theorem 3

Theorem 3. For unknown U, let p1, . . . ,pT be the prices selected by the OPOL algorithm with
⌘, �,↵ set as in Theorem 1. Suppose ✏t follows a sub-Gaussianp�2q distribution and has statistically
independent dimensions for each t. If (A1)-(A5) hold, then there exists C ° 0 such that for any
p P S:

E✏,⇠

«
Tÿ

t“1

Rtpptq ´
Tÿ

t“1

Rtppq
�

§ CQrbp4r ` 1qdT 3{4

Here, Q “ max
!
1,�2

´
2�1`1
�2
d

¯)
with �1 (and �d) defined as the largest (and smallest) nonzero

singular values of the underlying rank d matrix sQ˚ defined in (6).

Proof. For notational convenience, suppose that T is divisible by d, T 3{4 • d • 3, and the noise-
variation parameter � • 1 throughout our proof. Throughout, the unknown U is orthogonal and rank
d, and we let p˚ “ argmin

pPS E
”∞T

t“1 Rtppq
ı

denote the optimal product pricing.

Recall from the proof of Theorem 2 that under our low-rank demand model, we can redefine
p

˚ – UU
T
p

˚ P S and still ensure p
˚ “ argmin

pPS E
”∞T

t“1 Rtppq
ı
. Thus, we suppose without

loss of generality that the optimal prices can be expressed as p˚ “ Ux
˚ for some corresponding

low-dimensional action x
˚ P U

T pSq.

For additional clarity, we use pUt to denote the current N ˆ d estimate of the underlying product
features obtained in Step 10 of our OPOL algorithm at round t. Note that the pUt are random variables
which are determined by both the noise in the observed demands and the randomness employed
within our pricing algorithm. Letting pt “ pUtxt denote the prices chosen by the OPOL algorithm in
each round (and xt P pUT

t pSq the corresponding low-dimensional actions), we have:

E
Tÿ

t“1

rRtpptq ´ Rtpp˚qs “ (8)

E
T 3{4ÿ

t“1

”
ft, pUt

pxtq ´ ft,Upx˚q
ı

` E
Tÿ

t“T 3{4

”
ft, pUt

pxtq ´ ft, pUt
prxq

ı
` E

Tÿ

t“T 3{4

”
ft, pUt

prxq ´ ft,Upx˚q
ı

where ft,U is defined as in (7) and we define rx “ argmin
xPUT pSq

E
«

Tÿ

t“T 3{4
ft, pUt

pxq
�
.

The proof of Theorem 1 ensures both |ft,U| and |ft, pUt
| (for any orthogonal pUt) are bounded by

rbp1 ` rq over all x P U
T pSq, so we can trivially bound the first summand in (8):

T 3{4ÿ

t“1

”
ft, pUt

pxtq ´ ft,Upx˚q
ı

§ rbp1 ` rq ¨ T 3{4

To bound the second summand in (8), we first point out that UT pSq “ pUT
t pSq by Lemma A.2 (since

all pUt are restricted to be orthogonal). Thus, Algorithm 4 is essentially running the classic gradient-
free bandit method of [Flaxman et al., 2005] to optimize the functions ft, pUt

over the low-dimensional
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action-space U
T pSq, and the second term is exactly the regret of this method stated in Theorem 1:

E
Tÿ

t“T 3{4

”
ft, pUt

pxtq ´ ft, pUt
prxq

ı
§ Cbrpr ` 1q

”
T ´ T

3{4
ı3{4

d
1{2

Finally, we complete the proof by bounding the third summand in (8). Defining O Ä Rdˆd as the set
of orthogonal d ˆ d matrices, we have:

E
Tÿ

t“T 3{4

”
ft, pUt

prxq ´ ft,Upx˚q
ı

§ inf
OPO

E
Tÿ

t“T 3{4

”
ft, pUt

pOx
˚q ´ ft,Upx˚q

ı

since x
˚ P U

T pSq ùñ Ox
˚ P U

T pSq by Lemma A.2, and rx is an argmin over UT pSq
§ inf

OPO
pT ´ T

3{4q ¨ E
”
ft, pUt

pOx
˚q ´ ft,Upx˚q

ı

where we’ve fixed t “ argmax
t1PrT 3{4,T s

inf
OPO

E
”
ft1, pUt1 pOx

˚q ´ ft1,Upx˚q
ı

§pT ´ T
3{4q ¨ E

”
ft, pUt

p pOx
˚q ´ ft,Upx˚q

ı

where now choose pO P O as the orthogonal matrix such that E|| pUt
pO ´ U||F satisfies the bound

of Lemma A.3 for the t • T
3{4 fixed above. Defining � “ Ux

˚ ´ pUt
pOx

˚ P Rd, we plug in the
definition of ft, pU from (7) and simplify to obtain the following bound:

E
”
ft, pUt

p pOx
˚q ´ ft,Upx˚q

ı

§E
“
||�||22||U||op||Vt||op||UT ||op ` 2||�||2||x˚||2||Vt||op||UT ||op ` ||�||2||zt||2||U||op

‰

§E
“
||�||22||Vt||op ` 2||�||2||x˚||2||Vt||op ` ||�||2||zt||2

‰

§ p4||x˚||2Vt||op ` ||zt||2q ¨ E r||�||2s
since ||�||2 § p||U||op ` || pUt

pO||opq||x˚||2 § 2||x˚||2 by orthogonality of pO, pUt,U

§Crb p4r ` 1q
”
T

3{4
ı´1{2

d�
2

ˆ
2�1 ` 1

�2
d

˙
under (A1)-(A2)

since E r||�||2s § ||x˚||2 ¨ E
”
|| pUt

pO ´ U||F
ı

§ C

”
T

3{4
ı´1{2

d�
2

ˆ
2�1 ` 1

�2
d

˙
||x˚||2

by Lemma A.3 (recalling that we fixed t • T
3{4).

Combining our bounds for each of the three summands in (8) yields the following upper bound for
the left-hand side, from which the inequality presented in Theorem 3 can be derived:

Crb

„
p1 ` rqT 3{4 ` p1 ` rqd1{2

´
T ´ T

3{4
¯3{4

` p4r ` 1qd�2

ˆ
2�1 ` 1

�2
d

˙ ´
T

5{8 ´ T
3{8

¯⇢

Lemma A.3. For the pU produced in Step 10 of the OPOL algorithm after T rounds and any feasible
low-dimensional action x P pUT pSq, there exists orthogonal d ˆ d matrix pO and universal constant
C such that:

E
”
|| pUpO ´ U||F

ı
§ CT

´1{2
d�

2

ˆ
2�1 ` 1

�2
d

˙

where �1 and �d denote the largest and smallest singular values of the underlying matrix sQ˚ defined
in (6).

Proof. Our proof relies on standard random matrix concentration results presented in Lemma A.4
and the variant of the Davis-Kahan theory proposed by Yu et al. [2015], which is restated here as
Theorem A.3.
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Lemma A.4 (variant of Lemma 4.2 in Rigollet [2015]). Let E be a N ˆ d matrix (with N • d) of
i.i.d. entries drawn from a sub-Gaussianp�2q distribution. Then, with probability 1 ´ �:

||E||op § 2�
”
2
a
N logp12q `

a
2 logp1{�q

ı

Recall that random variable X follows sub-Gaussian(�2) distribution if ErXs “ 0 and
Prp|X| ° xq § 2 expp´ x2

2�2 q for all x ° 0, and random vector w „ sub-Gaussian(�2) if Erws “ 0
and u

T
w is a sub-Gaussian(�2) random variable for any unit vector u. Since the components

of ✏t are presumed statistically i.i.d., each value in sE “ pQ ´ sQ˚ must be the mean of T {d sub-
Gaussianp�2{Nq samples as a result of the averaging performed in Step 9 of our OPOL algorithm.
Thus, the entries of sE are distributed as sub-Gaussian

´
�2d
NT

¯
. Lemma A.4 implies:

E||sE||op “
ª 8

x“0
Prp||sE||op ° xq dx

§
ª 8

x“0
exp

¨

˝´1

2

˜c
T

d

x

2�
´ 2

a
log 12

¸2
˛

‚ dx

“ 2�

c
⇡d

2T

”
1 ` erf

´a
2 log 12

¯ı
§ 4�

c
⇡d

2T

E||sE||2op “ 2

ª 8

x“0
x ¨ Prp||sE||op ° xq dx

§ 2

ª 8

x“0
x ¨ exp

¨

˝´1

2

˜c
T

d

x

2�
´ 2

a
log 12

¸2
˛

‚ dx

“ 8�2
d

T

„a
2⇡ log 12 `

a
2⇡ log 12 ¨ erfp

a
2 log 12q ` 1

144

⇢

§ 24�2
d

T

a
2⇡ log 12

When T • d,� • 1, both E||sE||op and E||sE||2op are upper-bounded by 24�2
a
6⇡d{T . Combining

Theorem A.3 with these concentration bounds implies that there exists d ˆ d orthogonal matrix pO
such that:

E
”
|| pUpO ´ U||F

ı
§ 2

?
2d

�2
d

´
2�1E

”
|| pQ ´ sQ˚||op

ı
` E

”
|| pQ ´ sQ˚||2op

ı¯

§ 96

c
3⇡

T
d�

2

ˆ
2�1 ` 1

�2
d

˙
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B Pricing against an Imprecise Adversary

Theorem B.4 below illustrates a basic scenario under which an explicit high-probability bound for
the constant Q from Theorem 3 can be obtained. Throughout our subsequent discussion, the largest
and smallest nonzero singular values of a rank-d matrix A will be denoted as �1pAq and �dpAq,
respectively. We now assume that the adversary can only coarsely control the underlying baseline
demand parameters zt in (2). More specifically, we suppose that in each round: zt “ z

1
t ` �t, where

only z
1
t (and Vt) may be adversarially selected and the �t are purely stochastic terms outside of the

adversary’s control. In this scenario, we presume a random d ˆ d noise matrix � is drawn before the
initial round such that:

(A10) Each entry �i,j is independently sampled with mean zero and magnitude bounded almost
surely by b{2 (i.e. Er�i,js “ 0, |�i,j | § b{2 for all i, j).

Recall that the constant b ° 0 upper bounds the magnitude of each zt as specified in (A1). Once the
values of � have been sampled, we suppose that in round t: �t “ �˚,j is simply taken to be the jth
column of this matrix with j “ 1 ` pt ´ 1q mod d (traversing the columns of � in order). Since
boundedness of the values in � implies these entries follow a sub-Gaussianpb2{4q distribution, the
following result applies:
Lemma B.5 (variant of Theorem 1.2 in Rudelson and Vershynin [2008]). With probability at least
1 ´ Cb✏ ´ cb

d:
�dp�q • ✏{

?
d

where Cb ° 0 and cb P p0, 1q are constants that depend (polynomially) only on b.

In selecting z
1
t,Vt, we assume the imprecise adversary is additionally restricted to ensure:

(A11) There exists s † 1 ´ cb
d

Cbdb
† 1 such that for all t: ||z1

t||2 ` r ¨ ||Vt||op § s ¨ min
1§j§d

||�˚,j ||2.

where constants cb, Cb are given by Lemma B.5 (see Rudelson and Vershynin [2008] for details),
and r • 1 is still used to denote the radius of the set of feasible prices S . Note that these additional
assumptions do not conflict with condition (A1) required in Theorem 4, since (A10), (A11) together
ensure that ||zt||2 § b for zt “ z

1
t ` �t. With these assumptions in place, we now provide an explicit

bound for the constant Q defined in Theorem 3.
Theorem B.4. Under this setting of an imprecise adversary where conditions (A10) and (A11) are
met, for any ⌧ P p 1

2Cbsbd ` cb
d
, 1q, Theorem 4 holds with:

Q § 2�dCbp2b ` 1q
2p⌧ ´ cb

dq ´ Cbsbd

with probability • 1 ´ ⌧ (over the initial random sampling of �).

Proof. Recall that �1 (and �d) denote the largest (and smallest) nonzero singular values of the
underlying rank d matrix sQ˚ defined in (6). For suitable constants c1, c2: we show that �1 § c1 and
�d • c2 with high probability, which then implies the upper bound: Q § maxt1, �

c22
p2c1 ` 1qu. We

first note that the orthogonality of U implies sQ˚ “ UsS has the same nonzero singular values as the
square matrix sS, whose jth column is given by:

sS˚,j “ d

T

T {dÿ

i“1

”
z

1
j`dpi´1q ` �j`pi´1qd ´ Vj`pi´1qdU

T
pj`pi´1qd

ı
(9)

As sS has d columns, we have:

�1p sQ˚q “ �1psSq §
?
d ¨ max

j
|| sQ˚,j ||2 § bp1 ` sq

?
d

2

where the latter inequality derives from the fact that (A5) and orthogonality of U imply:

||sS˚,j ||2 § d

T

T {dÿ

i“1

”
||�j`pi´1qd||2 ` ||z1

j`pi´1qd||2 ` r||Vj`pi´1qd||op

ı
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§ p1 ` sq ¨ ||�˚,j ||2 § b

2
p1 ` sq by conditions (A10), (A11)

Via similar reasoning, we also obtain the bound:

�1psS ´ �q § sb
?
d

2
(10)

Subsequently, we invoke Lemma B.5, which implies that with probability 1 ´ ⌧ :

�dp�q • ⌧ ´ cb
d

Cb

?
d

(11)

Combining (10) and (11), we obtain a high probability lower bound for �d via the additive Weyl
inequality (cf. Theorem 3.3.16 in Horn and Johnson [1991]):

�dp sQ˚q “ �dpsSq • �dp�q ´ �1psS ´ �q • ⌧ ´ cb
d

Cb

?
d

´ sb
?
d

2
with probability • 1 ´ ⌧

The proof is completed by defining c1 “ bp1 ` sq
?
d

2
, c2 “ ⌧ ´ cb

d

Cb

?
d

´ sb
?
d

2
, and subsequent

simplification of the resulting bound using the fact that d • 1 and s † 1.
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C Additional Experimental Results

C.1 Misspecified Demand Models

Beyond evaluating our pricing strategies in settings where underlying demand curves adhere to
our low-rank model in (2), we now consider different environments where our assumptions are
purposefully violated, in order to investigate robustness and how well each approach generalizes
to other types of demand behavior. As our interest lies in high-dimensional pricing applications,
the number of products is fixed to N “ 100 throughout this section. Once again, pt and qt are
presumed to represent suitably rescaled prices/aggregate-demands, such that the set of feasible prices
S can always be fixed as a centered sphere of radius r “ 20. Although none of the demand models
considered here possesses explicit low-rank structure, we nevertheless apply our OPOL pricing
algorithm with various choices of the rank parameter 1 § d § N “ 100.

Linear full-rank model. We first study a scenario where underlying demands follow the basic
linear relationship described in (1): qt “ ct ´ Btpt ` ✏t. Under this setting, the entries of ct, Bt,
and ✏t are independently drawn from Np100, 20q, Np0, 2q, and Np0, 10q distributions, respectively.
Before demands are generated, Bt is first projected onto the set of strongly positive-definite matrices
tB : BT ` B © �Iu with � “ 10 as done in §5. We consider both the stationary case where ct,Bt

are fixed over time as well as the case of demand shocks, in which these underlying parameters are
re-sampled from their generating distributions at times T {3 and 2T {3. Note that the demands in this
setting do not possess any explicit low-rank structure, nor are they governed by low-dimensional
featurizations of the products.

Figure 2 depicts the performance of our pricing algorithms in this linear full-rank setting, showing
the average cumulative regret (over 10 repetitions with standard-deviations shaded). Once again, the
performance of the GDG approach and our OPOL algorithm with d “ N are essentially identical. In
this setting, the standard bandit methods slightly outperform the Exploreit baseline, but they do not
exhibit strong performance when optimizing over a 100-dimensional action space. Despite the lack
of explicit low-rank structure in the underlying demand model, the OPOL algorithm produces greater
revenues than the GDG and Exploreit baselines for all settings of d P r10, 90s (but does fare worse
than GDG if d ! 10 is chosen too small). In particular, when operating with relatively low values of
d, the OPOL method very significantly outperforms the other pricing strategies. Similar phenomena
in bandit algorithms over projected low-dimensional action subspaces have been documented by
Wang et al. [2013], Li et al. [2016], Yu et al. [2017].

Log-linear model. While the linear demand model studied in this paper is one of the most popular
methods for pricing products with varying elasticities, demands for products with constant elasticity
are often better fit via a log-linear function of the prices [Maurice, 2010]. We also evaluate the
performance of our bandit methods in such a setting, where demands are determined according to the
following log-linear model:

logpqtq “ rct ` rBt logppt ` 100q ` r✏t (12)

In our experiment under this setting, the entries of rct, rBt, r✏t are independently drawn from Np5, 1q,
Np0, 0.1q, and Np0, 1q distributions, respectively. Before demands are generated, rBt is first projected
onto the set of strongly positive-definite matrices tB : BT ` B © �Iu with � “ 0.1. Again, two
scenarios are considered: the stationary case where rct, rBt are fixed over time, and the case of demand
shocks, in which these underlying parameters are re-sampled from their generating distributions at
times T {3 and 2T {3. Note that this log-linear model also does not possess any explicit low-rank
properties.

Figure C.1 demonstrates that the same conclusions about our algorithm’s behavior in the case of full-
rank linear demands also hold for this log-linear setting. Even though it is now quite misspecified, the
OPOL algorithm with a small value of d performs remarkably well. Furthermore, the decreasing regret
in Figure C.1B illustrates how bandit pricing methods can rapidly adapt to a changing marketplace,
regardless whether the underlying demands are of varying or constant elasticities.
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(A) Model (12) without temporal change (B) Model (12) with demand shocks

Figure C.1: Average cumulative regret (over 10 repetitions with standard-deviations shaded) of
various pricing strategies (for N “ 100) when the underlying demand model is log-linear and: (A)
stationary over time, (B) altered by structural shocks at T {3 and 2T {3.

C.2 Further Details about Experiments

Our simulations always set the first prices used to initialize each method, p0, at the center of S.
For each experiment in our paper, the bandit algorithm hyperparameters ⌘, �,↵ are set as specified
in Theorem A.2, but without knowledge of the underlying demand model (as would need to be
done in practical applications). Because the Lipschitz constant L and bound B are unknown in
practice, these are crudely estimated prior to the initial round of our bandit pricing strategy from the
observed (historical) revenues at a random collection of 100 minorly-varying prices. To compute
regret, we identify the optimal fixed price with knowledge of the underlying demand curves at each
time, performing the fixed-price optimization via Sequential Least Squares Programming [Kraft,
1988] which converges to the global optimum in our convex settings. In the Exploreit approach,
transitioning from exploitation to exploration at time T

3{4 empirically outperformed the other
choices we considered (T 1{2

, T
2{3

, T {10, T {3). Note that no matter how many experiments we run,
the sensitive nature of pricing necessitates provable guarantees, which is a major strength of the
adversarial regret bounds presented in this paper.
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D Notation Glossary

N ° 0 Number of products to price (assumed to be large)

d ° 0 Dimensionality of the product features (where d ! N )

t P t1, . . . , T u Index of each time period (i.e. round) over which prices are fixed and demands aggregated

C ° 0 A universal constant that is problem-independent and does not depend on values like T, d, r

pt P RN Vector of prices for each product in period t (rescaled rather than absolute prices)

qt P RN Vector of demands for each product in period t (rescaled rather than absolute demands)

Rt : RN Ñ R Negative total revenue produced by product pricing in period t (convex function)

S Ä RN Convex set of feasible prices (taken to be ball of radius r throughout §4.2)

✏t P RN Random noise in observed demands of period t (mean-zero with finite variance)

✏ Represents the full set of random demand effects t✏1, . . . , ✏T u
⇠t P Rd Random noise variables drawn within each round of our bandit algorithms

⇠ Represents the full set of random noise variables employed in our algorithms t⇠1, . . . , ⇠T u
ct P RN Vector of baseline aggregate demands for each product in period t

Bt P RNˆN Asymmetric positive-definite matrix of demand cross-elasticities in period t

U P RNˆd Matrix where ith row contains featurization of product i (presumed orthogonal in §4.2)
pU P RNˆd Matrix whose column-span is used to estimate the column-span of U

zt P Rd Vector which determines how product features affect the baseline demands in period t

Vt P Rdˆd Asymmetric positive-definite matrix that defines changing demand cross-elasticies in period t

||x||2 Euclidean norm of vector x

||A||op Spectral norm of matrix A (magnitude of the largest singular value)

||A||F Frobenius norm of matrix A

UnifpSq Uniform distribution over set S

p
˚ P RN Single best vector of prices chosen in hindsight: p˚ “ argmin

pPS
E

Tÿ

t“1

Rtppq

ft : Rd Ñ R Function such that ftpxq “ E✏rRtppqs for x “ U
T
p

ft, pU : Rd Ñ R Function such that ft, pUpxq “ E✏rRtppqs for x “ pUT
p

⌘, �,↵ ° 0 User specified hyperparameters of our bandit pricing algorithms

�
2 ° 0 Sub-Gaussian parameter that specifies magnitude of noise effects in the observed demands

U
T pSq d-dimensional actions that correspond to feasible prices:

 
x P Rd : x “ U

T
p for some p P S

(

rÒ, rÓ ° 0 Radius of Euclidean balls containing/contained-within U
T pSq, with rÒ • rÓ

B ° 0 Upper bounds the magnitude of ErRtppqs over all p P S , t “ 1, . . . , T

L ° 0 Lipschitz constant of each ftpxq over all x P U
T pSq, t “ 1, . . . , T

b ° 0 Upper bounds the magnitude of zt,Vt for t “ 1, . . . , T (||zt||2 § b and ||Vt||op § b)

r • 1 Radius of Euclidean ball adopted as the feasible set of (rescaled) prices throughout §4.2
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