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1 Useful differential privacy results

Proposition 1. A composition of two RDP algorithmsM1,M2 with RDP guarantees (α, ε1)
and (α, ε2), is (α, ε1 + ε2)-RDP.

Proof. See Mironov [2017, Proposition 1] .

The next result follows immediately from Proposition 1.

Corollary 1. Releasing a result from a T -fold composition of a (α, ε)-RDP query is (α, T ε)-
RDP.

The following Proposition states the privacy amplification via subsampling result of Wang et al.
[2019].

Proposition 2. A randomised algorithmM which accesses the whole dataset x only through
subset S of the dataset and satisfies (α, ε)-RDP w.r.t. to S, is (α, ε′)-RDP with

ε′ ≤ 1

α− 1
log
(

1 + q2

(
α

2

)
·min

{
4(eε(2) − 1), eε(2) min

{
2, (eε(∞)−1)2

}}
+

α∑
j=3

qj
(
α

j

)
e(j−1)ε(j) min

{
2, (eε(∞) − 1)j

})
,

where q = |S|/|x|, and α ≥ 2 is an integer, and ε(∞) = limj→∞ ε(j).

Proof. See Wang et al. [2019, Theorem 10] .

Finally, we can convert RDP privacy guarantees back to (ε, δ)-DP guarantees using the follow-
ing proposition.

Proposition 3. An (α, ε)-RDP algorithmM also satisfies (ε′, δ)-DP for all 0 < δ < 1 with

ε′ = ε+
log(1/δ)

α− 1
. (1)

Proof. See Mironov [2017, Proposition 3] .
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2 Proof of main text’s Theorem 1

Denote the maximally different adjacent datasets by x1,x2. The mechanism releases a sam-
ple from N1 = N (∆1, C), and N2 = N (∆2, C), where ∆1,∆2 are calculated with x1,x2,
respectively.

We want to show that

Dα(N1||N2) = log
σ1

σ2

+
1

2(α− 1)
log

σ2
2

ασ2
2 + (1− α)σ2

1

+
α

2

(µ1 − µ2)2

ασ2
2 + (1− α)σ2

1

(2)

≤ 2αB2

C
(3)

assuming that either

| log p(xi|θ′)− log p(xi|θ)| < B ∀xi, θ, θ′ (4)

or

| log p(xi|θ)− log p(xj|θ)| < B, ∀xi, xj, θ. (5)

Proof. W.l.o.g., we can assume that the differing element between x1 and x2 is the final one,
so x1,i = x2,i, i = 1, . . . , N − 1.

Since σ2
1 = σ2

2 = C, we immediately have

Dα(N1||N2) = log
σ1

σ2

+
1

2(α− 1)
log

σ2
2

ασ2
2 + (1− α)σ2

1

+
α

2

(µ1 − µ2)2

ασ2
2 + (1− α)σ2

1

(6)

=
α

2C
(µ1 − µ2)2 (7)

=
α

2C
[
N∑
i=1

log
p(x1,i|θ′)
p(x1,i|θ)

−
N∑
i=1

log
p(x2,i|θ′)
p(x2,i|θ)

]2 (8)

=
α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

− log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣2 . (9)

Assuming (4), and continuing from (9)

α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

− log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣2 (10)

≤ α

2C

( ∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

∣∣∣∣+

∣∣∣∣log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣ )2

(11)

≤ α

2C
|2B|2 (12)

≤ 2αB2

C
. (13)
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On the other hand, assuming (5), and again continuing from (9) gives

α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

− log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣2 (14)

=
α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x2,N |θ′)

− log
p(x1,N |θ)
p(x2,N |θ)

∣∣∣∣2 (15)

≤ α

2C

( ∣∣∣∣log
p(x1,N |θ′)
p(x2,N |θ′)

∣∣∣∣+

∣∣∣∣log
p(x1,N |θ)
p(x2,N |θ)

∣∣∣∣ )2

(16)

≤ α

2C
|2B|2 (17)

≤ 2αB2

C
, (18)

which is the same bound as before.

3 Proof of main text’s Theorem 2

The Barker test amounts to checking the following condition:

∆∗ + Vnc + V (2)
cor > 0, where (19)

∆∗ =
N

b

∑
i∈S

log
p(xi|θ′)
p(xi|θ)︸ ︷︷ ︸
ri

+ log
q(θ|θ′)p(θ)
q(θ′|θ)p(θ′)

, (20)

Vnc ∼ N (0, 2− s2
∆∗), (21)

N is the full dataset size, b is the batch size, s2
∆∗ is the sample variance, and summation over S

here means summing over the elements in the batch, indexed by the element number i.

In other words, with a slight abuse of notation and writing capital letters for random variables
the mechanism releases a sample from

N (N r̄, 2− Var(
N

b

∑
i∈S

Ri)) =N (N r̄, 2− N2

b2

∑
i∈S

Var(R)) (22)

≈N (N r̄, 2− N2

b
Var(r)), (23)

where (22) holds becauseRi are conditionally iid with a common distribution written asR, and
Var(r) means the sample variance estimated from the actual iid sample ri, i ∈ S we have, i.e.,
a vector of length b.

Assume that

|ri| ≤
√
b

N
∆
= c,∀ i and (24)

α <
b

5
. (25)
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We want to show that

Dα(N1 || N2) = ln
σ2

σ1︸ ︷︷ ︸
f1

+
1

2(α− 1)
ln

σ2
2

ασ2
2 + (1− α)σ2

1︸ ︷︷ ︸
f2

+
α

2

(µ1 − µ2)2

ασ2
2 + (1− α)σ2

1︸ ︷︷ ︸
f3

(26)

≤ 5

2b
+

1

2(α− 1)
ln

2b

b− 5α
+

2α

b− 5α
. (27)

Proof. As a first step, we have

0 < Var(r) =E(r2)− E(r)2 ≤ E(r2) = 1/b
∑
i∈S

r2
i ≤

b

N2
(28)

⇒ 2− N2

b
Var(r) ∈ [1, 2), (29)

where the last inequality in (28) follows from (24).

Denote the maximally different adjacent datasets as r1, r2 that produce draws from N1 and
N2 respectively, parameterised with means and variances as in (23). W.l.o.g., we can assume
that the differing element is the final one, so we have r1,i = r2,i, i = 1, . . . , b − 1. We write
i ∈ S \ xN to index a summation over the batch omitting the differing element.

The proof proceeds by bounding each of the terms f1, f2, f3 in (26).

To start with, f1 can be bounded as follows:

f1 =
1

2
ln
σ2

2

σ2
1

≤ 1

2
| ln σ

2
2

σ2
1

| ≤ 1

2
|σ2

2 − σ2
1| (30)

=
1

2
|2− N2

b
Var(r2)− (2− N2

b
Var(r1))| (31)

=
N2

2b
|1/b

∑
i∈S

r2
1,i − (r̄1)2 − 1/b

∑
i∈S

r2
2,i + (r̄2)2| (32)

=
N2

2b
|1/b(r2

1,b − r2
2,b) + (1/b

∑
i∈S

r2,i)
2 − (1/b

∑
i∈S

r1,i)
2| (33)

=
N2

2b2
|(r2

1,b − r2
2,b) + 1/b(r2

2,b − r2
1,b + 2(

∑
i∈S\xN

r2,i · r2,b −
∑

i∈S\xN

r1,i · r1,b))| (34)

=
N2

2b2
|b− 1

b
(r2

1,b − r2
2,b)−

2

b
(
∑

i∈S\xN

ri)(r1,b − r2,b)| (35)

=
N2

2b3
|(b− 1)(r2

1,b − r2
2,b)− 2(

∑
i∈S\xN

ri)(r1,b − r2,b)| (36)

≤ N2

2b3
[(b− 1)(c2) + 2(b− 1)c(2c)] (37)

=
N2

2b3
(b− 1)5c2 (38)

≤ 5

2b
, (39)

where the final inequality in (30) holds because we have (29), and (37) as well as the final
bound in (39) follow from (24).
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For the common denominator term ασ2
2 + (1−α)σ2

1 in f2 and f3, we can first repeat essentially
the previous calculation to get

σ2
2 − σ2

1 ≥ −|σ2
2 − σ2

1| (40)
= · · · (41)

= −N
2

b3
|(b− 1)(r2

1,b − r2
2,b)− 2(

∑
i∈S\xN

ri)(r1,b − r2,b)| (42)

≥ −N
2

b3
[(b− 1)c2 + 2(b− 1)c(2c)] (43)

= −N
2

b3
(b− 1)5c2 (44)

≥ −5

b
. (45)

Combining (45) and (29) we get

ασ2
2 + (1− α)σ2

1 = σ2
1 + α(σ2

2 − σ2
1) (46)

≥ 1− α5

b
> 0, (47)

where the final inequality follows from (25).

For the numerator in f3 we have

(µ1 − µ2)2 =

(
N

b

∑
i∈S

r1,i −
N

b

∑
i∈S

r2,i

)2

(48)

=

(
N

b
(r1,b − r2,b)

)2

(49)

≤
(

2Nc

b

)2

(50)

≤ 4

b
. (51)

Finally, using the derived bounds in (39), (47), and (51) with the fact that σ2
2 ≤ 2 from (29), the

bound for the Rényi divergence (26) becomes

Dα(N1 || N2) ≤ 5

2b
+

1

2(α− 1)
(ln 2− ln(1− 5α

b
)) +

α

2

4

b

1

1− 5α
b

(52)

≤ 5

2b
+

1

2(α− 1)
ln

2b

b− 5α
+

2α

b− 5α
. (53)

If we instead use the tempered log-likelihoods with temperature τ = N0

N
, the effect is to replace

ri by τri. The same proof then holds when instead of N we write N0.

4 Bounding the approximations errors

As mentioned in the main text, with finite data and b < N the acceptance test (18) in the main
text is an approximation. For this case, there are some known theoretical bounds for the errors
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induced. The general idea with the following Theorems is that by bounding the errors induced
by each approximation step, we can find a bound on the error in the stationary distribution of
the approximate chain w.r.t. the exact posterior. The references in this Section mostly point to
the main text. The exceptions are obvious from the context.

First, Theorem 1 gives an upper bound for the error due to ∆∗ having approximately normal
instead of exactly normal distribution as in (20):

Theorem 1.
sup
y
|P(∆∗ < y)− Φ(

y −∆

s∆∗
)| ≤ 6.4E[|Z|3] + 2E[|Z|]√

b
,

where Z = N(log p(X|θ′)
p(X|θ) − E[log p(X|θ′)

p(X|θ) ]).

Proof. See [Seita et al., 2017, Cor. 1] .

Next, we have a bound for the error in the test quantity (18) relative to the exact test (5) given in
Theorem 2. The original proof [Seita et al., 2017, Cor. 2] assumes that C = 1 and (16) holds
exactly. We present a slightly modified proof that holds for any C and also accounts for the
error due to having only an approximate correction to the logistic distribution. We start with a
helpful Lemma before the actual modified Theorem.

Lemma 1. Let P (x) and Q(x) be two CDFs satisfying supx |P (x)−Q(x)| ≤ ε with x in some
real range. Let R(y) be the density of another random variable Y . Let P ′ be the convolution
P ∗R andQ′ be the convolutionQ∗R. Then P ′(z) (resp. Q′(z)) is the CDF of sum Z = X+Y
of independent random variables X with CDF P (x) (resp. Q(x)) and Y with density R(y).
Then

sup
x
|P ′(x)−Q′(x)| ≤ ε.

Proof. See [Seita et al., 2017, Lemma 4] .

Theorem 2. If supy |P(∆∗ < y) − Φ(y−∆
s∆∗

)| ≤ ε1(θ′, θ, b) and supy |S ′(y) − S(y)| ≤ ε2, then

supy |P(∆∗ + Vnc + V
(C)
cor < y) − S(y − ∆)| ≤ ε1(θ′, θ, b) + ε2, where s∆∗ is the sample

standard deviation of ∆∗, S ′ is the cdf of the approximate logistic distribution produced by
N (0, C) + V

(C)
cor , and S is the exact logistic function.

Proof. As in the original proof [Seita et al., 2017, Cor. 2] the main idea is to use Lemma 1
two times. First, take P (y) = P(∆∗ < y), Q(y) = Φ(y−∆

s∆∗
) and convolve with Vnc which has

density φ( x√
C−s2

∆∗ )
). For the second step, take the results P ′(y) = P(∆∗ + Vnc < y), Q′(y) =

Φ(y−∆√
C

) and convolve with the density of V (C)
cor to get P ′′(y) = P(∆∗+Vnc+V

(C)
cor < y), Q′′(y) =

S ′(y−∆). By Lemma 1, both convolutions preserve the error bound ε1(θ′, θ, b), and we there-
fore have

sup
y
|P(∆∗ + Vnc + V (C)

cor < y)− S(y −∆)| (54)

= sup
y
|P(∆∗ + Vnc + V (C)

cor < y)− S ′(y −∆) + S ′(y −∆)− S(y −∆)| (55)

≤ sup
y
|P(∆∗ + Vnc + V (C)

cor < y)− S ′(y −∆)|+ sup
y
|S ′(y)− S(y)| (56)

≤ ε1(θ′, θ, b) + ε2, (57)

where (56) follows from the triangle inequality.
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Finally, a bound on the test error implies a bound for the stationary distribution of the Markov
chain relative to the true posterior, given in Theorem 3. Writing dv(P,Q) for the total variation
distance between distributions P and Q, T0 for the transition kernel of the exact Markov chain,
S0 for the exact posterior, and Sε for the stationary distribution of the approximate transition
kernel where ε is the error in the acceptance test, we have:

Theorem 3. If T0 satisfies the contraction condition dv(PT0,S0) < ηdv(P,S0) for some con-
stant η ∈ [0, 1) and all probability distributions P , then

dv(S0,Sε) ≤
ε

1− η
,

where ε is the bound on the error in the acceptance test.

Proof. See [Korattikara et al., 2014, Theorem 1] .

Generally, especially the contraction condition in Theorem 3 can be hard to meet: it can be
shown to hold e.g. for some Gibbs samplers (see e.g. Brémaud 1999, Theorem 6.1) but it is not
usually valid for an arbitrary model, and even checking the condition might not be trivial.

5 Numerical approximation of the correction distribution

As noted in the main text, we need to find an approximate distribution V (C)
cor s.t.

Vlog
d
= N (0, C) + V (C)

cor , (58)

where Vlog has a standard logistic distribution. The approximation method of Seita et al. [2017]
casts the problem into a ridge regression problem, which can be solved effectively. However,
nothing constrains the resulting function from having negative values. In order to use it as
an approximate pdf, Seita et al. [2017] set these to zeroes and note that as long as C is small
enough, such values are rare and hence do not affect the solution much. In practice, their
solution seems to work very well with small values of C, e.g. when C ≤ 1.

Since we want to use larger C for the privacy, we propose to approximate V (C)
cor with a Gaussian

mixture model (GMM). Since the result is always a valid pdf, the problem of negative values
does not arise.

To find the correction pdf, denote the density of the GMM approximation with K components
by f̃cor, the GMM component parameters by πk, µk and σk, and the standard normal density by
φ. We have

flog(x) = (fnorm ∗ fcor)(x) ' (fnorm ∗ f̃cor)(x)

=

∫
R
fnorm(x)f̃cor(x− t)dt

=

∫
R
φ(

x√
C

)[
K∑
k=1

πkφ(
x− t− µk

σk
)]dt

=
K∑
k=1

πkφ(
x− µk√
C + σ2

k

) = f̃
(C)
log (x; πk, µk, σk, k = 1, . . . , K)
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As the logistic pdf is symmetric around zero, we require our GMM approximation to be sym-
metric as well. We achieve this by creating a counterpart for each mixture component with an
opposite sign mean and identical variance and weight. To construct the approximation on some
interval [−a, a] ⊂ R, we discretise the interval into n points, and fit the GMM by minimising
the loss function

L(π, µ, σ) = ‖flog − f̃ (C)
log ‖2 (59)

calculated over the discretisation. Since GMM is a generative model, sampling from the opti-
mised approximation is easy.

Figure 1 shows the approximation error maxy |S ′(y) − S(y)|, where S ′ is the approximate lo-
gistic ecdf and S the exact logistic cdf, due to Ṽcor using the ridge regression solution proposed
by Seita et al. [2017] and the GMM. The error measure is the same as in Theorem 2 in the
Supplement. Empirically, as shown in the Figure, we can have noticeably better approximation
especially with larger C values.

1.0 1.5 1.75 2.0
C

10 3

10 2

10 1

m
ax

|S
'(y

)-S
(y

)|

Vcor + N(0, C) estimated with 105 samples
Ridge regression
GMM

Approximation error due to Vcor

Figure 1: Approximation error due to Ṽcor with error bars showing the standard error of the mean
calculated from 20 runs. With the ridge regression solution proposed by Seita et al. [2017] the error
increases quickly when C > 1. Using the GMM approximation we can achieve significantly smaller
error with C = 2.

Figure 2 shows the two approximations with increasing C. When the negative values in the
ridge regression solution are projected to zeroes, the variance of Vcor increases and the resulting
approximate Ṽlog has variance much larger than the actual π2/3 it should have. This also shows
in the resulting approximation. Figure 3 shows the empirical cdf for both approximations and
for the true logistic distribution, and the absolute distance between the approximations S ′ and
the true logistic cdf S.

To calculate the ridge regression solution for [−10, 10], we use the original code of Seita et al.
[2017] with parameter values n = 4000, λ = 10.0 used in the original paper. The problems with
larger C values persisted with other parameter settings we tested. Note that the discretisation
granularity parameter n used in the two methods are not directly comparable.

To fit the GMMs with K components, we take the interval [−10, 10] with n = 1000 points
for calculating the loss function, and run 20000 optimisation iterations with PyTorch [Paszke
et al., 2017]. We use Adam optimiser [Kingma and Ba, 2014] with learning rate η = 0.01 and
otherwise default settings. The approximation is forced to be symmetric about zero by adding
mirrored components: for the kth component we add a copy but set the mean as −µk, and set

8



C=1.0

C=1.501

C=1.75

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

C=1.999

Seita et al. approximate correction distribution log-pdfs with varying C
n=4000, =10.0

(a) Ridge regression results

C=1.0

C=1.5

C=1.75

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

C=2.0

GMM approximate correction distribution log-pdfs with varying C
n=1000

(b) GMM results

Figure 2: Approximate correction distribution log-densities with varying C values. Figure 2(a) shows
the results for the ridge regression solution used by Seita et al.: as C increases, the amount of negative
values that are projected to zeroes, which show as gaps in the log-pdf, increases markedly. Figure 2(b)
shows corresponding results for our GMM solution: the approximation is always a valid pdf over R.

the weights as πk/2 for both, i.e., use the mean of the original and the mirrored component. We
use K = 50 in the test, which gives 100 components with mirroring.
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(a) Approximation ecdf and true logistic cdf
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Xcor from ridge regression
Xcor from GMM

Abs differences between approximations and true logistic cdf for C = 2.0

(b) Absolute differences from true logistic cdf

Figure 3: Figure 3(a) shows the empirical cdf for the approximate logistic distributions calculated using
the ridge regression solution of Seita et al. and our GMM together with true logistic cdf. The variance
of Vcor using ridge regression is too high and the resulting Vcor + N (0, C) is clearly off. The ecdf for
GMM is almost indistinguishable from the true cdf. Figure 3(b) shows the absolute distances between
the approximation ecdf and the true logistic cdf.
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