
A Proof of Lemma 1

In order to bound the minimum eigenvalue of the Gram matrix at round T ′ + 1, we use the Matrix
Chernoff Inequality (Tropp et al., 2015, Thm. 5.1.1).

Theorem 4 (Matrix Chernoff Inequality, Tropp et al. (2015)). Consider a finite sequence {Xk} of
independent, random, symmetric matrices in Rd. Assume that λmin(Xk) ≥ 0 and λmax(Xk) ≤ L for
each index k. Introduce the random matrix Y =

∑
kXk. Let µmin denote the minimum eigenvalue

of the expectation E[Y ],

µmin = λmin

(
E[Y ]

)
= λmin

∑
k

E[Xk]

 .

Then, for any ε ∈ (0, 1), it holds,

Pr
(
λmin(Y ) ≤ εµmin

)
≤ d · exp

(
−(1− ε)2µmin

2L

)
.

Proof of Lemma 1. Let Xt = xtx
†
t for t ∈ [T ′], such that each Xt is a symmetric matrix with

λmin(Xt) ≥ 0 and λmax(Xt) ≤ L2. In this notation, AT ′+1 = λI +
∑T ′

t=1Xt. In order to apply
Theorem 4, we compute:

µmin := λmin

 T ′∑
t=1

E[Xt]

 = λmin

 T ′∑
t=1

E[xtx
†
t ]

 = λmin

(
T ′Σ

)
= λ−T

′.

Thus, the theorem implies the following for any ε ∈ [0, 1):

Pr

λmin(

T ′∑
t=1

Xt) ≤ ελ−T ′
 ≤ d · exp

(
−(1− ε)2λ−T

′

2L2

)
. (16)

To complete the proof of the lemma, simply choose ε = 0.5 (say) and T ′ ≥ 8L2

λ−
log(dδ ) in (16). This

gives Pr
[
λmin(AT ′+1) ≥ λ+ λ−T

′

2

]
≥ 1− δ, as desired.

B Proof of Theorems 2 and 3

In this section, we present the proofs of Theorems 2 and 3.

B.1 Preliminaries

Conditioning on µ ∈ Ct, ∀t > 0. Consider the event

E := {µ ∈ Ct, ∀t > 0}, (17)

that µ is inside the confidence region for all times t. By Theorem 1 the event holds with probability
1− δ. Onwards, we condition on this event, and we make repeated use of the fact that µ ∈ Ct for all
t > 0, without further explicit reference.

Decomposing the regret in two terms. Recall the decomposition of the instantaneous regret in
two terms in (10) as follows:

rt = µ†xt − µ†x∗ = µ†xt − µ̃†txt︸ ︷︷ ︸
Term I

+ µ̃†txt − µ†x∗︸ ︷︷ ︸
Term II

. (18)

As discussed in Section 3.1, we control the two terms separately.
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B.2 Bounding Term I

The results in this subsection are by now rather standard in the literature (see for example (Abbasi-
Yadkori et al., 2011)). We provide the necessary details for completeness.

We start with the following chain of inequalities, that hold for all t ≥ T ′ + 1:

Term I := µ†xt − µ̃†txt = (µ†xt − µ̂†txt) + (µ̂†txt − µ̃
†
txt)

≤ ‖µ− µ̂t‖At‖xt‖A−1
t

+‖µ̂t − µ̃t‖At‖xt‖A−1
t

≤ 2βt‖xt‖A−1
t
. (19)

The last inequality (19) follows from Theorem 1 and the fact that µ and µ̃t ∈ Ct. Recall, from
Assumption 2, the trivial bound on the instantaneous regret

rt = µ†xt − µ†x∗ ≤ 2.

Thus, we conclude with the following

Term I ≤ 2 min (βt‖xt‖A−1
t
, 1). (20)

The next lemma bounds the total contribution of the (squared) terms in (19) across the entire horizon
t = T ′ + 1, . . . , T .

Lemma 3 (Term I). Let Assumptions 1 and 2 hold. Fix any δ ∈ (0, 0.5) and assume that T ′ is such
that T ′ ≥ 8L2

λ−
log
(
d
δ

)
. Then, with probability at least 1− δ, it holds

T∑
t=T ′+1

min
(
‖xt‖2A−1

t
, 1
)
≤ 2d log

(
2TL2

d(2λ+ λ−T ′)

)
.

Thus, with probability at least 1− 2δ, it holds

T∑
t=T ′+1

(µ†xt − µ̃†txt) ≤ 2βT

√
2d (T − T ′) log

(
2TL2

d (2λ+ λ−T ′)

)
. (21)

Proof. The proof is mostly adapted from (Dani et al., 2008, Lem. 9) but we also exploit the bound on
λmin(AT ′+1) thanks to Lemma 1. We present the details for the reader’s convenience.

With probability at least 1− δ, we find that for all t ≥ T ′ + 1:

det(At+1) = det(At + xtx
†
t) = det(At) det(I + (A

− 1
2

t xt)(A
− 1

2
t xt)

†) = det(At)(1 + ‖xt‖2A−1
t

)

= . . . = det(AT ′+1)

t∏
τ=T ′+1

(1 + ‖xτ‖2A−1
τ

)

≥
(
λ+

λ−T
′

2

)d t∏
τ=T ′+1

(1 + ‖xτ‖2A−1
τ

),

where the last inequality follows form Lemma 1 and the fact that det(A) =
∏d
i=1 λi(A) ≥

(λmin(A))d. Furthermore, by the AM-GM inequality applied to the eigenvalues of At+1, if holds

det(At+1) =

d∏
i=1

λi(At+1) ≤

(
tL2

d

)d
,

where we also used the fact that ‖xt‖2≤ L for all t. These combined yield,

t∏
τ=T ′+1

(1 + ‖xτ‖2A−1
τ

) ≤

(
2tL2

d(2λ+ λ−T ′)

)d
.
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Next, using the fact that for any 0 ≤ y ≤ 1, log(1 + y) ≥ y/2, we have

T∑
t=T ′+1

min
(
‖xt‖2A−1

t
, 1
)
≤ 2

T∑
t=T ′+1

log
(
‖xt‖2A−1

t
+1
)

= 2 log
( T∏
t=T ′+1

(‖xt‖2A−1
t

+1)
)

≤ 2d log

(
2TL2

d(2λ+ λ−T ′)

)
.

It remains to prove (21). Recall from (20) that for any T ′ < t ≤ T , with probability at least 1− δ
(note that we have conditioned in the event E in (17)),

(µ†xt − µ̃†txt) ≤ 2 min (βt‖xt‖A−1
t
, 1) ≤ 2βT min (‖xt‖A−1

t
, 1),

where for the inequality we have used the fact that βt ≤ βT (and assumed for simplicity that T large
enough such that βT > 1). Thus, the desired bound in (21) follows from applying Cauchy-Schwartz
inequality to the above.

B.3 Bounding Term II

As discussed in Section 3.2, the challenge in bounding Term II in (10) is that , in general, Ds
t 6= Ds

0,
so x∗ might not belong in Ds

t . Bounding Term II amounts to bounding a certain "distance" of the
set Ds

t from the set D0. In order to accomplish this task, we proceed as follows. First, we define a
shrunk version D̃s

t of Ds
t , for which we have a more convenient characterization, compared to the

original D̃s
t . Then, we select the point zt in D̃s

t that is in the direction of x∗ and is as close to it as
possible. Finally, we are able to bound the distance of zt to x∗.

A shrunk safe region D̃s
t . Consider an enlarged confidence region C̃t centered at µ defined as

follows:
C̃t := {v ∈ Rd : ‖v − µ‖At≤ 2βt} ⊇ Ct. (22)

The inclusion property above holds since µ ∈ Ct, and, by triangle inequality, for all v ∈ Ct, one has
that ‖v − µ‖At≤ ‖v − µ̂t‖At+‖µ̂t − µ‖At≤ 2βt.

The definition of the enlarged confidence region in (22) naturally leads to the definition of a corre-
sponding shrunk safe decision set D̃s

t . Namely, let

D̃s
t := {x ∈ D0 : v†Bx ≤ c, ∀v ∈ C̃t} = {x ∈ D0 : max

v∈C̃t
v†Bx ≤ c}

= {x ∈ D0 : µ†Bx+ 2βt‖Bx‖A−1
t
≤ c}, (23)

and observe that D̃s
t ⊆ Ds

t . Note here that since by Assumption 3 zero is in the interior of D0, the
sets D̃s

t and Ds
t have a nonempty interior.

A point zt ∈ D̃s
t close to x∗. Let zt be a vector in the direction of x∗ that belongs in D̃s

t and is
closest to x∗. Formally, zt := αtx

∗, where

αt := max
{
α ∈ [0, 1] | zt = αx∗ ∈ D̃s

t

}
.

Since both 0 and x∗ ∈ D0, and, D0 is convex by assumption, it follows in view of (23) that

αt := max
{
α ∈ [0, 1] |α ·

(
µ†Bx∗ + 2βt‖Bx∗‖A−1

t

)
≤ c
}
. (24)

Recall that C > 0, thus (24) can be simplified to the following:

αt =


1 , if µ†Bx∗ + 2βt‖Bx∗‖A−1

t
≤ c,

min

(
c

µ†Bx∗+2βt‖Bx∗‖A−1
t

, 1

)
, otherwise.

(25)
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Bounding Term II in terms of αt. Due to the fact that D̃s
t ⊆ Ds

t , it holds that zt ∈ Ds
t . Using this,

and optimality of (µ̃, xt) in the minimization in Step 10 of Algorithm 1, we can bound Term II as
follows:

Term II := µ̃†txt − µ†x∗

≤ µ†zt − µ†x∗ = αtµ
†x∗ − µ†x∗

≤ |αt − 1| |µ†x∗|
≤ |αt − 1|= (1− αt). (26)

The inequality in the last line uses Assumption 2. For the last equality recall that αt ∈ [0, 1]

To proceed further from (26) we consider separately the two cases ∆ > 0 and ∆ = 0 that lead to
Theorems 2 and 3, respectively.

B.3.1 Bound for the case ∆ > 0

Here, assuming that ∆ > 0, we prove that if the duration T ′ of the pure exploration phase of Safe-
LUCB is chosen appropriately, then αt = 1, and equivalently, x∗ ∈ Ds

t . The precise statement is
given in Lemma 4 below, which is a restatement of Lemma 2, given here for the reader’s convenience.
Lemma 4 (∆ > 0 =⇒ x∗ ∈ Ds

t ). Let Assumptions 1, 2 and 3 hold for all t ∈ [T ]. Fix any
δ ∈ (0, 0.5) and assume a positive safety gap ∆ > 0. Initialize Safe-LUCB with

T ′ ≥
(8L2‖B‖2β2

T

λ−∆2
− 2λ

λ−

)
∨ tδ. (27)

Then, with probability at least 1− 2δ, for all t = T ′ + 1, . . . , T it holds that
Term II := µ̃†txt − µ†x∗ ≤ 0.

Thus, with the same probability
T∑

t=T ′+1

(µ̃†txt − µ†x∗) ≤ 0. (28)

Proof. Recall from (26), that for any T ′ < t ≤ T , with probability at least 1− δ (note that we have
conditioned in the event E in (17)), Term II = 1− αt. Thus, in view of (25), it suffices to prove that
for any T ′ < t ≤ T , with probability at least 1− δ, it holds αt = 1, or equivalently,

µ†Bx∗ + 2βt‖Bx∗‖A−1
t
≤ c ⇔ βt‖Bx∗‖A−1

t
≤ ∆/2. (29)

For any T ′ < t ≤ T , we have

βt‖Bx∗‖A−1
t
≤ βt‖Bx∗‖2√

λmin(At)
≤ βT ‖Bx∗‖2√

λmin(AT ′+1)
≤ βT ‖B‖L√

λmin(AT ′+1)
, (30)

where, in the second inequality we used βt ≤ βT and λmin(At) ≥ λmin(AT ′+1), and in the last
inequality we used Assumption 2. Next, since tδ ≤ T ′, we may apply Lemma 1 to find from (30),
that for all T ′ + 1 ≤ t ≤ T , with probability at least 1− δ:

βt‖Bx∗‖A−1
t
≤
√

2‖B‖LβT√
2λ+ λ−T ′

. (31)

To complete the proof of the lemma note that the assumption T ′ ≥ 8‖B‖2L2β2
T

λ−∆2 − 2λ
λ−

when combined
with (31), it guarantees (29), as desired.

Remark 2. We remark on a simple tweak in the algorithm that results in a constant T ′ (i.e., indepen-
dent of T ) in Lemma 4. However, this does not change the final order of regret bound in Theorem
2. In particular, we modify Safe-LUCB to use the nested (as is called in Kazerouni et al. (2017))
confidence region Bt = ∩tτ=1Cτ at round t such that . . . ⊆ Bt+1 ⊆ Bt ⊆ Bt−1 ⊆ . . .. According to
Theorem 1, it is guaranteed that for all t > 0, µ ∈ Bt, with high probability. Applying these nested
confidence regions in creating safe sets, results in . . . ⊆ Dst−1 ⊆ Dst ⊆ Dst+1 ⊆ . . . . Thanks to this, it
is now guaranteed that once x∗ ∈ Ds

t , the optimal action x∗ will remain inside the safe decision sets
for all rounds after t. Thus, it is sufficient to find the first round t, such that x∗ ∈ Ds

t . This leads to a
shorter duration T ′ for the pure exploration phase. In particular, following the arguments in Lemma
4, it can be shown that T ′ becomes the smallest value satisfying 2

√
2‖B‖LβT ′ ≤ ∆

√
2λ+ λ−T ′,

which is now a constant independent of T .
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B.3.2 Bound for the case ∆ = 0

Lemma 5 (Term II for ∆ = 0). Let Assumptions 1, 2 and 3 hold. Fix any δ ∈ (0, 0.5) and assume
that T ′ is such that T ′ ≥ tδ. Then, with probability at least 1− δ, it holds

T∑
t=T ′+1

1− αt ≤
2
√

2‖B‖LβT (T − T ′)
c
√

2λ+ λ−T ′
. (32)

Therefore, with probability at least 1− 2δ, it holds

T∑
t=T ′+1

(µ̃†txt − µ†x∗) ≤
2
√

2‖B‖LβT (T − T ′)
c
√

2λ+ λ−T ′
. (33)

Proof. Recall from (26), that for any T ′ < t ≤ T , with probability at least 1− δ (note that we have
conditioned in the event E in (17)), Term II = 1−αt. Thus, (33) directly follows once we show (32).
In what follows, we prove (32).

The definition of αt in (25) and the fact that µ†Bx∗ ≤ c imply that

αt =

1 , if µ†Bx∗ + 2βt‖Bx∗‖A−1
t
≤ c,

c
µ†Bx∗+2βt‖Bx∗‖A−1

t

≥ c
c+2βt‖Bx∗‖A−1

t

, otherwise.

Thus, for all t ≥ T ′ + 1:
αt ≥

c

c+ 2βt‖Bx∗‖A−1
t

,

from which it follows,

1− αt ≤
2βt‖Bx∗‖A−1

t

c+ 2βt‖Bx∗‖A−1
t

≤ 2βt
c
‖Bx∗‖A−1

t
≤ 2βt‖Bx∗‖2
c
√
λmin(At)

≤ 2βt‖B‖L
c
√
λmin(AT ′+1)

.

The last two inequalities follow as in (30). To complete the proof, note that since T ′ ≥ tδ, we can
apply Lemma 1. Thus, with probability at least 1− δ it holds,

T∑
t=T ′+1

1− αt ≤
2βT ‖B‖L(T − T ′)
c
√
λmin(AT ′+1)

≤ 2
√

2‖B‖LβT (T − T ′)
c
√

2λ+ λ−T ′
,

as desired.

B.4 Completing the proof of Theorem 2

We are now ready to complete the proof of Theorem 2. Let T sufficiently large such that

T > T ′ ≥
(8L2‖B‖2β2

T

λ−∆2
− 2λ

λ−

)
∨ tδ. (34)

We combine Lemma 3 (specifically, Eqn. (21)), Lemma 4 (specifically, Eqn. (28)), and, the
decomposition in (18), to conclude that

RT =

T ′∑
t=1

rt +

T∑
t=T ′+1

rt ≤ 2T ′ + 2βT

√
2d(T − T ′) log

(
2TL2

d(2λ+ λ−T ′)

)
.

Specifically, choosing T ′ =
(

8L2‖B‖2β2
T

λ−∆2 − 2λ
λ−

)
∨ tδ in the above, results in

RT = O

(
‖B‖2

λ−∆2
d
√
T log T

)
, (35)

where the constant in the Big-O notation may only depend on L, S,R, λ and δ.
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B.5 Completing the proof of Theorem 3

We are now ready to complete the proof of Theorem 3. Let T sufficiently large such that

T > T ′ ≥ tδ.

We combine Lemma 3 (specifically, Eqn. (21)), Lemma 5 (specifically, Eqn. (33)), and, the
decomposition in (18), to conclude that

RT =

T ′∑
t=1

rt +

T∑
t=T ′+1

rt ≤ 2T ′ + 2βT

√
2d(T − T ′) log

(
2TL2

d(2λ+ λ−T ′)

)
+

2
√

2‖B‖LβT (T − T ′)
c
√

2λ+ λ−T ′
.

Specifically, choosing T ′ =

(
‖B‖LβTT
c
√

2λ−

) 2
3

∨ tδ in the above, results in

RT = O

(‖B‖
c

) 2
3

λ
−1/3
− d T 2/3 log T

 , (36)

where as in (35) the constant in the Big-O notation may only depend on L, S,R, λ and δ.

C Extension to linear contextual bandits

In this section, we present an extension to the setting of K-armed contextual bandit. At each round
t ∈ [T ], the learner observes a context consisting of K action vectors, {yt,a : a ∈ [K]} ⊂ Rd and
chooses one action denoted by at and observes its associated loss, `t = µ†yt,at + ηt. We consider the
same constraint (1) which results in a safe set of actions at each round {yt,a | a ∈ [K], µ†Byt,a ≤ c}.
The optimal action at round t is denoted by yt,a∗t where

a∗t ∈ arg min
a∈[K],µ†Byt,a≤c

µ†yt,a. (37)

If the chosen action at round t is denoted by xt := yt,at and the optimal one by x∗t := yt,a∗t , the
cumulative regret over total T rounds will be

RT =

T∑
t=1

µ†xt − µ†x∗t .

We briefly discuss how Safe-LUCB extends to the K-armed contextual setting with provable regret
guarantees under the following assumptions.

First, we need the standard Assumptions 1 and 2 that naturally extend to the linear contextual bandit
setting. Beyond these, in order for the safe-bandit problem to be well-defined, we assume that safe
actions exist at each round. Equivalently, the feasible set in (37) is nonempty and x∗t is well-defined.
Moreover, in order to be able to run the pure-exploration phase of Safe-LUCB with random actions
(that guarantee Lemma 1 holds) we further require that at least one of these safe actions is randomly
sampled at each round t (technically, we need this assumption to hold only for rounds 1, . . . , T ′).
These two assumptions are both implied by Assumption 4 below.
Assumption 4 (Nonempty safe sets). Consider the set Dw = {x ∈ Rd : ‖Bx‖2≤ c

S }. Then, at each
round t, Nt ≥ 1 number of K action vectors lie within Dw.

Finally, in order to guarantee that Safe-LUCB has sub-linear regret for the K-armed linear setting we
need that the safety gap at each round is strictly positive.
Assumption 5 (Nonzero ∆). The safety gap ∆t = c− µ†Bx∗t at each round t is positive.

Under these assumptions, Safe-LUCB naturally extends to the K-armed linear bandit setting. Specifi-
cally, at rounds t ≤ T ′, Safe-LUCB randomly selects xt to be one of the available Nt action vectors
that belong to the set Dw. Assume that λmin(E[xtx

†
t ]) ≥ λ− > 0 for all t ∈ [T ′].
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After round T ′, Safe-LUCB implements the safe exploration-exploitation phase by choosing safe
actions based on OFU principle as in (9). Therefore line 10 of Safe-LUCB changes to

at = arg min
a∈As

t

min
v∈Ct

v†yt,a, (38)

where the safe set at rounds t ≥ T ′ + 1 is defined by

As
t = {a ∈ [K] : v†Byt,a ≤ c, ∀v ∈ Ct}. (39)

With these and subject to Assumptions 1, 2, 4 and 5, it is straightforward to extend the results of
Theorem 2 to the setting considered here. Namely, under these assumptions, Safe-LUCB achieves
regret Õ(

√
T ) when T ′ is set to T∆ as in (13) for ∆ = mint∈[T ] ∆t.

D Safe-LUCB with `1-confidence region

In this section we briefly discussed a modified `1-confidence region (as in Dani et al. (2008)), which
is used in our numerical experiments.

Motivation. The minimization in (9) involves solving a bilinear optimization problem. In view of
(6) and (8) it is not hard to show that (9) can be equivalently expressed as follows:

µ̃†txt = min
x

µ̂†tx− βt ‖x‖A−1
t

sub.to µ̂†tBx+ βt ‖Bx‖A−1
t
≤ c, x ∈ D0 .

This is a non-convex optimization problem. Thus, we present a variant of Safe-LUCB (and its
analysis) and we show that it can be efficiently implemented (particularly so, when the decision set is
a polytope) Dani et al. (2008). We use this variant in our simulation results (see Appendix F).

Algorithm and guarantees. We adapt the procedure first presented in Dani et al. (2008) to our
new Safe-LUCB algorithm. The pure-exploration phase of the algorithm remains unaltered. In the
safe exploration-exploitation phase, the only thing that changes is the definition of the confidence
region in Line 8 in Algorithm 1. Specifically, we define the modified `1-confidence region as follows:

C`1t := {v ∈ Rd : ‖v − µ̂t‖At,1≤ βt
√
d}. (40)

Note that for any v ∈ Ct and all t > 0, ‖A1/2
t (v − µ̂t)‖1≤

√
d‖A1/2

t (v − µ̂t)‖2≤
√
dβt. Thus,

Ct ⊆ C`1t , ∀t > 0. From this and Theorem 1, we conclude Pr(µ ∈ C`1t ,∀t > 0) ≥ 1 − δ. Then,
the natural modification of (9) becomes

µ̃†txt = min
x∈Ds

t,v∈C
`1
t

v†x = min
v∈C`1t

f(v), (41)

where

f(v) := min
x∈D0

µ̂†tBx+
√
dβt ‖Bx‖A−1

t
≤C

ν†x. (42)

From these, it is clear that all the results and theorems can be directly applied to the modified
algorithm which uses `1-confidence region in (40), with βt

√
d instead of βt. As noted in Dani et al.

(2008) the regret of the modified algorithm does not optimally scale with the dimension d (since there
is an extra factor of

√
d introduced by the substitution βt ← βt

√
d). However, as explained next,

solving (41) is now computationally tractable.

On computational efficiency. Note that the minimization in (42) is a convex program that can
be efficiently solved for fixed ν. In particular, if D0 is a polytope then the minimization in (42)
is a quadratic program. Moreover, note that f(v) is positive homogeneous of degree one, i.e.,
f(θv) = θf(v) for any θ ≥ 0. Therefore, in order to solve (41) it suffices to evaluate the function f(v)

at the 2d vertices v1, . . . , v2d of C`1t in (40) and choose the minimum fmin := minvi, i∈[2d] f(vi).
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In order to see this, let v∗ ∈ arg min
v∈C`1t

f(v) and θ1, . . . , θ2d ≥ 0,
∑d
i=1 θi = 1 such that

v∗ =
∑2d
i=1 θivi. Then,

min
v∈C`1t

f(v) = f(v∗) =

2d∑
i=1

θif(vi) ≥ fmin

2d∑
i=1

θi = fmin ≥ min
v∈C`1t

f(v).

Thus,

min
v∈C`1t

f(v) = min
vi, i∈[2d]

f(vi). (43)

To sum up, we see from (43) that solving (41) amounts to solving 2d quadratic programs (when D0

is a polytope).

E On GSLUCB

Having no knowledge of the safety gap ∆, GSLUCB starts conservatively by setting the length of
the pure exploration phase to its largest possible value, which is equal to T0 defined in Theorem
3 (corresponding to ∆ = 0). The idea behind GSLUB is to generate at each round t of the pure-
exploration phase a certain value ∆t that serves as a lower bound for the unknown safety gap ∆. We
discuss possible ways to do so next, but for now let us describe how these lower estimates of ∆ can
be useful. Owing to the result of Theorem 2, at each round t, GSLUCB computes a pure exploration
duration T ′t = T∆t

, which is associated with the lower confidence bound ∆t (Eqn. (13) for ∆ = ∆t).
If at some round t, the computed T ′t becomes less than t, then Theorem 2 guarantees that x∗ ∈ Ds

t
and the algorithm switches to the exploration-exploitation phase.

One way to compute the ∆t’s that guarantees ∆t ≤ ∆ is as follows. For each vector v ∈ Ct denote
x∗v ∈ arg minx∈Ds

0(v) v
†x, where Ds

0(v) := {x ∈ D0 : v†Bx ≤ c} and define

∆t := min
v∈Ct

∆v, (44)

where ∆v := c− v†Bx∗v . Since µ ∈ Ct with high probability (cf. Theorem 1) and by definition of ∆,
it can be seen that ∆t ≤ ∆. Unfortunately, solving (44) can be challenging and, in general, one has to
resort to relaxed versions of the optimization involved, but ones that guarantee ∆t ≤ ∆ (at least after a
few rounds). We leave the study of this general case to future work and we discuss here a special case
in which this is possible. We have implemented this special case in the simulation results presented
in Figure 1a (see Appendix F). Specifically, we consider a finite K-armed linear bandit setting with
feature vectors denoted by y1, . . . , yK . We produce lower estimates ∆t as follows. For all i ∈ [K],
we form the following two sets. (i) The set Cit = {v ∈ Ct | v†Byi ≤ c} of all vectors in the confidence
region for which the action yi is deemed safe; (ii) The set Yit = {yj , j ∈ [K] |maxv∈Cit v

†Byj ≤ c}
of all actions that are considered safe with respect to all v ∈ Cit . Then, we define

∆i
t := min

v∈Cit
v†yi≤v†y, for all y∈Yit

c− v†Byi. (45)

It can be checked that mini∈[K] ∆i
t ≤ ∆. Thus we rely on mini∈[K] ∆i

t as our lower confidence
bound on ∆. Note that computing mini∈[K] ∆i

t is computationally tractable for finite K and an `1
confidence region.

F Simulation Results

In this section, we provide the details of our numerical experiments. In view of our discussion
in Appendix D, we implement a modified version of Safe-LUCB which uses 1-norms instead of
2-norms (as in Dani et al. (2008); see also Appendix D for details). We have taken δ = 0.01, λ = 1,
and R = 0.1 in all cases.

Figure 1a compares the average per-step regret of 1) Safe-LUCB with knowledge of ∆; 2) Safe-
LUCB without knowledge of ∆ (hence, assuming ∆ = 0); 3) GSLUCB without knowledge of ∆
(the algorithm creates a lower confidence bound for ∆ as the pure exploration phase runs). Figure 3
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(a) Safe-LUCB with pure exploration phase.
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(b) Safe-LUCB without pure exploration phase

Figure 2: Growth of Ds
t with and without pure exploration phase. In both figures: D0 (in black) Ds

0

(in blue), DST ′+1 (in red), DS5e4 (in green). Also, shown the optimal action x∗. Note that x∗ ∈ DST ′+1
when pure exploration phase is used as suggested by Lemma 2.
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(a) Safe-LUCB, T ′ = T∆
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(b) GSLUCB
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(c) Safe-LUCB, T ′ = T0

Figure 3: Comparison of mean per-step regret for Safe-LUCB(T ′ = T∆), GSLUCB, and Safe-
LUCB(T ′ = T0). The shaded regions show one standard deviation around the mean. The results are
averages over 20 problem realizations.

highlights the sample standard deviation of regret around the average per-step regret for each of the
above-mentioned cases. We considered a time independent decision set of 15 arms in R4 such that
5 of the feature vectors are drawn uniformly from Dw and the other 10 are drawn uniformly from
unit ball in R4. Moreover, µ is drawn from N (0, I4) and then normalized to unit norm. B and c are
drawn uniformly from [0, 0.5]4×4 and [0,1] respectively. The results shown depict averages over 20
realizations. It can be seen from the figure that GSLUCB performs significantly better than the worst
case suggested by Theorem 3 (aka Safe-LUCB assuming ∆ = 0). In fact, it appears that it approaches
the improved regret performance suggested by Theorem 2 of Safe-LUCB with knowledge of ∆.

Our second numerical experiment serves to showcase the value of the safe exploration phase as
discussed in Section 3.3. We focus on an instance with positive safety gap ∆ > 0 to verify the validity
of Lemma 2, namely that x∗ ∈ Ds

t for t ≥ T ′ + 1, when T ′ is appropriately chosen. Furthermore,
we compare the performance with a “naive" variation of Safe-LUCB that only implements the safe
exploration-exploitation phase (aka, no pure exploration phase). The regret plots of the two algorithms
(with and without pure exploration phase) shown in Figure 1b clearly demonstrate the value of the
pure exploration phase for the simulated example. Specifically, for the simulation, we consider a
horizon T = 100000 with decision set D0 the unit `∞-ball in R2, and, the following parameters:

µ =

[
0.9

0.044

]
, B =

[
0.6 1.8
1.8 0.4

]
, c = 0.9. We have chosen a low-dimensional instance, because

we find it instructive to also depict the the growth of the safe sets for the two algorithms. This is
done in Figures 2a and 3c, where we illustrate the safe sets of Safe-LUCB with and without pure
exploration phase, respectively. Black lines denote the (border of) the polytope D0; blue lines denote
the linear constraint in (1); red lines denote the (border of) Ds

T ′+1, where T ′ = T∆ = 1054 and
T ′ = 0 for Figures 2a and 3c, respectively; and, green lines denote (the border of) safe sets Ds

50000
at round 50000. Also depicted the optimal action x∗ with coordinates {−1,−1}. As expected,
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Safe-LUCB starts the exploration-exploitation phase with a safe set that includes x∗ while, without
the pure exploration phase, the algorithm starts the exploration-exploitation phase with a smaller safe
set which does not include x∗ and as a results, fails in expanding the safe set to include x∗ even after
T = 50000 rounds. This results in the bad regret performance in Figure 1b.
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