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Abstract

This paper contains the supplementary material to the paper Reliable training and
estimation of variance networks. The current document contains the following
sections: 1. Further experimental results, 2. Additional details about the locality
sampler, 3. Details about the network architecture and training for the generative
experiments, 4. explanation how the generative toy data was generated.

1 Further results

Gradient experiments In Fig. 1 we have plotted the sparsity index and variance of gradient for
both the mean (top row) and variance function (bottom row). We do this for both normal mini-
batching and our proposed locality sampler. Sparsity is measured as `00.001(∇) = {j,∇j ≤ 0.001}
and the sparsity index is then given by SI =

`00.001(∇)
|∇| . We observe for the mean function, that the

sparsity index and variance is similar for the two methods, indicating that our locality sampler does
not improve on the fitting of the mean function, as expected. However for the variance function we
see a clear gap in sparsity and variance, indicating that our locality sampler gives more local and
stable updates to variance networks.

UCI benchmark (RMSE) In Table 1 the test set RMSE results for the UCI regression benchmark
can be seen. We clearly observe that all neural network based methods achieve nearly identical
RMSE for all datasets, indicating that the mean function is similarly trained for all the methods.

N D GP SGP NN BNN MC-Dropout Ens-NN Combined
Boston 506 13 2.79 ± 0.52 2.98 ± 0.55 4.45 ± 1.41 3.45 ± 0.87 3.01 ± 0.99 3.33 ± 1.33 3.11 ± 0.35
Carbon 10721 7 - 1.01 ± 0.01 0.41 ± 0.0 0.18 ± 0.1 0.29 ± 0.0 0.41 ± 0.0 0.35 ± 0.01
Concrete 1030 8 6.03 ± 0.59 6.45 ± 0.64 7.71 ± 1.32 5.78 ± 0.21 5.33 ± 0.65 5.65 ± 0.55 5.75 ± 0.41
Energy 768 8 1.98 ± 0.76 2.12 ± 0.56 1.67 ± 0.44 1.89 ± 0.04 1.69 ± 0.19 2.13 ± 0.46 1.70 ± 0.21
Kin8nm 8192 8 - 0.08 ± 0.0 0.21 ± 0.01 0.18 ± 0.02 0.12 ± 0.01 0.01 ± 0.01 0.12 ± 0.01
Naval 11934 16 - - 0.01 ± 0.0 0.01 ± 0.0 0.01 ± 0.0 0.01 ± 0.0 0.01 ± 0.0
Power plant 9568 4 - 4.65 ± 0.12 4.23 ± 0.33 4.12 ± 0.45 4.13 ± 0.13 4.11 ± 0.21 4.12 ± 0.13
Protein 45730 9 - - 4.38 ± 0.07 4.67 ± 0.94 4.19 ± 0.08 4.36 ± 0.07 4.52 ± 0.19
Superconduct 21263 81 - 11.32 ± 0.38 11.73 ± 0.46 11.07 ± 1.7 11.44 ± 0.39 11.63 ± 0.49 11.65 ± 0.65
Wine (red) 1599 11 0.88 ± 0.06 0.65 ± 0.04 0.66 ± 0.06 0.69 ± 0.41 0.64 ± 0.06 0.67 ± 0.06 0.68 ± 0.11
Wine (white) 4898 11 - 0.65 ± 0.03 0.67 ± 0.04 0.68 ± 0.32 0.71 ± 0.04 0.78 ± 0.04 0.72 ± 0.09
Yacht 308 7 0.42 ± 0.21 0.72 ± 0.21 1.63 ± 0.61 1.05 ± 0.11 1.11 ± 0.48 1.58 ± 0.58 1.27 ± 0.11
Year 515345 90 - - 12.47 ± 0.96 9.01 ± 0.45 8.92 ± 0.23 8.88 ± 0.13 8.85 ± 0.05

Table 1: Dataset characteristics and RMSE for the different methods. A - indicates the models was
infeasible to train.

Timings of models In Table 2 we show the average computation time for each model. The
experiments was conducted with an Intel Xeon E5-2620v4 CPU and Nvidia GTX TITAN X GPU.
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Figure 1: Left: Sparsity index for mean (top) and variance (bottom) network. Right: Variance of
gradient for mean (top) and variance (bottom) network. The variance network was disabled for the
first 2500 iterations, to warm up the mean function to secure convergence.

We note that our model suffers from long computations for very large datasets, mainly due to the
computation of the neighborhood graph in the locality sampler. This could be reduced by using
fast approximative method for k-nearest-neighbor and by reducing data dimensionality e.g. PCA
dimensionality reduction.

N D GP SGP NN BNN MC-Dropout Ens-NN Combined
Boston 506 13 8.37 +- 2.92 91.86 +- 30.12 94.04 +- 2.24 81.32 +- 1.83 98.08 +- 2.0 479.1 +- 12.49 93.39 +- 1.82
Carbon 10721 7 - 192.57 +- 72.28 90.05 +- 3.4 80.95 +- 2.04 98.62 +- 1.85 439.45 +- 23.01 123.61 +- 2.84
Concrete 1030 8 7.48 +- 1.2 173.73 +- 4.0 92.91 +- 4.17 81.02 +- 2.04 97.94 +- 1.84 468.94 +- 10.81 97.65 +- 6.4
Energy 768 8 10.48 +- 4.12 121.39 +- 52.2 92.91 +- 2.14 80.92 +- 2.14 97.86 +- 2.13 475.04 +- 12.61 93.01 +- 1.29
Kin8nm 8192 8 - 1526.29 +- 20.28 92.22 +- 4.65 80.65 +- 2.11 97.85 +- 2.87 459.81 +- 27.66 123.15 +- 2.86
Navel 11934 16 - 9.79 +- 0.23 91.2 +- 3.28 82.97 +- 1.84 98.64 +- 1.89 482.74 +- 8.54 136.25 +- 3.29
Power 9568 4 - 1267.82 +- 783.28 92.23 +- 3.28 81.29 +- 1.98 98.26 +- 1.87 472.39 +- 9.73 118.26 +- 1.86
Protein 45730 9 - - 138.49 +- 2.51 124.72 +- 1.86 140.73 +- 3.32 707.69 +- 11.02 658.63 +- 11.75
Superconduct 21263 81 - 313.9 +- 2.9 95.27 +- 3.43 90.71 +- 1.86 90.25 +- 1.67 477.57 +- 11.91 235.72 +- 3.8
Wine (red) 1599 11 35.33 +- 19.09 262.69 +- 10.14 93.51 +- 2.09 80.67 +- 2.04 97.78 +- 2.58 416.02 +- 23.9 130.61 +- 7.91
Wine (white) 4898 11 - 781.13 +- 8.2 91.97 +- 2.41 80.94 +- 1.75 97.61 +- 2.73 451.65 +- 19.04 99.44 +- 1.33
Yacht 308 7 0.93 +- 0.32 22.74 +- 11.98 92.82 +- 3.47 81.0 +- 1.92 98.27 +- 1.68 422.9 +- 35.85 105.33 +- 2.32
Year 515345 90 - - 139.45 +- 6.15 643.96 +- 4.17 77.96 +- 2.09 725.27 +- 20.08 2453.62 +- 18.7

Table 2: Timings(s) for the different models evaluated on the UCI benchmark

Ablation study (RMSE) In Fig. 2 we have plotted the RMSE for different combinations of our
methodologies. Since the RMSE is only influenced by how well µ(x) is fitted, the difference in log
likelihood that we observe between the models (see paper) must be explained by how well σ2(x) is
fitted.

Active learning In Figs. 3 and 4 we respective shows the progress of RMSE and log likelihood on
all 13 dataset. We observe that for some of the datasets (Boston, Superconduct, Power) our proposed
Combine model achieves faster learning than other methods. On all other datasets we are equally
good as the best performing model.
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Figure 2: Our contributions evaluated on four different UCI benchmark datasets.
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Figure 3: Average test RMSE and standard errors in the active learning experiments for all datasets.
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Figure 4: Average test log likelihood and standard errors in the active learning experiments for all
datasets.

Generative modeling toy data In Fig. 6 we show marginal distribution, pairwise pointplots and
pairwise joint distribution for our artificially dataset used in the generative setting. Top row show
the ground true data, middle row shows reconstructions and samples from standard VAE model and
bottom row show reconstructions and samples from our proposed Comb-VAE model. We observe
that reconstruction are similar for the two models, but the quality of the generative samples are much
better for Comb-VAE.
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Generative modeling of image data In Fig. 5 we show a meshgrid of samples from VAE and
Comb-VAE on the MNIST dataset. We clearly see how proper extrapolation of variance in Comb-
VAE can be used to "mask" when we are inside our data region and when we are outside. For standard
VAE we observe a near constant variance added to the images.

(a) VAE (b) Comb-VAE

Figure 5: Meshgrid of latent space. For each subplot we sampled a mesh grid [−4, 4]× [−4, 4] of
[50, 50] points, which we used to generate samples from.

2 On the parametrization of the t-distributed predictive distribution

We parametrize the Student-t distribution by letting the variance σ2 have an inverse-Gamma dis-
tribution with shape and scale parameters α and β. We use that if σ2 ∼ INV-GAMMA(α, β) then
1
σ2 ∼ Γ(α, β). Then

p(y|µ, α, β) =

∫ ∞
0

N (y|µ, σ2)
βα

Γ(α)
(σ2)−(α+1) exp(− β

σ2
)dσ2

=
βα

Γ(α)
√

2π

∫ ∞
0

(σ2)−(α+1)− 1
2 exp(− 1

σ2
(β +

1

2
(y − µ)2))dσ2

=
βα

Γ(α)
√

2π

Γ(α+ 1
2 )(

β + 1
2 (y − µ)2

)α+ 1
2

,

where we substituted the variable σ2 with 1
σ2 and used that the remaining was a Gamma integral.

3 Parameters of the locality sampler

In Algorithm 1 a pseudoimplementation of our proposed locality sampler can be seen. The two
important parameters in this algorithm are the primary sampling units (psu) and secondary sampling
units (ssu). In Fig. 7 and 8 we visually show the effect of these two parameters.

For all our experiments we set psu=3 and ssu=40 when we are training the mean function and for
variance function we set psu=1 and ssu=10.
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(b) VAE (R)
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(c) VAE (S)
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(d) Comb-VAE (R)
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Figure 6: Pairwise plots between all sets of variables for our artificially dataset in the generative
setting.
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Algorithm 1 Locality-sampler
Input N datapoints, a metric d on feature space RD, integers m,n, k.

1: For each datapoint calculate the k nearest neighbors under the metric d.
2: Sample m primary sampling units with uniform probability without replacement among all N

units.
3: For each of the primary sampling units sample n secondary sampling units among the primary

sampling units k nearest neighbors with uniform probability without replacement.
Output All secondary sampling units is a sample of at most m · n points. If a new sample is needed
repeat from Step 2.

Figure 7: The effect of changing the size of the primary sampling unit. From top to bottom:
psu = [1, 2, 3]. Each column corresponds to a sample from the locality sampler.

Figure 8: The effect of changing the size of the secondary sampling unit. From top to bottom:
ssu = [10, 50, 100]. Each column corresponds to a sample from the locality sampler.

4 Implementation details for regression experiments

All neural network based models were implemented in Pytorch [Paszke et al., 2017], except for the
Baysian neural network which was implemented in Tensorflow [Abadi et al., 2015]. GP models
where implemented in GPy [GPy, since 2012]. Below we have stated details for all models:

GP Fitted using a ARD kernel and with default settings of GPy.
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SGP Fitted using a ARD kernel and with default settings of GPy. Number of inducing points was
set to min(500, |Dtrain|).

NN Model use two networks, one for the predictive mean and one for the predictive variance. Model
was trained to optimize the log-likelihood of data.

BNN We use a standard factored Gaussian prior for the weights and use the Flipout approximation
[Wen et al., 2018] for the variational approximation.

MC-Dropout Model use a single network, where we place dropout on all weights. The dropout
weight was set to 0.05. The model was trained to optimize the RMSE of data.

Ens-NN Model consist of an ensemble of 5 individual NN models, each modeled as two individual
networks. Each are trained to optimize the log-likelihood of data. Only difference between
ensemble models is initialization.

Combined Model use three networks, one for the mean function, one for the α parameter and one
for the β parameter. We set the number of inducing points to min(500, |Dtrain|). For the γ
in the scaled-and-translated sigmoid function ν(x) we initialize it to 1.5, and try to minimize
it during training. Model was trained to optimize the log-likelihood of data.

For each neural network based approach, we follow the experimental setup [Hernández-Lobato and
Adams, 2015]. All individual networks was modeled a single hidden layer MLPs with 50 neurons for
all other datasets than "Protein" and "Year" where we use 100 neurons. Except for the output of each
network, the activation function used is ReLU. For the output of the mean networks, no activation
function is applied. For the output of the variance network, the Softplus activation function is used to
secure positive variance. All neural network based models where trained using the Adam optimizer
[Kingma and Ba, 2015] with a learning rate of 10−1 using a batch size of 256. All models were
trained for 10.000 iterations.

The code can found here: https://github.com/SkafteNicki/john.

5 Generative network architecture

Pixel values of the images were scaled to the interval [0,1]. Each pixel is assumed to be i.i.d. Gaussian
distributed. For the encoders and decoders we use multilayer perceptron networks, see table below.

Layer 1 Layer 2 Layer 3 Layer 4
µencoder 512 (BN + ReLU) 256 (BN + ReLU) 128 (BN + ReLU) d (BN + Linear)
σ2
encoder 512 (BN + ReLU) 256 (BN + ReLU) 128 (BN + ReLU) d (Softplus)

µdecoder 128 (BN + ReLU) 256 (BN + ReLU) 512 (BN + ReLU) D (ReLU)
σ2
decoder 128 (BN + ReLU) 256 (BN + ReLU) 512 (BN + ReLU) D (Softplus)

The numbers corresponds to the size of the layer and the parenthesis states the used activation
function and whether or not batch normalization was used. D indicates the size of the images i.e.
D = width × height × channels. For MNIST and FashionMNIST these are 28,28,1 and for
CIFAR10 and SVHN these are 32,32,1. d indicates the size of the latent space. For MNIST and
FashionMNIST we set d = 2 for visualization purpose and for CIFAR10 and SVHN we set d = 10
to be able to capture the higher complexity of these datasets.

To train the networks we used the Adam optimizer [Kingma and Ba, 2015] with learning rate 10−3

and a batch size of 512. We train for 20000 iterations without early stopping. Additionally, we use
warm-up for the KL term [Sønderby et al., 2016], by scaling it with w = min

(
1, it

warmup

)
where it

is the current iteration number and warmup was set to half the number of iterations. This secures
that we converge to stable reconstructions before introducing too much structure in the latent space.

6 Artificial Data

The data considered in Section 4 are generated in the following way: first we sample points in R2 in
a two-moon type way. See details in Algorithm 2. We generate 500 points in this way to establish a
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’known’ latent space. We then map these to four dimensions (v1, v2, v3, v4) by

v1(z1, z2) = z1 − z2 + ε ·
√

0.03 + 0.05 · (3 + z1), (1)

v2(z1, z2) = z21 +
1

2
z2 + ε ·

√
0.03 + 0.03 · ‖z‖2, (2)

v3(z1, z2) = z1z2 − z1 + ε ·
√

0.03 + 0.05 · ‖z‖2, (3)

v4(z1, z2) = z1 + z2 + ε ·

√
0.03 +

0.03

0.2 + ‖z‖2
, (4)

where all ε ∼ N (0, 1) and independent. A typical dataset from this procedure is shown in Figure 9.

Algorithm 2 Two moon sampler

1: Sample U ∼ Bernoulli(0.5).
2: if U = 1 then
3: Set c = (0.5, 0) and sample α1 ∼ unif[0, π].
4: Let z = c+ (cos(α1), sin(α1)), and sample α2 ∼ unif[0, 2π] and u ∼ unif[0, 1].
5: Let z = z + u

4 · (cos(α2), sin(α2)).
6: else
7: Set c = (−0.5, 0) and sample α1 ∼ unif[π, 2π].
8: Let z = c+ (cos(α1), sin(α1)), and sample α2 ∼ unif[0, 2π] and u ∼ unif[0, 1].
9: Let z = z + u

4 · (cos(α2), sin(α2)).
return z
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Figure 9: An example of the two moon data, and its transformation into R4. Shown as pairwise
scatterplots.
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