
Appendix: Modeling Uncertainty by Learning a
Hierarchy of Deep Neural Connections

Raanan Y. Rohekar, Yaniv Gurwicz, Shami Nisimov, Gal Novik

Intel AI Lab

A BRAINet Structure Learning: A Detailed Description

In this section we provide a detailed description of Algorithm 1 and its three main stages. For more
details, specific to Bayesian networks (not to be confused with Bayesian neural networks), refer to
Pearl [4].

Stage a. First in line 7, a bootstrap sample x∗ is created by sampling-with-replacement from the
training data, x (non-parametric bootstrap). The bootstrap principle is a common approach used to
approximate a population distribution by a sample distribution [1].

Next in line 8, the bootstrap sample x∗ is used for learning a Bayesian network structure B∗, with
sparser connectivity thanB, such thatB can mimicB∗, B∗ � B [4]. That is, for every set of parameters
ν, quantifying B, there exists a set of parameters ν∗, quantifying B∗, such that pB,ν(X) = pB∗,ν∗(X).
The B∗ structure is learned by testing conditional independence of order n between pairs of nodes
connected in B. That is, X ⊥⊥ X ′|S for every connected pair X ∈ X and X ′ ∈ Xex given a
condition set S ⊂ {Xex ∪X} of size n. Edges between conditionally independent nodes are then
removed, and the remaining edges are directed by applying two rules. First, v-structures are identified
and directed. Then, edges are continually directed, by avoiding the creation of new v-structures and
directed cycles, until no more edges can be directed. Following the definition of Yehezkel & Lerner
[6] for d-separation resolution, we say that this function increases the graph d-separation resolution
from n− 1 to n.

Finally in line 9, the procedure SplitAutonomous (line 7) identifies autonomous sets: one de-
scendant set, XD, and k ancestor sets, XA1, . . . ,XAk. This decomposition is achieved in two
steps. First, the nodes having the lowest topological order (nodes without outgoing directed edges)
are grouped into XD, and then, XD is removed (temporarily) from B revealing unconnected sub-
structures. The number of unconnected sub-structures is denoted by k and the nodes set of each
sub-structure is denoted by XAi (i ∈ {1 . . . k}).
Stage b. The BRAINet structure learning algorithm is recursively called for each autonomous (line
11) and descendant (line 12) set. An autonomous set in B includes all its nodes’ parents (complying
with the Markov property) and thus, the algorithm can be called recursively and independently. Each
recursive call returns a BRAINet model: LAi for each ancestor set XAi, and LD for the descendant
set XD. Note that, each recursive call, has a smaller field-of-view (FOV) over the input X compared
to its caller function (XAi ⊂X).

Stage c. BRAINet models returned from the recursive calls are merged by connecting the deepest
layer of each of them in the following manner. First in line 13, a layer container is created, denoted
by Lt, where t is an index created in line 6 and represents one of s bootstrap-created splits. Next in
line 14, for the i-th BRAINet model, created for ancestor set XAi, a layer of neurons, Lti is created.
Finally in line 15, the BRAINet models returned from the recursive calls are connected. The deepest
layer of LD is connected to all the newly created layers Lt1, . . . , L

t
k and the deepest layer of the i-th

BRAINet model created for XAi is connected to layer Lti.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



As an example, in the diagram below, we show the results of lines 7-9 of Algorithm 1 in a tree-form
(we use s = 2). Each rectangle encapsulates the result of multiple possible decomposition, obtained
from multiple bootstrap samples. For simplifying the explanation, we omit the distinction between
ancestor and descendant sets. For example, in the top rectangle, X is decomposed, using statistical
independence tests of order n, in two (s = 2) manners: 1) {X1,X2,X3,X4}, 2) {X5,X6,X7, }.
Each set Xi is further recursively decomposed using statistical independence tests of order n+ 1.
For example, X7 is decomposed in two manners (using different bootstrap samples).
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B Complexity of BRAINet Structure Learning

The complexity of the proposed algorithm is essentially identical to that of the B-RAI algorithm.
That is, O(nksk+1) conditional independence tests, and O(nsk) Bayesian scoring function calls.,
where s is the number of splits, n is the number of input variables (|X|), and k is the maximal order
of conditional independence in the data.

The running-trace of RAI in the worst-case scenario is a single path in the GGT, and has a CI-test
complexity of O(nk), and the ratio between B-RAI and RAI is

∑k
i=0 s

i.

For the Bayesian scoring function, the complexity is O(nsk), as only the leaves (when the exit
condition is satisfied) are scored. Note that the worst-case scenario is the case where the true
underlying graph is a complete graph, which is not typical in real-world cases. In practice, significantly
fewer CI tests and scoring operations are performed.

C BRAINet Uncertainty Estimation

C.1 A Relation between Generative Uncertainty and Predictive Uncertainty

During the construction of a BRAINet model, multiple connectivity patterns at each point in the
network are learned using different bootstrap samples. Thus, when the epistemic uncertainty of θ
is high, connectivity patterns learned from different bootstrap samples are likely to be dissimilar.
However, when the epistemic uncertainty of θ lowers (e.g., for a larger training set), the connectivity
patterns for any two bootstrap samples are more likely to be similar, at which point the aleatoric
uncertainty dominates, and further reducing epistemic uncertainty (e.g., by adding more training data)
will not result in a reduction of the number of unique connectivity patterns.

C.2 An example for Epistemic Uncertainty Estimation using MI Criterion

In this section we repeat the experiment described by Smith & Gal [5]. Result is in Figure 2, where
we also plot 12 images generated by a VAE: 6 having low MI score, and 6 having high MI score.
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Figure 1: Number of unique structures (neural connectivity patterns) embedded in a single BRAINet
(s = 3) for MNIST, as a function of the training set size. As the epistemic uncertainty increases
(small training sets), more unique structures are automatically encoded in BRAINet, resulting in a
broader prior over the network parameters. At the other end, as the training set size increases, the
number of unique structures decreases and converges to a number greater than one, indicating the
existence of an aleatoric uncertainty. Results are averaged over 5 experiments; error bars indicate
standard deviation.
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Figure 2: Epistemic uncertainty estimate using BRAINet (s = 2) as measured by mutual information,
visualized on the latent space of a VAE on MNIST. In this experiment, as suggested by Smith &
Gal [5], a VAE with latent space size 2 was trained and the axes are the values of these 2 latent
variables. Brighter pixels correspond to a higher mutual information, i.e. a higher uncertainty. Images
were then generated by setting values for each latent variable, 100 values in [−10 : +10]. Colored
pixels correspond to the training data. As demonstrated, ambiguous images, {A, ...,F}, yield high
epistemic uncertainties, as opposed to the clearer images of {G, ...,L}.

D Experiments

This section contains tables and figures referenced in the paper. See captions for a detailed explanation.

Firstly, we wish to emphasize an important property of the BRAINet structure, which allows us to
sample networks that are significantly smaller than the overall structure. This leads to a significantly
smaller computational cost, during training and inference, than other methods. For example, in
a BRAINet for MNIST, the average number of operations (multiply and add) during inference
is ∼ 5.5× smaller than other methods (and has ∼ 5.5× fewer parameters to train each epoch).
Moreover, in contrast to MC-dropout, which samples neurons from each layer, BRAINet samples
full layers, making it computationally efficient using common hardware. In all our experiments, we
report only the size of the full BRAINet structure and ignore the sizes of the sampled networks.
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Figure 3: Area under ROC and precision-recall curves as a function of the number of stochastic
forward passes. It is evident that BRAINet achieves high AUC even for a samll number of forward
passes, compared to MC-dropout. This result corresponds to the OOD-detection experiment described
in Table 1 of the main paper. Architecture: ResNet20, in-distribution: CIFAR-10, OOD: SVHN.

Table 1: The effect of conditioning the discriminative function on a MAP estimation of a generative
network (BRAINet) for Deep Ensembles [3]. Regression Benchmark datasets comparing RMSE and
NLL.

RMSE NLL
DATASET ENSEMBLE BRAINET+ENSEMBLE ENSEMBLE BRAINET+ENSEMBLE

CONCRETE 5.46± 0.52 4.17± 0.59 2.92± 0.16 2.56± 0.13
BOSTON HOUSING 2.90± 0.71 2.17± 0.56 2.37± 0.25 1.88± 0.21
POWER PLANT 4.11± 0.16 4.10± 0.14 2.82± 0.03 2.8± 0.03
YACHT 3.09± 1.03 1.10± 0.36 2.25± 0.39 1.09± 0.14
KIN8NM 0.09± 0.00 0.08± 0.00 -1.18± 0.02 -1.23± 0.03
ENERGY 0.95± 0.26 0.71± 0.10 1.16± 0.25 1.02± 0.13
NAVAL PROPULSION PLANT 0.00± 0.00 0.00± 0.00 -3.55± 0.06 -3.68± 0.05
WINE 0.64± 0.04 0.59± 0.05 0.92± 0.08 0.76± 0.05
PROTEIN 4.62± 0.17 4.16± 0.15 2.79± 0.03 2.60± 0.09

Table 2: The effect of conditioning the discriminative function on a MAP estimation of a generative
network (BRAINet) for MC-dropout [2]. Regression Benchmark datasets comparing RMSE and
NLL.

RMSE NLL
DATASET MC-DROPOUT BRAINET+DROPOUT MC-DROPOUT BRAINET+DROPOUT

CONCRETE 4.83± 0.52 3.09± 0.78 2.92± 0.09 2.64± 0.12
BOSTON HOUSING 2.80± 0.52 1.90± 0.38 2.39± 0.15 2.16± 0.08
POWER PLANT 4.02± 0.18 4.00± 0.16 2.80± 0.05 2.79± 0.04
YACHT 1.42± 0.48 0.61± 0.25 1.60± 0.13 1.38± 0.06
KIN8NM 0.10± 0.00 0.08± 0.00 -0.95± 0.03 -1.10± 0.03
ENERGY 0.88± 0.13 0.56± 0.08 1.62± 0.03 1.44± 0.02
NAVAL PROPULSION PLANT (1.8± 0.2)e−3 (1.2± 0.3)e−3 -4.22± 0.01 -4.35± 0.02
WINE 0.62± 0.04 0.54± 0.04 0.93± 0.06 0.82± 0.05
PROTEIN 3.60± 0.03 3.46± 0.19 2.69± 0.01 2.67± 0.03
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Table 3: Comparison between BRAINet and various state-of-the-art methods on large networks. In
all benchmarks, BRAINet achieves the lowest expected calibration error [9].

DATASET MODEL SGD SWA SWAG- SWAG KFAC- SWA- SWA- BRAINET

DIAG LAPLACE DROPOUT TEMP

CIFAR-10 VGG-16 0.0483 0.0408 0.0267 0.0158 0.0094 0.0284 0.0366 0.0090

CIFAR-10 PRERESNET-164 0.0255 0.0203 0.0082 0.0053 0.0092 0.0162 0.0172 0.0036

CIFAR-10 WRN28X10 0.0166 0.0087 0.0047 0.0088 0.0060 0.0094 0.0080 0.0040

CIFAR-100 VGG-16 0.1870 0.1514 0.0819 0.0395 0.0778 0.1108 0.0291 0.0247
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