
We thank all the reviewers for their constructive comments. We explain the intuition behind DIAG (Algorithm 1) for1

strongly-convex-concave minimax problems first, which we will add in the final revision.2

Conceptual DIAG: The intuition behind Algorithm 1 stems from a "conceptual" version of DIAG (also specified in3

Algorithm 1, Step 4), which is inspired from the conceptual version of Mirror-Prox (MP) (cf. Section 2.2):4

(a) wk = (1− τk)yk + τkzk5

(b) Choose xk+1, yk+1 ensuring: xk+1 ∈ arg minx g(x, yk+1), and yk+1 = PY(wk + 1
β∇yg(xk+1, wk))6

(c) zk+1 = PY(zk + ηk∇yg(xk+1, wk))7

The main idea is to apply an MP-like update for x on g(·, yk+1) and an AGD step for y on g(xk+1, ·). In the final8

estimate, we use x̄K = (2/K(K + 1))
∑K
i=1(i xi), because MP-like updates give ergodic guarantees, but use yK ,9

because AGD has final iterate guarantees. The MP-like update is crucial in this algorithm so as to inherit the well-known10

fast convergence rate of AGD for smooth-convex optimization.11

Implementable DIAG: The above step (b) requires g(·, yk+1) and g(xk+1, ·) which are not a priori available at the k-th12

step. But we can implement this step up to εstep error (step 4, Algorithm 1), using Imp-STEP subroutine (Algorithm13

1). Just like the fact that conceptual MP can be realized in log(1/ε) steps (in fact, just two steps suffice), Imp-STEP14

converges in R = log(2DY
εmp

) = O(log( 1
εstep

)) steps, because the following mapping is a contraction for small enough15

stepsize 1/β:16

yi+1 = PY(wk + (1/β)∇yg(x∗(yi), wk)) , (1)

where x∗(y) = arg minx g(x, y). This follows from (i) the L-smoothness of g, and (ii) the Lipschitzness of x∗(y) in y17

(due to strong convexity of g(·, y)). Further, again by σ-strong-convexity of g(·, y), x∗(y) = arg minx g(x, y) could be18

approximately found in O(
√

L
σ log( 1

εstep
)) steps. Thus the overall speed of Imp-STEP is O(

√
L
σ log2( 1

εstep
)) steps.19

Response to reviewer 1: We agree with and will include, the reviewer’s comment, that the non-smoothness of20

f(x) = maxy g(x, y), more precisely the non-Lipschitzness of the maximizer of g(x, ·) is the reason why naive AGD21

is sub-optimal. We will devote more space to explaining the DIAG algorithm and discussing more related works.22

1- We will clarify that steps (5) & (6) is the Euclidean version of Mirror-Prox and discuss the extra-gradient method.23

2- Criteria in [26] is weaker in the following sense. Consider g(x, y) = (x2 − y2)/2 ( f(x) = x2/2, h(y) = −y2/2 )24

with domain R× [0, 1]. To reach (x̂, ŷ) s.t. x̂ = ŷ ≤ ε, DIAG requires O(ε−3) steps since∇f(x̂) = ∇h(ŷ) = ε, how-25

ever, [26] requires O((ε2)−3.5) = O(ε−7) steps since Y(x̂, ŷ) = maxy′∈[0,1] 〈∇yg(x̂, ŷ), y′ − ŷ〉 = 〈−ε,−ε〉 = ε2.26

We will add a precise justification (which was omitted due to the lack of space) in the next revision.27

3- We refer the reviewer to the above explanation of DIAG algorithm.28

4- Bilinear coupling: a) we focus on non-linear coupling and in general, bilinear results do not apply to our setting, b)29

when we specialize our result to standard bilinear coupling setting, our results match the optimal 1/K2 rates. Further30

assumptions like unbounded domain and full-rank coupling matrix give linear convergence rates [R1] (will be cited),31

but this follows directly from the fact that the Fenchel dual of a smooth function is strongly convex (Theorem 6 of [12]).32

5- We will include citations to similar saddle point problems and algorithms, including [R4] and [R5]. However,33

we again note that none of the suggested (or other) references obtain results similar to ours in the setting that we consider.34
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Sub-gradient method
Prox-FDIAG (ours)Response to reviewer 3: We will include numerical experiments; as a preliminary36

experiment we consider the following min-max problem (P3): minx∈R2

[
f(x) =37

max1≤i≤m=9 fi(x)
]

with random quadratic functions (hence weakly-convex). In the38

figure right, we plot the norm of gradient of Moreau envelope ‖∇f 1
2L

(xk)‖2 against the39

number of first-order gradient oracle calls in log-log scale. We see that, Prox-FDIAG has40

a faster convergence rate than subgradient method. We will also include other practical41

use-cases such as robust learning, multi-task learning, and adversarial training.42

Response to reviewer 4: We will incorporate all suggestions by the reviewer and clarify all ambiguous/missing43

explanations in the final version. We discuss important ones below.44

-Chen et al.: their result only handles bilinear case (also see response to R1, point 4) and gets a rate of O(1/ε), but can45

handle prox-function friendly non-smoothness w.r.t. y. In contrast, we can handle non-linear coupling between x, y and46

for bilinear case (with strong convexity w.r.t. x and smoothness w.r.t. y) can obtain O(1/
√
ε) rate.47

-) We assume X = Rp since we use [Theorem 6, 12] in the proof, which requires the domain to be the full vector space.48

-) The sub-routine Imp-STEP has a typo: In Step 10, xr should be x̂r. That is, given yr we compute x̂r such that49

g(x̂r, yr) ≤ minx g(x, yr) + εagd and then Step 11 updates: yr+1 = PY(w + 1
β∇yg(x̂r, w)). This gives the new50

(x̂r, yr+1) pair, and the process is repeated. We refer the reviewer to the explanation of DIAG algorithm at the top.51

-) In line 196: We meant that minx maxy g(x, y)−maxy minx g(x, y) (which we call the minimum primal dual gap)52

is unknown for non-convex functions. We will make the statement precise.53

-) In line 203: We are citing the result of [8], which uses the same convergence criteria as our paper.54


