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Abstract

We propose Cormorant, a rotationally covariant neural network architecture for
learning the behavior and properties of complex many-body physical systems.
We apply these networks to molecular systems with two goals: learning atomic
potential energy surfaces for use in Molecular Dynamics simulations, and learn-
ing ground state properties of molecules calculated by Density Functional Theory.
Some of the key features of our network are that (a) each neuron explicitly corre-
sponds to a subset of atoms; (b) the activation of each neuron is covariant to rota-
tions, ensuring that overall the network is fully rotationally invariant. Furthermore,
the non-linearity in our network is based upon tensor products and the Clebsch-
Gordan decomposition, allowing the network to operate entirely in Fourier space.
Cormorant significantly outperforms competing algorithms in learning molecular
Potential Energy Surfaces from conformational geometries in the MD-17 dataset,
and is competitive with other methods at learning geometric, energetic, electronic,
and thermodynamic properties of molecules on the GDB-9 dataset.

1 Introduction

In principle, quantum mechanics provides a perfect description of the forces governing the behavior
of atoms, molecules and crystalline materials such as metals. However, for systems larger than a
few dozen atoms, solving the Schrodinger equation explicitly at every timestep is not a feasible
proposition on present day computers. Even Density Functional Theory (DFT) [Hohenberg and
Kohn, 1964], a widely used approximation to the equations of quantum mechanics, has trouble
scaling to more than a few hundred atoms.

Consequently, the majority of practical work in molecular dynamics today falls back on fundamen-
tally classical models, where the atoms are essentially treated as solid balls and the forces between
them are given by pre-defined formulae called atomic force fields or empirical potentials, such as
the CHARMM family of models [Brooks et al., 1983, 2009]. There has been a widespread real-
ization that this approach has inherent limitations, so in recent years a burgeoning community has
formed around trying to use machine learning to learn more descriptive force fields directly from
DFT computations [Behler and Parrinello, 2007, Bartdk et al., 2010, Rupp et al., 2012, Shapeeyv,
2015, Chmiela et al., 2016, Zhang et al., 2018, Schiitt et al., 2017, Hirn et al., 2017]. More broadly,
there is considerable interest in using ML methods not just for learning force fields, but also for
predicting many other physical/chemical properties of atomic systems across different branches of
materials science, chemistry and pharmacology [Montavon et al., 2013, Gilmer et al., 2017, Smith
etal., 2017, Yao et al., 2018].

At the same time, there have been significant advances in our understanding of the equivariance
and covariance properties of neural networks, starting with [Cohen and Welling, 2016a,b] in the
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context of traditional convolutional neural nets (CNNs). Similar ideas underly generalizations of
CNNss to manifolds [Masci et al., 2015, Monti et al., 2016, Bronstein et al., 2017] and graphs [Bruna
et al., 2014, Henaff et al., 2015]. In the context of CNNs on the sphere, Cohen et al. [2018] real-
ized the advantage of using “Fourier space” activations, i.e., expressing the activations of neurons
in a basis defined by the irreducible representations of the underlying symmetry group (see also
[Esteves et al., 2017]), and these ideas were later generalized to the entire SE(3) group [Weiler
et al., 2018]. Kondor and Trivedi [2018] gave a complete characterization of what operations are
allowable in Fourier space neural networks to preserve covariance, and Cohen et al generalized the
framework even further to arbitrary gauge fields [Cohen et al., 2019]. There have also been some
recent works where even the nonlinear part of the neural network’s operation is performed in Fourier
space: independently of each other [Thomas et al., 2018] and [Kondor, 2018] were to first to use
the Clebsch—Gordan transform inside rotationally covariant neural networks for learning physical
systems, while [Kondor et al., 2018] showed that in spherical CNNs the Clebsch—Gordan transform
is sufficient to serve as the sole source of nonlinearity.

The Cormorant neural network architecture proposed in the present paper combines some of the
insights gained from the various force field and potential learning efforts with the emerging theory
of Fourier space covariant/equivariant neural networks. The important point that we stress in the
following pages is that by setting up the network in such a way that each neuron corresponds to
an actual set of physical atoms, and that each activation is covariant to symmetries (rotation and
translation), we get a network in which the “laws” that individual neurons learn resemble known
physical interactions. Our experiments show that this generality pays off in terms of performance
on standard benchmark datasets.

2 The nature of physical interactions in molecules

Ultimately interactions in molecular systems arise from the quantum structure of electron clouds
around constituent atoms. However, from a chemical point of view, effective atom-atom interactions
break down into a few simple classes based upon symmetry. Here we review a few of these classes in
the context of the multipole expansion, whose structure will inform the design of our neural network.

Scalar interactions. The simplest type of physical interaction is that between two particles that

are pointlike and have no internal directional degrees of freedom, such as spin or dipole moments.

A classical example is the electrostatic attraction/repulsion between two charges described by the
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Here g4 and qp are the charges of the two particles, r4 and rp are their position vectors, r4p =
T4 —7p, and € is a universal constant. Note that this equation already reflects symmetries: the fact
that (1) only depends on the length of r4p and not its direction or the position vectors individually
guarantees that the potential is invariant under both translations and rotations.

Dipole/dipole interactions. One step up from the scalar case is the interaction between two
dipoles. In general, the electrostatic dipole moment of a set of IV charged particles relative to their
center of mass 7 is just the first moment of their position vectors weighted by their charges:

N
p= Z(h‘(ri —r).
1=1

The dipole/dipole contribution to the electrostatic potential energy between two sets of particles A
and B separated by a vector 74 is then given by
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One reason why dipole/dipole interactions are indispensible for capturing the energetics of
molecules is that most chemical bonds are polarized. However, dipole/dipole interactions also occur
in other contexts, such as the interaction between the magnetic spins of electrons.



Quadropole/quadropole interactions. One more step up the multipole hierarchy is the interac-
tion between quadropole moments. In the electrostatic case, the quadropole moment is the second
moment of the charge density (corrected to remove the trace), described by the matrix

e = Z% 3rr |r2| I).

Quadropole/quadropole interactions appear for example when describing the interaction between
benzene rings, but the general formula for the corresponding potential is quite complicated. As a
simplification, let us only consider the special case when in some coordinate system aligned with
the structure of A, and at polar angle (64, ¢ 4) relative to the vector 745 connecting A and B, © 4
can be transformed into a form that is diagonal, with [©4]., = ¥4 and [Oa],, = [Oa]yy = —0a/2
[Stone, 1997]. We make a similar assumption about the quadropole moment of B. In this case the
interaction energy becomes
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Higher order interactions involve moment tensors of order 3,4,5, and so on. One can appreciate that
the corresponding formulae, especially when considering not just electrostatics but other types of
interactions as well (dispersion, exchange interaction, etc), quickly become very involved.

3 Spherical tensors and representation theory

Fortunately, there is an alternative formalism for expressing molecular interactions, that of spherical
tensors, which makes the general form of physically allowable interactions more transparent. This
formalism also forms the basis of the our Cormorant networks described in the next section.

The key to spherical tensors is understanding how physical quantities transform under rotations.
Specifically, in our case, under a rotation R:

q—q uw— Rpu ®+— ROR' rap — Rrap.

Flattening ® into a vector © cRY, its transformation rule can equivalently be written as
O — (R® R) ©, showing its similarity to the other three cases. In general, a k’th order Carte-
sian moment tensor T(F) € R3%3%--x3 (or its flattened T(%) ¢ R3¥ equivalent) transforms as
T® » (RRR®...@ R)TW,

Recall that given a group G, a representation p of G is a matrix valued function p: G — C4*¢
obeying p(zy) = p(x)p(y) for any two group elements x,y € G. It is easy to see that R, and
consequently R ® ... ® R are representations of the three dimensional rotation group SO(3). We
also know that because SO(3) is a compact group, it has a countable sequence of unitary so-called
irreducible representations (irreps), and, up to a similarity transformation, any representation can
be reduced to a direct sum of irreps. In the speciﬁc case of SO(3), the irreps are called thner
D-matrices and for any positive integer £ = 0, 1,2, ... there is a single correspondm 1rre§)

which is a (2¢ + 1) dimensional representation (i.e., as a function, D*: SO(3 Cc@+1 2”1
The ¢ =0 irrep is the trivial irrep D°(R) = (1).

The above imply that there is a fixed unitary transformation matrix C*) which reduces the k’th
order rotation operator into a direct sum of irreducible representations:

ROR®...0R= c<k>[@@pé )|c®.
k

i=1

Note that the transformation R® R® ... ® R contains redundant copies of D*(R), which we de-
note as the multiplicites 7,. For our present purposes knowing the actual values of the 7, is not that
important, except that 7, = 1 and that for any ¢ > k, 7, = 0. What is important is that 7(*), the
vectorized form of the Cartesian moment tensor has a corresponding decomposition

0~ c®[P b Qe (4)
¢ =1



This is nice, because using the unitarity of (),,, it shows that under rotations the individual Qp ;
components transform independently as Qg ; — D*(R) Qy.;.

What we have just described is a form of generalized Fourier analysis applied to the transforma-
tion of Cartesian tensors under rotations. For the electrostatic multl(pole problem it is particularly
relevant, because it turns out that in that case, due to symmetries of 7(*), the only nonzero Q ¢,i com-
ponent of (4) is the single one with £ = k. Furthermore, for a set of N charged particles (1ndex1ng

its components — ., £) Qg has the simple form
ar \V2 N
[Qdm = <%H> Z(h ’L Hud)z) m=—{,...,¢, (5

where (r;, 0;, ¢;) are the coordinates of the 4’th particle in spherical polars, and the Y,;™ (6, ¢) are
the well known spherical harmonic functions. ), is called the £’th spherical moment of the charge
distribution. Note that while 7(“) and @, convey exactly the same information, 7(“) is a tensor with
3¢ components, while @ is just a (2¢+ 1) dimensional vector.

Somewhat confusingly, in physics and chemistry any quantity U that transforms under rotations as
U+ DY(R)U is often called an (£’th order) spherical tensor, despite the fact that in terms of its
presentation (g is just a vector of 2/ + 1 numbers. Also note that since D°(R) = (1), a zeroth
order spherical tensor is just a scalar. A first order spherical tensor, on the other hand, can be used
to represent a spatial vector r = (r, 0, ¢) by setting [U1],, = r Y (0, ¢).

3.1 The general form of interactions

The benefit of the spherical tensor formalism is that it makes it very clear how each part of a given
physical equatlon transforms under rotations. For example, if (), and Q ¢ are two ¢’th order spherical
tensors, then Q ; Q¢ is a scalar, since under a rotation R, by the unitarity of the Wigner D-matrices,

QiQe — (DY(R) Qu)' (DY(R) Qr) = Q} (DY(R))T DYR) Qv = Q| Q.
Even the dipole/dipole interaction (2) requires a more sophisticated way of coupling spherical ten-
sors than this, since it involves non-trivial interactions between not just two, but three different quan-
tites: the two dipole moments g4 and g and the the relative position vector 74 5. Representing
interactions of this type requires taking tensor products of the constituent variables. For example,
in the dipole/dipole case we need terms of the form Qé ® Qg . Naturally, these will transform
according to the tensor product of the corresponding irreps:

Qi Q7 = (D(R)@ D*(R)) (Q), © Q7).
In general, D“(R)® D'(R) is not an irreducible representation. However it does have a well
studied decomposition into irreducibles, called the Clebsch—Gordan decomposition:
Ly 4-Lo
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Letting Cy, ¢, € CRHUX(2A+1)(262+42) pe the block of 20+ 1 rows in Cy, 4, corresponding to the

¢ component of the direct sum, we see that Oghg%g(Qé ® QZ ) is an £’th order spherical tensor. In
particular, given some other spherical tensor quantity Uy,

Ug ~Coy gt (Qé ®QZ)

is a scalar, and hence it is a candidate for being a term in the potential energy. Note the similarity
of this expression to the bispectrum [Kakarala, 1992, Bendory et al., 2018], which is an already
established tool in the force field learning literature [Bartdk et al., 2013].

Almost any rotation invariant interaction potential can be expressed in terms of iterated Clebsch—
Gordan products between spherical tensors. In particular, the full electrostatic energy between two
sets of charges A and B separated by a vector r = (r, 0, ¢) expressed in multipole form [Jackson,
1999] is
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Note the generality of this formula: the ¢ = ¢ = 1 case covers the dipole/dipole interaction (2),
the ¢ = ¢’ = 2 case covers the quadropole/quadropole interaction (3), while the other terms cover
every other possible type of multipole/multipole interaction. Magnetic and other types of interac-
tions, including interactions that involve 3-way or higher order terms, can also be recovered from
appropriate combinations of tensor products and Clebsch—Gordan decompositions.

We emphasize that our discussion of electrostatics is only intended to illustrate the algebraic struc-
ture of interatomic interactions of any type, and is not restricted to electrostatics. In what follows, we
will not explicitly specify what interactions the network will learn. Nevertheless, there are physical
constraints on the interactions arising from symmetries, which we explicitly impose in our design of
Cormorant.

4 CORMORANT: COvaRiant MOleculaR Artificial Neural neTworks

The goal of using ML in molecular problems is not to encode known physical laws, but to provide
a platform for learning interactions from data that cannot easily be captured in a simple formula.
Nonetheless, the mathematical structure of known physical laws, like those discussed in the previ-
ous sections, give strong hints about how to represent physical interactions in algorithms. In partic-
ular, when using machine learning to learn molecular potentials or similar rotation and translation
invariant physical quantities, it is essential to make sure that the algorithm respects these invariances.

Our Cormorant neural network has invariance to rotations baked into its architecture in a way that
is similar to the physical equations of the previous section: the internal activations are all spherical
tensors, which are then combined at the top of the network in such a way as to guarantee that the
final output is a scalar (i.e., is invariant). However, to allow the network to learn interactions that are
more complicated than classical interatomic forces, we allow each neuron to output not just a single
spherical tensor, but a combination of spherical tensors of different orders. We will call an object
consisting of 7y scalar components, 71 components transforming as first order spherical tensors, 75
components transforming as second order spherical tensors, and so on, an SO(3)—covariant vector
of type (79, T1, T2, - . .). The output of each neuron in Cormorant is an SO(3)-vector of a fixed type.

Definition 1. We say that F' is an SO(3)-covariant vector of type T = (10,71, T2, - .., 7r) if it can
be written as a collection of complex matrices Fy, F1, ..., Fr, called its isoty?ic parts, where each
Fy is a matrix of size (20 + 1) X 74 and transforms under rotations as Fy — D*(R) Fy.

The second important feature of our architecture is that each neuron corresponds to either a single
atom or a set of atoms forming a physically meaningful subset of the system at hand, for example
all atoms in a ball of a given radius. This condition helps encourage the network to learn physically
meaningful and interpretable interactions. The high level definition of Cormorant nets is as follows.

Definition 2. Let S be a molecule or other physical system consisting of N atoms. A “Cormorant”
covariant molecular neural network for S is a feed forward neural network consisting of m neurons
ny,..., Ny, such that

C1. Every neuron n; corresponds to some subset S; of the atoms. In particular, each input neuron
corresponds to a single atom. Each output neuron corresponds to the entire system S.

C2. The activation of each n; is an SO(3)-vector of a fixed type ;.

C3. The type of each output neuron is T, = (1), i.e., a scalar. !

Condition (C3) guarantees that whatever function a Cormorant network learns will be invariant to
global rotations. Translation invariance is easier to enforce simply by making sure that the interac-
tions represented by individual neurons only involve relative distances.

4.1 Covariant neurons

The neurons in our network must be such that if each of their inputs is an SO(3)—covariant vector
then so is their output. Classically, neurons perform a simple linear operation such as x — Wx + b,
followed by a nonlinearity like a ReLU. In convolutional neural nets the weights are tied together in

!Cormorant can learn data of arbitrary SO(3)-vector outputs. We restrict to scalars here to simplify the
exposition.



a specific way which guarantees that the activation of each layer is covariant to the action of global
translations. Kondor and Trivedi [2018] discuss the generalization of convolution to the action of
compact groups (such as, in our case, rotations) and prove that the only possible /inear operation that
is covariant with the group action, is what, in terms of SO(3)-vectors, corresponds to multiplying
each Fy matrix from the right by some matrix W of learnable weights.

For the nonlinearity, one option would be to express each spherical tensor as a function on SO(3)
using an inverse SO(3) Fourier transform, apply a pointwise nonlinearity, and then transform the
resulting function back into spherical tensors. This is the approach taken in e.g., [Cohen et al.,
2018]. However, in our case this would be forbiddingly costly, as well as introducing quadra-
ture errors by virtual of having to interpolate on the group, ultimately degrading the network’s co-
variance. Instead, taking yet another hint from the structure of physical interactions, we use the
Clebsch—Gordan transform introduced in 3.1 as a nonlinearity. The general rule for taking the CG
product of two SO(3)-parts Fy, € CAH+Dxn1 and G, € C242+1)X72 gives a collection of parts
[Fgl Recg thgl,eﬂ, . [Fgl Recg Gezhrﬁ-fl with columns

[Fe, ®cg Ge,le] = Coy 5.0 ([FoyJs,in @ [Geylain) @)

i.e., every column of Fy, is separately CG-multiplied with every column of G,,. The £’th part of
the CG-product of two SO(3)—vectors consists of the concatenation of all SO(3)—part matrices with
index ¢ coming from multiplying each part of F' with each part of G:

[F ®cg Glo = @@[Fel ®Rcg Goy)e-
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Here and in the following & denotes the appropriate concatenation of vectors and matrices. In
Cormorant, however, as a slight departure from (7), to reduce the quadratic blow-up in the number
of columns, we always have n; = ny and use the restricted “channel-wise” CG-product,

[[Fo, ®cg Geale], ; = Ot e ([Fiu]ui © [Gealei)

where each column of F}, is only mixed with the corresponding column of G,. We note that similar
Clebsch—Gordan nonlinearities were used in [Kondor et al., 2018], and that the Clebsch—Gordan
product is also an essential part of Tensor Field Networks [Thomas et al., 2018].

4.2 One-body and two-body interactions

As stated in Definition 2, the covariant neurons in a Cormorant net correspond to different subsets
of the atoms making up the physical system to be modeled. For simplicty in our present architecture
there are only two types of neurons: those that correspond to individual atoms and those that corre-
spond to pairs. For a molecule consisting of IV atoms, each layer s = 0,1,...,.5 of the covariant
part of the network has N neurons corresponding to the atoms and N2 neurons corresponding to the
(4,7) atom pairs. By loose analogy with graph neural networks, we call the corresponding F;° and
g; ; activations vertex and edge activations, respectively.

In accordance with the foregoing, each F? activation is an SO(3)-vector consisting of L+1 distinct
parts (50 21 F5F) i, each " is a (20+1) x 77 dimensional complex matrix that trans-
forms under rotations as F, is,z — DY(R)F, f’z. The different columns of these matrices are regarded
as the different channels of the network, because they fulfill a similar role to channels in conven-
tional convolutional nets. The g7 ; edge activations also break down into parts (g; ’]Q, gf_’jl, ey s ’jL ),
but these are invariant under rotations. Again for simplicity, in the version of Cormorant that we used
in our experiments L is the same in every layer (specifically L = 3), and the number of channels is
also independent of both s and ¢, specifically, 77/ =n. = 16.

The actual form of the vertex activations captures “one-body interactions” propagating information
from the previous layer related to the same atom and (indirectly, via the edge activations) “two-body
interactions” capturing interactions between pairs of atoms:

= [Fo (R ew B o (DG o By |- wise. @®)
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one-body part

two-body part



Here G ; are SO(3)-vectors arising from the edge network. Specifically, fo = gff Y47 ),

where Yé(ﬂ, ;) are the spherical harmonic vectors capturing the relative position of atoms ¢ and j.
The edge activations, in turn, are defined

g = ) (05 0 (7 1) 2 ) W2 o

where we made the ¢ = 0,1, ..., L irrep index explicit. As before, in these formulae, & denotes
concatenation over the channel index ¢, 75“(r; ;) are learnable radial functions, and g (r; ;) are
learnable cutoff functions limiting the influence of atoms that are farther away from atom i. The

learnable parameters of the network are the { W)} and {W %} weight matrices.

Note that the Ff_l - F571 dot product term is the only term in these formulae responsible for
the interaction between different atoms, and that this term always appears in conjunction with the
0S¢ (r; ;) radial basis functions and 5 (r; ;) cutoff functions (as well as the SO(3)—covariant spher-
ical harmonic vector) making sure that interaction scales with the distance between the atoms. More
details of these activation rules are given in the Supplement.

4.3 Opverall structure and comparison with other architectures

In addition to the covariant neurons described above, our network also needs neurons to compute
the input featurization and the the final output after the covariant layers. Thus, in total, a Cormorant
networks consists of three distinct parts:

1. An input featurization network {F?=} < INPUT({Z;,r;;}) that operates only on atomic
charges/identities and (optionally) a scalar function of relative positions r; ;.

2. An S-layer network {F '} < CGNet({F}})of covariant activations F?, each of which is a
SO(3)-vector of type 77.

3. A rotation invariant network at the top y <+ OUTPUT(@EZO{F{*}) that constructs scalars
from the activations F°, and uses them to predict a regression target y.

We leave the details of the input and output featurization to the Supplement.

A key difference between Cormorant and other recent covariant networks (Tensor Field Net-
works [Thomas et al., 2018] and SE(3)-equivariant networks [Weiler et al., 2018]) is the use of
Clebsch-Gordan non-linearities. The Clebsch-Gordan non-linearity results in a complete interac-
tion of every degree of freedom in an activation. This comes at the cost of increased difficulty in
training, as discussed in the Supplement. We further note that SE(3)-equivariant networks use a
three-dimensional grid of points to represent data, and ensure both translational and rotational co-
variance (equivariance) of each layer. Cormorant on the other hand uses activations that are covariant
to rotations, and strictly invariant to translations.

5 Experiments

We present experimental results on two datasets of interest to the computational chemistry com-
munity: MD-17 for learning molecular force fields and potential energy surfaces, and QM-9 for
learning the ground state properties of a set of molecules. The supplement provides a detailed sum-
mary of all hyperparameters, our training algorithm, and the details of the input/output levels used
in both cases. Our code is available at https://github.com/risilab/cormorant.

QM9 [Ramakrishnan et al., 2014] is a dataset of approximately 134k small organic molecules con-
taining the atoms H, C, N, O, F. For each molecule, the ground state configuration is calculated
using DFT, along with a variety of molecular properties. We use the ground state configuration as
the input to our Cormorant, and use a common subset of properties in the literature as regression tar-
gets. Table 1(a) presents our results averaged over three training runs compared with SchNet [Schiitt
et al., 2017], MPNNs [Gilmer et al., 2017], and wavelet scattering networks [Hirn et al., 2017]. Of
the twelve regression targets considered, we achieve leading or competitive results on six (a, Ae,
€EHOMO> €ELUMO> > Cy). The remaining four targets are within 40% of the best result, with the
exception of RR2.

MD-17 [Chmiela et al., 2016] is a dataset of eight small organic molecules (see Table 1(b)) con-
taining up to 17 total atoms composed of the atoms H, C, N, O, F. For each molecule, an ab
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Table 1: Mean absolute error of various prediction targets on QM-9 (left) and conformational
energies (in units of kcal/mol) on MD-17 (right). The best results within a standard deviation of
three Cormorant training runs (in parenthesis) are indicated in bold.

Cormorant SchNet NMP WaveScatt
a (bohr®) 0.085 (0.001) ~ 0.235 0.092 0.160 Cormorant DeepMD DTNN SchNet GDML sGDML
Ac (V) 0.061 (0.005) 0.063 0.069 0.118
egoMmoO (€V) 0.034 (0.002) 0.041 0.043 0.085 Aspirin 0.098 0.201 - 0.120 0.270 0.190
e, uMoO (€V) 0.038 (0.008)  0.034 0.038 0.076 Benzene 0.023 0.065  0.040 0.070  0.070 0.100
(D) 0.038 (0.009)  0.033 0.030 0.340 Ethanol 0.027 0.055 - 0.050 0.150 0.070
C'y (cal/mol K) 0.026 (0.000)  0.033  0.040 0.049 Malonaldehyde 0.041 0.092  0.190 0.080  0.160 0.100
G (eV) 0.020 (0.000)  0.014 0.019 0.022 Naphthalene 0.029 0.095 - 0110  0.120 0.120
H (eV) 0.021 (0.001)  0.014 0.017 0.022 Salicylic Acid 0.066 0.106 0410  0.100  0.120 0.120
R? (bohr?) 0.961 (0.019) 0.073 0.180 0.410 Toluene 0.034 0.085 0.180  0.090 0.120 0.100
U (eV) 0.021 (0.000)  0.019 0.020 0.022 Uracil 0.023 0.085 - 0.100 0.110 0.110
Ug (V) 0.022 (0.003) 0.014 0.020 0.022
ZPVE (meV) 2.027 (0.042) 1.700  1.500 2.000

initio molecular dynamics simulation was run using DFT to calculate the ground state energy and
forces. Atintermittent timesteps, the energy, forces, and configuration (positions of each atom) were
recorded. For each molecule we use a train/validation/test split of 50k/10k/10k atoms respectively.
The results of these experiments are presented in Table 1(b), where the mean-average error (MAE)
is plotted on the test set for each of molecules. (All units are in kcal/mol, as consistent with the
dataset and the literature.) To the best of our knowledge, the current state-of-the art algorithms on
this dataset are DeepMD [Zhang et al., 2018], DTNN [Schiitt et al., 2017], SchNet [Schiitt et al.,
2017], GDML [Chmiela et al., 2016], and sGDML [Chmiela et al., 2018]. Since training and testing
set sizes were not consistent, we used a training set of 50k molecules to compare with all neural
network based approaches. As can be seen from the table, our Cormorant network outperforms all
competitors.

6 Conclusions

To the best of our knowledge, Cormorant is the first neural network architecture in which the opera-
tions implemented by the neurons is directly motivated by the form of known physical interactions.
Rotation and translation invariance are explicitly “baked into” the network by the fact all activations
are represented in spherical tensor form (SO(3)-vectors), and the neurons combine Clebsch—Gordan
products, concatenation of parts and mixing with learnable weights, all of which are covariant op-
erations. In future work we envisage the potentials learned by Cormorant to be directly integrated
in MD simulation frameworks. In this regard, it is very encouraging that on MD-17, which is the
standard benchmark for force field learning, Cormorant outperforms all other competing methods.
Learning from derivatives (forces) and generalizing to other compact symmetry groups are natural
extensions of the persent work.
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