
Supplementary Material for GPipe

1 GPipe Example Usage

Users of GPipe library first express their neural network as a sequential list of L layers. Any
computational graph can be partitioned into sequence of sub-graphs. Example basis layers include
convolution, pooling, batch normalization, dropout, transformer, softmax and others. Layers that are
connected sequentially or in parallel can be combined into a new composite layer. Users can combine
any number of layers in arbitrary ways as long as the composite forward function is properly defined.

Figure 1 shows an example use case of the GPipe library. It is a unit test for consistent training that
verifies the norms of all gradients in this example network to be the same within numerical errors,
regardless of the number of partitions.

2 Image Classification Training Details

2.1 Training Hyperparameters

We trained an AmoebaNet-B (18, 512) with 557 million model parameters and input image size
of 480× 480 on the ImageNet ILSVRC-2012 dataset. We followed the same hyperparameters and
input preprocessing as described in [2] to train AmoebaNet-B (18, 512). We employed the RMSProp
optimizer with a decay of 0.9 and ε = 0.1, L2 regularization λ = 4 × 10−5, label smoothing
coefficiency 0.1 and an auxiliary head with weight 0.4. We applied the same drop-path schedule to
intermediate layers as in NasNet [3] and dropout to the final layer with probability 0.5. We used a
learning rate schedule that decays every 3 epochs at a rate of 0.97 with an initial learning rate of
0.00125 times the batch size.

In Table 1, we reported the hyperparameters used for each transfer learning dataset. We selected
learning rate from the set {0.0125, 0.00375, 0.075, 0.115, 0.15} and L2 weight decay from the set
{0, 4e− 8, 4e− 7, 4e− 6, 4e− 5}. The selection was based on a hold-out subset (20%) of training
data. We then applied the selected hyperparameters for the final training and repeated five times.

Dataset Learning Rate L2 Weight Decay

CIFAR-10 0.0125 4e-05
CIFAR-100 0.0125 4e-5
Stanford Cars 0.15 0
Oxford-IIIT Pets 0.00375 4e-06
Food-101 0.15 4e-08
FGVC Aircraft 0.075 4e-08
Birdsnap 0.15 4e-06

Table 1: Hyperparameters used in transfer learning. We selected the learning rate and L2 weight
regularization parameters for each dataset on a hold-out subset of training dataset. For other hyperpa-
rameters we used the same ones as in ImageNet training.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: Sample unit test under TensorFlow Lingvo [1] to ensure that GPipe provides consistent
training regardless of the number of partitions.

import tensorflow as tf

from lingvo.core import base_layer
from lingvo.core import layers
from lingvo.core import py_utils
from TensorPipe import TensorPipeLayer

def BuildDummyTensorPipeLayer(
num_layers=16,
num_splits=4,
num_mirco_batches=8):

assert num_layers % num_splits == 0
layers = []
Construct a dummy layer with 16 3x3 conv layers
for i in range(num_layers):

layers.append(layers.Conv2DLayer.Params ().Set(
name=’layer_{}’.format(i)),
filter_shape=(3, 3, 1, 1),
filter_stride=(1, 1))

Evenly distribute layers to partitions.
partitions = []
layers_per_split = num_layers // num_splits
for split in range(num_splits):

sub = layers[
split * layers_per_split:
(split + 1) * layers_per_split]

partitions.append(sub)
Build pipeline parallelism model using TensorPipe
p = TensorPipeLayer.Params ().Set(

name=’TensorPipe ’,
num_mirco_batches=num_mirco_batches ,
partitions=partitions)

layer = p.cls(p)
return layer

class DummyTensorPipeTest(tf.test.TestCase):

def _verify_consistent_training(self , num_splits):
g = tf.Graph ()
with g.as_default ():

py_utils.GetOrCreateGlobalStep ()
tf.set_random_seed(88888888)
inputs = tf.random_uniform([16 , 8, 8, 1])
net = BuildDummyTensorPipeLayer(num_splits=num_splits)
logits = net.FPropDefaultTheta(inputs)
loss = tf.reduce_mean(logits)
grads = tf.gradients(

loss , tf.trainable_variables ())
grad_norm = tf.sqrt(

py_utils.SumSquared(grads))
with self.session(graph=g) as sess:

sess.run(tf.global_variables_initializer ())
grad_norm_val , = sess.run([grad_norm])
Verify grad norm is the same regardless of
the number of splits
self.assertNear(

grad_norm_val , 0.269997 , err=1.0e-6)

def testDummyPipelineCnnOneSplit(self):
self._verify_timestep_counts(num_splits=1)

def testDummyPipelineCnnTwoSplits(self):
self._verify_timestep_counts(num_splits=2)

def testDummyPipelineCnnFourSplits(self):
self._verify_timestep_counts(num_splits=4)

2

2.2 Consistent Training

GPipe performs synchronous training over the micro-batches. In this section, we verified the
hypothesis that the end-to-end convergence accuracy using GPipe is the same within statistical errors,
regardless of the number of partitions. We trained AmoebaNet-D (6, 256) several times for 35 epochs
and measured the final validation accuracy on ImageNet. We chose AmoebaNet-D (6, 256) since it
was the winning image model by training cost in the DAWNBench competition [4]. We adopted the
same hyperparameters and training procedure reported in DAWNBench.1 As a baseline, we trained
AmoebaNet-D (6, 256) 5 times using the official open-source implementation and computed the
mean and standard deviation of the final accuracy. Using the same hyperparameters and training
procedures, we trained the same network using GPipe with 1, 2, 4 and 8 partitions. We found that the
resulting accuracy fell within 1.6 standard deviations from the mean, as expected.

3 Machine Translation Training Details

We study multilingual NMT on a massive scale, using a corpus generated by crawling and extracting
parallel sentences from the web. Figure 2 illustrates the data distribution across languages for all 102
languages studied in this paper.

Figure 2: Per language pair data distribution of the dataset used for our multilingual experiments.
The y-axis depicts the number of training examples available per language on a logarithmic scale.
Dataset sizes range from 35k for the lowest-resource language to 2 billion for the highest.

3.1 Baselines

For our bilingual experiments, we used variants of the Transformer architecture [5]. For most bilin-
gual experiments, we used a larger version of Transformer Big model containing 375M parameters,
and a shared source-target SPM vocabulary with 32k tokens. We tuned different values of dropout,
depending on the dataset size for each language pair. For most medium and low-resource languages
we also experimented with Transformer Base model. All our models were trained with Adafactor
[6] with momentum factorization, a learning rate schedule of (3.0, 40K),2 and a per-parameter norm
clipping threshold of 1.0. For Transformer Base models, we used a learning rate schedule of (2.0,
8K). BLEU scores were computed using the checkpoint with the best validation performance on
true-cased output and references.3

1https://github.com/stanford-futuredata/dawn-bench-entries/blob/master/ImageNet/
train/google_amoeba_net_d_tpu_tensorflow18.json

2(3.0, 40K) indicates a schedule with a learning rate of 3.0 and 40K warm-up steps, which is decayed with
the inverse square root of the number of training steps after warm-up.

3We used an in-house implementation mteval-v13a.pl from Moses to evaluate BLEU scores for our multilin-
gual experiments.

3

https://github.com/stanford-futuredata/dawn-bench-entries/blob/master/ImageNet/train/google_amoeba_net_d_tpu_tensorflow18.json
https://github.com/stanford-futuredata/dawn-bench-entries/blob/master/ImageNet/train/google_amoeba_net_d_tpu_tensorflow18.json

3.2 Multilingual Baselines

We now describe our approach for training the multilingual models. Due to the large imbalance
in our training dataset (Figure 2), we first designed a sampling strategy to simultaneously train
a single model on over 200 language pairs. Sampling directly from the data distribution would
result in good performance on high-resource languages, but poor performance on the low-resource
languages. Sampling equally from all language pairs would result in huge improvement in low-
resource translation performance, but high-resource languages perform significantly worse than their
bilingual baselines.

To balance between high and low-resource language pairs, we used the temperature-based sampling
strategy used for training multilingual BERT 4 [7]. For a given language pair, l, let Dl be the size
of the available parallel corpus. If we sample from the union of the datasets, the probability of the
sample being from language l is pl = Dl

ΣlDl
. We set the probability of our sampled distribution to

be proportional to p
1
T

l , where T is the sampling temperature. Now, T = 1 corresponds to true data
distribution and T = 100 corresponds to an (almost) equal number of samples for each language. We
used T = 5 for our multilingual model.

For all our multilingual experiments, we trained a single Transformer model simultaneously on all
languages, with the same hyperparameters as the bilingual model. We used a shared SPM vocabulary
with 64K tokens, generated using the same sampling distribution (T = 5) used during training. We
additionally used character coverage of 0.999995 to ensure our vocabulary contained most of the
alphabets for all 103 languages.

3.3 Effects of large batch size

Due to its simplicity, data parallelism is the dominant approach to scale neural network training[8, 9].
We test the limits of large-batch training by significantly increasing the batch size used for
standard Transformer Big training. Starting from 260K tokens per batch, we increase the
effective batch size to 4M and observe the validation loss and BLEU scores on the high-
resource language pair, German-English (similar trend can also be observed for other language
pairs). Optimization parameters used here are identical to those for previous experiments.

Table 2: The Effect of Batch Size

Batch Size 260K 1M 4M
BLEU 30.92 31.86 32.71
Loss (NLL) 2.58 2.51 2.46

To our knowledge, 4M tokens per batch is the largest
batch size that has ever been used in literature to date
for training NMT models [10]. Table 2 shows that both
metrics improve significantly as we increase the batch size.
We believe further increasing batch size can potentially
yield more improvement.

4 Discussion

Having a flexible framework for large-scale deep learning experiments opens up exciting opportunities
to understand the underlying machinery and mechanics of large-scale models. In this section we relate
our experimental results with some recent studies in deep learning. We also share some additional
empirical findings of interest with deep learning practitioners.

Expressivity and Generalization: Recent findings in deep learning theory [11, 12] postulate in-
creased generalization performance with growth in the expressive power of the network.5 Here
we present our experiments toward an empirical validation. We increase the depth as a means to
increasing the network’s expressive power [13] while controlling the batch size. We are able to
observe the generalization behavior of the network at a scale that has never been experimented with
before. Starting from a 6-layer Transformer Big (12 layers in total with encoder + decoder), we
gradually increase the depth up to 64 layers (128 layers in total). We observe that the 64-layer
model exhibits almost an up-shifted trend of the 6-layer model and all the intermediate depths lie
in between. Although our results support the theory, we also observe diminishing returns, which

4https://github.com/google-research/bert/
5In other words, both estimation error and approximation error decrease when we expand the hypothesis

space - enlarging the models in practice, indicating that there is no bias variance trade-off in the classical sense.

4

raises trainability concerns.We may not yet have the tools/techniques to reduce the training error even
further, highlighting the necessity of understanding trainability challenges for further progress.

Depth-Width Trade-off: Another area that has attracted the attention of deep learning theoreticians
is the effect of model width and depth on generalization [14, 15]. We next study the trade-off
between depth and width in our multilingual setup and compare the performance of 1.3B wide,
T (12, 16384, 32), and 1.3B deep models, T (24, 8192, 16). While the performance of these two
models on high-resource languages is very similar, the deeper model outperforms low-resource
languages by huge margins, suggesting that increasing model depth might be better for generalization.

Figure 3: The Effect of Depth

Further, the performance improvement for low-resource languages (right side of Figure 3), when
comparing the 1.3B deep model against the 400M model, is almost as large as the improvement for
high-resource languages, indicating that increasing depth might also increase the extent of transfer to
low-resource tasks.

Faster Convergence with Depth: We report one intriguing observation correlated with making our
models deeper. Keeping the effective batch size, optimizer hyperparameters and model width fixed,
increasing model depth induces speedup in optimization, as illustrated in Figure 3. Previous work
reporting similar phenomena conjectured that depth induces pre-conditioning by over-parametrization
(Figure 4 in [16]).

While this paper focuses primarily on systems challenges associated with scaling neural networks,
there is a growing need for theoretical understanding of deep neural networks in order to better
address generalization and trainability concerns. We believe flexible scaling tools such as GPipe are
essential in bridging the gap between deep learning theory and practice. We hope that our empirical
findings and discussions will motivate more research efforts along this path.

References
[1] Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia Xu Chen, Ye Jia, Anjuli Kannan,

Tara Sainath, Yuan Cao, Chung-Cheng Chiu, et al. Lingvo: a modular and scalable framework for
sequence-to-sequence modeling. arXiv preprint arXiv:1902.08295, 2019.

[2] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier
architecture search. arXiv preprint arXiv:1802.01548, 2018.

[3] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for
scalable image recognition. CVPR, 2018.

[4] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle
Olukotun, Chris Re, and Matei Zaharia. Analysis of dawnbench, a time-to-accuracy machine learning
performance benchmark. arXiv preprint arXiv:1806.01427, 2018.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neurips, pages 5998–6008, 2017.

[6] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. arXiv
preprint arXiv:1804.04235, 2018.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[8] Nitish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping T.P. Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. CoRR, abs/1609.04836,
2016.

5

[9] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase the
batch size. CoRR, abs/1711.00489, 2017.

[10] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pages 1–9, Belgium,
Brussels, October 2018. Association for Computational Linguistics.

[11] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, and el al. A modern take
on the bias-variance tradeoff in neural networks. CoRR, abs/1810.08591, 2018.

[12] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of large-batch
training. CoRR, abs/1812.06162, 2018.

[13] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive
power of deep neural networks. In ICML, volume 70, pages 2847–2854. PMLR, 06–11 Aug 2017.

[14] Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris Papailiopoulos, and Paraschos Koutris. The effect of
network width on the performance of large-batch training. In Neurips, pages 9302–9309, 2018.

[15] Daniel S. Park, Jascha Sohl-Dickstein, Quoc V. Le, and Samuel L. Smith. The effect of network width on
stochastic gradient descent and generalization: an empirical study, 2019.

[16] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. CoRR, abs/1802.06509, 2018.

6

	GPipe Example Usage
	Image Classification Training Details
	Training Hyperparameters
	Consistent Training

	Machine Translation Training Details
	Baselines
	Multilingual Baselines
	Effects of large batch size

	Discussion

