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Abstract

We study the multi-channel sparse blind deconvolution (MCS-BD) problem,
whose task is to simultaneously recover a kernel a and multiple sparse inputs
txiu

p
i“1 from their circulant convolution yi “ a f xi (i “ 1, ¨ ¨ ¨ , p). We formu-

late the task as a nonconvex optimization problem over the sphere. Under mild
statistical assumptions of the data, we prove that the vanilla Riemannian gradient
descent (RGD) method, with random initializations, provably recovers both the
kernel a and the signals txiu

p
i“1 up to a signed shift ambiguity. In comparison

with state-of-the-art results, our work shows significant improvements in terms
of sample complexity and computational efficiency. Our theoretical results are
corroborated by numerical experiments, which demonstrate superior performance
of the proposed approach over the previous methods on both synthetic and real
datasets.

1 Introduction

We study the blind deconvolution problem with multiple inputs: given circulant convolutions

yi “ a f xi P Rn, i P rps :“ t1, . . . , pu, (1)

we aim to recover both the kernel a P Rn and the signals txiu
p
i“1 P Rn using efficient methods.

Blind deconvolution is an ill-posed problem in its most general form. Nonetheless, problems in prac-
tice often exhibits intrinsic low-dimensional structures, showing promises for efficient optimization.
One such useful structure is the sparsity of the signals txiu

p
i“1 [1]. The multichannel sparse blind

deconvolution (MCS-BD) broadly appears in the context of communications [2, 3], computational
imaging [4, 5], seismic imaging [6–8], neuroscience [9–13], computer vision [14–16], and more.

• Neuroscience. Detections of neuronal spiking activity is a prerequisite for understanding the
mechanism of brain function. Calcium imaging [12,13] and functional MRI [9,11] are two widely
used techniques, which record the convolution of unknown neuronal transient response and sparse
spike trains. The spike detection problem can be naturally cast as a MCS-BD problem.

• Computational (microscopy) imaging. Super-resolution fluorescent microscopy imaging [4,17,
18] conquers the resolution limit by solving sparse deconvolution problems. Its basic principle
is using photoswitchable fluorophores that stochastically activate fluorescent molecular, creating
a video sequence of sparse superpositions of point spread function (PSF). In many scenarios
(especially in 3D imaging), as it is often difficult to obtain the PSF due to defocus and unknown
aberrations [19], it is preferred to estimate the point-sources and PSF jointly by solving MCS-BD.

• Image deblurring. Sparse blind deconvolution problems also arise in natural image processing:
when a blurry image is taken due to the resolution limit or malfunction of imaging procedure, it
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Table 1: Comparison with existing methods for solving MCS-BD2

Methods Wang et al. [20] Li et al. [21] Ours

Assumptions
a spiky & invertible, a invertible, a invertible,
xi „i.i.d. BGpθq xi „i.i.d. BRpθq xi „i.i.d. BGpθq

Formulation min}q}8“1 }CqY }1 maxqPSn´1 }CqPY }
4
4 minqPSn´1 Hµ pCqPY q

Algorithm interior point noisy RGD vanilla RGD

Recovery
θ P Op1{

?
nq, θ P Op1q, θ P Op1q,

Condition p ě rΩpnq p ě rΩpmax
␣

n, κ8
(

n8

ε8 q p ě rΩpmax
!

n, κ8

µ2

)

n4q

Time Complexity rOpp4n5 logp1{εqq rOppn13{ε8q rOppn5 ` pn log p1{εqq

can be modeled as a blur pattern convolved with visually plausible sharp images (whose gradient
are sparse) [15, 16].

Prior arts. Recently, there have been a few attempts to solve MCS-BD with guaranteed perfor-
mance. Wang et al. [20] formulated the task as finding the sparsest vector in a subspace problem [22].
They considered a convex objective, showing that the problem can be solved to exact solutions when
p ě Ωpn log nq and the sparsity level θ P Op1{

?
nq. A similar approach has also been investigated

by [23]. Li et al. [21] consider an ℓ4-maximization problem over the sphere, revealing benign global
geometric structures of the problem. Correspondingly, they introduced a noisy Riemannian gradient
descent (RGD) that solves the problem to approximate solutions in polynomial time.

These results are very inspiring but still suffer from quite a few limitations. The theory and method
in [20] only applies to cases when a is approximately a delta function (which excludes most prob-
lems of interest) and txiu

p
i“1 are very sparse. Li et al. [21] suggests that more generic kernels a can

be handled via preconditioning of the data. However, due to the heavy-tailed behavior of ℓ4-loss,
the sample complexity provided in [21] is quite pessimistic3. Moreover, noisy RGD is proved to
converge with huge amounts of iterations [21], and it requires additional efforts to tune the noise
parameters which is often unrealistic in practice. As mentioned in [21], one may use vanilla RGD
which almost surely converges to a global minimum, but without guarantee on the number of itera-
tions. On the other hand, Li et al. [21] only considered the Bernoulli-Rademacher model4 which is
quite restrictive.

Contributions. In this work, we introduce an efficient optimization method for solving MCS-BD.
We consider a natural nonconvex formulation based on a smooth relaxation of ℓ1-loss. Under mild
assumptions of the data, we prove the following result.

With random initializations, a vanilla RGD efficiently finds an approximate solution, which can
then be refined by a subgradient method that converges to the target solution in a linear rate.

We summarize our main result in Table 1. By comparison5 with [21], our approach demonstrates sub-
stantial improvements for solving MCS-BD in terms of both sample and time complexity. Moreover,
our experimental results imply that our analysis is still far from tight – the phase transitions suggest
that p ě Ωppoly logpnqq samples might be sufficient for exact recovery, which is favorable for ap-
plications (as real data in form of images can have millions of pixels, resulting in huge dimension
n). Our analysis is inspired by recent results on orthogonal dictionary learning [24–26], but much of
our theoretical analysis is tailored for MCS-BD with a few extra new ingredients. Our work is the
first result provably showing that vanilla gradient descent type methods solve MCS-BD efficiently.

2Here, (i) BGpθq and BRpθq denote Bernoulli-Gaussian and Bernoulli-Rademacher distribution, respec-
tively; (ii) θ P r0, 1s is the Bernoulli parameter controlling the sparsity level of xi; (iii) ε denotes the recovery
precision of global solution a‹, i.e., minℓ }a ´ sℓ ra‹s} ď ε; (iv) rO and rΩ hides logpnq, θ and other factors.

3As the tail of BGpθq distribution is heavier than that of BRpθq, their sample complexity would be even
worse if BGpθq model was considered.

4We say x obeys a Bernoulli-Rademacher distribution when x “ b d r where d denotes point-wise
product, b follows i.i.d. Bernoulli distribution and r follows i.i.d. Rademacher distribution.

5We do not find a direct comparison with [20] meaningful, mainly due to its limitations of the kernel
assumption and sparsity level θ P Op1{

?
nq discussed above.
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Moreover, our ideas could potentially lead to new algorithmic guarantees for other nonconvex prob-
lems such as blind gain and phase calibration [27,28] and convolutional dictionary learning [29,30].
The full version [31] of this work can be found at https://arxiv.org/abs/1908.10776.

2 Problem Formulation
To begin, we list our assumptions on the unknown kernel a P Rn and sparse inputs txiu

p
i“1 P Rn:

• Invertible kernel. We assume the kernel a to be invertible in the sense that its spectrum pa “ Fa
does not have zero entries, where pa “ Fa is the discrete Fourier transform (DFT) of a with
F P Cnˆn being the DFT matrix. Let Ca P Rnˆn be an n ˆ n circulant matrix whose first
column is a. Since this circulant matrix Ca can be decomposed as Ca “ F ˚ diag ppaqF [32], it
is also invertible and we define its condition number κpaq :“ maxi |pai| {mini |pai|.

• Random sparse signal. The input signals txiu
p
i“1 are sparse, and follow i.i.d. Bernoulli-Gaussian

(BGpθq) distribution:
xi “ bi d gi, bi „i.i.d. Bpθq, gi „i.i.d. N p0, Iq,

where θ P r0, 1s is the Bernoulli-parameter which controls the sparsity level of xi.

As aforementioned, this assumption generalizes those used in [20,21]. In particular, the first assump-
tion on kernel a is much more practical than that of [20], in which a is assumed to be spiky. The
second assumption is a generalization of the Bernoulli-Rademacher model adopted in [21].

Note that the MCS-BD problem exhibits intrinsic signed scaling-shift symmetry, i.e., for any α ­“ 0,
yi “ s´ℓ r˘αas f sℓ

“

˘α´1xi

‰

, i P rps, (2)

where sℓ r¨s denotes a cyclic shift operator of length ℓ. Without loss of generality, for the rest of the
paper we assume that the kernel a is normalized with }a} “ 1. Thus, we only hope to recover a
and txiu

p
i“1 up to a signed shift ambiguity,

A nonconvex formulation. Let Y “ ry1 y2 ¨ ¨ ¨ yps and X “ rx1 x2 ¨ ¨ ¨ xps. We
can rewrite the measurement (1) in a matrix-vector form via circulant matrices,

yi “ a f xi “ Caxi, i P rps ùñ Y “ CaX,

Since Ca is assumed to be invertible, we can define its corresponding inverse kernel h P Rn by
h :“ F´1

pad´1 whose corresponding circulant matrix satisfies
Ch :“ F ˚ diag

`

pad´1
˘

F “ C´1
a ,

where p¨qd´1 denotes entrywise inversion. Observing
Ch ¨ Y “ Ch ¨ Ca

looomooon

“ I

¨X “ X
loomoon

sparse

,

it leads us to consider the following objective

min
q

1

np
}CqY }0 “

1

np

p
ÿ

i“1

}Cyi
q}0 , s.t. q ‰ 0. (3)

Obviously, when the solution of (3) is unique, the only minimizer is the inverse kernel h up to signed
scaling-shift (i.e., q‹ “ ˘αsℓ rhs), producing ChY “ X with the highest sparsity. The nonzero
constraint q ‰ 0 is enforced simply to prevent the trivial solution q “ 0. Ideally, if we could solve
(3) to obtain one of the target solutions q‹ “ sℓ rhs up to a signed scaling, the kernel a and sparse
signals txiu

p
i“1 can be exactly recovered up to signed shift via

a‹ “ F´1
”

pFq‹q
d´1

ı

, x‹
i “ Cyiq‹, p1 ď i ď pq.

However, it has been known for decades that optimizing the basic ℓ0-formulation (3) is an NP-hard
problem [33, 34]. Instead, we consider the following nonconvex6 relaxation of the original problem
(3):

min
q

φhpqq :“
1

np

p
ÿ

i“1

Hµ pCyiPqq , s.t. q P Sn´1, (4)

where Hµp¨q is the Huber loss [35] and P is a preconditioning matrix, both of which will be defined
and discussed as follows.

6It is nonconvex because of the spherical constraint q P Sn´1.
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Smooth sparsity surrogate. It is well-known that ℓ1-norm serves as a natural sparsity surrogate
for ℓ0-norm, but its nonsmoothness often makes it difficult for analysis7. Here, we consider the
Huber loss8 Hµ p¨q which is widely used in robust optimization [35]. It acts as a smooth sparsity
surrogate of ℓ1 penalty and is defined as:

HµpZq :“
n
ÿ

i“1

p
ÿ

j“1

hµpZijq, hµ pzq :“

#

|z| |z| ě µ
z2

2µ `
µ
2 |z| ă µ

, (5)

where µ ą 0 is a smoothing scalar. Our choice hµ pzq is first-order smooth, and behaves exactly
same as the ℓ1-norm for |z| ě µ. In contrast, although the the ℓ4 objective in [21] is smooth, it only
promotes sparsity in special cases. Moreover, it results in a heavy-tailed process, producing flat land-
scape around target solutions, and requiring substantially more samples for measure concentration.
Figure 1 shows a comparison of optimization landscapes in low dimension: the Huber-loss behaves
very similar to the ℓ1-loss, while optimizing the ℓ4-loss could result in large approximation error.

(a) ℓ1-loss, 7 (b) Huber-loss, 7 (c) ℓ4-loss, 7

(d) ℓ1-loss, ✓ (e) Huber-loss, ✓ (f) ℓ4-loss, ✓

Figure 1: Comparison of optimization landscapes for dif-
ferent loss functions. Here 7 and ✓ mean without and with
the preconditioning matrix P , respectively. Each figure plots
the function values of the loss over S2, where the function val-
ues are all normalized between 0 and 1 (darker color means
smaller value, and vice versa). The small red dots on the
landscapes denote shifts of the ground truths.

Preconditioning. An ill-conditioned
kernel a can result in poor optimiza-
tion landscapes (see Figure 1 for an
illustration). To alleviate this effect,
we introduce a preconditioning matrix
P P Rnˆn [21,36,37], defined as follows9

P “

˜

1

θnp

p
ÿ

i“1

CJ
yi
Cyi

¸´1{2

, (6)

which refines the function landscapes by
orthogonalizing the circulant matrix Ca:

CaP
loomoon

R

« Ca

`

CJ
aCa

˘´1{2

looooooooomooooooooon

Q orthogonal

. (7)

Since P « pCaCaq
´1{2, R can be

proved to be very close to the orthogonal
matrix Q. Thus, R is much more well-
conditioned than Ca. As illustrated in Fig-
ure 1, a comparison of optimization land-
scapes without and with preconditioning
shows that preconditioning symmetrifies
the optimization landscapes and eliminates spurious local minimizers. Therefore, it makes the prob-
lem more amendable for optimization.

Constrain over the sphere Sn´1. We relax the nonconvex constraint q ­“ 0 in (3) by a unit
norm constraint on q. The norm constraint removes the scaling ambiguity as well as prevents the
trivial solution q “ 0. Note that the choice of the norm has strong implication for computation.
When q is constrained over ℓ8-norm, the ℓ1{ℓ8 optimization problem breaks beyond sparsity level
θ ě Ωp1{

?
nq [20]. In contrast, the sphere Sn´1 is a homogeneous Riemannian manifold. It

has been shown recently that optimizing over the sphere often leads to optimal sparsity θ P Op1q
[21, 22, 36, 38]. Therefore, we choose to work with q P Sn´1 and we also show similar recovery
results for MCS-BD.

Next, we develop efficient first-order methods and provide guarantees for exact recovery.
7The subgradient of ℓ1-loss is non-Lipschitz, which introduces tremendous difficulty in controlling suprema

of random process and perturbation analysis for preconditioning.
8Actually, hµp¨q is a scaled and elevated version of standard Huber function hs

µ pzq, with hµ pzq “
1
µ
hs
µ pzq ` µ

2
. Hence in our framework minimizing with hµ pzq is equivalent to minimizing with hs

µ pzq.
9Here, the sparsity θ serves as a normalization purpose. It is often not known ahead of time, but the scaling

here does not change the optimization landscape.
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3 Main Results and Analysis
In this section, we show that the underlying benign first-order geometry of the optimization land-
scapes of (4) enables efficient and exact recovery using vanilla gradient descent methods, even with
random initialization. Our main result can be captured by the following theorem.
Theorem 3.1 We assume that the kernel a is invertible with condition number κ, and txiu

p
i“1 „

BGpθq. Suppose θ P
`

1
n ,

1
3

˘

and µ ď cmin
!

θ, 1?
n

)

. Whenever

p ě Cmax

"

n,
κ8

θµ2σ2
min

log4 n

*

θ´2n4 log3pnq log

ˆ

θn

µ

˙

, (8)

w.h.p. the function (4) satisfies certain regularity conditions (see Theorem 3.2), allowing us to
design an efficient vanilla first-order method. In particular, with probability at least 1

2 , by using a
random initialization, the algorithms provably recover the target solution up to a signed shift with
ε-precision in a linear rate

#Iter ď C 1

ˆ

θ´1n4 log

ˆ

1

µ

˙

` logpnpq log

ˆ

1

ε

˙˙

.

Remark 1. In the following, we explain our results in several aspects.
• Conditions and Assumptions. Here, as the MCS-BD problem becomes trivial10 when θ ď 1{n,

we only focus on the regime θ ą 1{n. Similar to [21], our result only requires the kernel a to be
invertible and sparsity level θ to be constant. In contrast, the method in [20] only works when the
kernel a is spiky and txiu

p
i“1 are very sparse θ P Op1{

?
nq, excluding most problems of interest.

• Sample Complexity. As shown in Table 1, our sample complexity p ě rΩpmax
␣

n, κ8{µ2
(

n4q

in (8) improves upon the result p ě rΩpmax
␣

n, κ8
(

n8{ε8q in [21]. As aforementioned, this
improvement partly owes to the similarity of the Huber-loss to ℓ1-loss, so that the Huber-loss
is much less heavy-tailed than the ℓ4-loss studied in [21], requiring fewer samples for measure
concentration. Still, our result leaves much room for improvement – we believe the sample de-
pendency on θ´1 is an artifact of our analysis11, and the phase transition in Figure 5 suggests that
p ě Ωppoly logpnqq samples might be sufficient for exact recovery.

• Algorithmic Convergence. Finally, it should be noted that the number of iteration
rO
`

n4 ` log p1{εq
˘

for our algorithm substantially improves upon that rOpn12{ε2q of the noisy
RGD in [21, Theorem IV.2]. This has been achieved via a two-stage approach: (i) we first run
Opn4q iterations of vanilla RGD to obtain an approximate solution; (ii) then perform a subgradi-
ent method with linear convergence to the ground-truth. Moreover, without any noise parameters
to tune, vanilla RGD is more practical than the noisy RGD in [21].

3.1 A glimpse of high dimensional geometry
To study the optimization landscape of (5), we simplify the problem by a change of variable q “ Qq,
which rotates the space by the orthogonal matrix Q in (7). Since the rotation Q does not change the
optimization landscape, by an abuse of notation of q and q, we can rewrite the problem (5) as

min
q

fpqq :“
1

np

p
ÿ

i“1

Hµ

`

CxiRQ´1q
˘

, s.t. }q} “ 1, (9)

where we also used the fact that CyiP “ CxiR in (7). Moreover, since R « Q is near orthogonal,
by assuming RQ´1 “ I , for pure analysis purposes we can further reduce (9) to

min
q

rfpqq “
1

np

p
ÿ

i“1

Hµ pCxiqq , s.t. }q} “ 1. (10)

The reduction in (10) is simpler and much easier for analysis. By a similar analysis as [24, 36], it
can be shown that asymptotically the landscape is highly symmetric and the standard basis vectors
t˘eiu

n
i“1 are approximately12 the only global minimizers. Hence, as RQ´1 « I , we can study the

10The problem becomes trivial when θ ď 1{n because θn “ 1 so that each xi tends to be an one sparse
δ-function.

11The same θ´1 dependency also appears in [21, 24, 25, 36, 37].
12The standard basis t˘eiu

n
i“1 are exact global solutions for ℓ1-loss. The Huber loss we considered here

introduces small approximation errors due to its smoothing effects.
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landscape of fpqq via studying the landscape of rfpqq followed by a perturbation analysis. As illus-
trated in Figure 2, based on the target solutions of rfpqq, we partition the sphere into 2n symmetric
regions, and consider 2n (disjoint) subsets of each region13 [24, 25]

Si˘
ξ :“

"

q P Sn´1 |
|qi|

}q´i}8

ě
a

1 ` ξ, qi ż 0

*

, ξ P r0,8q,

where q´i is a subvector of q with i-th entry removed. For every i P rns, Si`
ξ (or Si´

ξ ) contains
exactly one of the target solution ei (or ´ei), and all points in this set have one unique largest entry
with index i, so that they are closer to ei (or ´ei) in ℓ8 distance than all the other standard basis
vectors. As shown in Figure 2, the union of these sets form a full partition of the sphere only when
ξ “ 0. While for small ξ ą 0, each disjoint set excludes all the saddle points and maximizers, but
their union covers most measure of the sphere: when ξ “ p5 log nq

´1, their union covers at least half
of the sphere, and hence a random initialization falls into one of the regions Si˘

ξ with probability at
least 1{2 [25]. Therefore, we can only consider the optimization landscapes on the sets Si˘

ξ , where
we show the Riemannian gradient of fpqq

grad fpqq :“ PqK∇fpqq “
`

I ´ qqJ
˘

∇f pqq

satisfies the following properties in each set Si˘
ξ . For convenience, we will simply present the results

in terms of Si`
ξ , but they also hold for Si´

ξ .

Proposition 3.2 (Regularity Condition) Suppose θ P
`

1
n ,

1
3

˘

and µ ď cmin
!

θ, 1?
n

)

. When p

satisfies (8), w.h.p. over the randomness of txiu
p
i“1, the Riemannian gradient of fpqq satisfies

xgrad fpqq, qiq ´ eiy ě αpqq }q ´ ei} , (11)

for any q P Si`
ξ with

a

1 ´ q2i ě µ, where the regularity parameter is

αpqq “

"

c1θp1 ´ θqqi
a

1 ´ q2i P rµ, γs

c1θp1 ´ θqn´1qi
a

1 ´ q2i ě γ

which increases as q gets closer to ei. Here γ P rµ, 1q is some constant.

e1
e2

−e2

e3

−e3

ξ = 0

ξ = 5 log(n)

Figure 2: Illustration of the set S1`
ξ in 3-

dimension. Region 1 (purple region) denotes
the interior of S1`

ξ when ξ “ 0, where it in-
cludes one unique target solution. We show
the regularity condition (11) within S1`

ξ , ex-
cluding a green region of order Opµq (i.e.,
Region 2) due to Huber smoothing.

Remark 2. Here, our result is stated with respect
to ei for the sake of simplicity. It should be noted
that asymptotically the global minimizer of (9) is
βpRQ´1q´1ei rather than ei, where β is a normal-
ization factor. Nonetheless, as RQ´1 « I , the
global optimizer βpRQ´1q´1ei of (9) is very close
to ei, so that we can state a similar result with re-
spect to βpRQ´1q´1ei. The regularity condition
(11) shows that any q P Si`

ξ with
a

1 ´ q2i ě µ
is not a stationary point. Similar regularity condition
has been proved for phase retrieval [39], dictionary
learning [25], etc. Such condition implies that the
negative gradient direction coincides with the direc-
tion to the target solution. The lower bound on Rie-
mannian gradient ensures that the iterate still makes
sufficient progress to the target solution, even when
it is close to the target.

To ensure convergence of RGD, we also need to
show the following property, so that once initialized
in Si`

ξ the iterates of the RGD method implicitly reg-
ularize themselves staying in the set Si`

ξ . This en-
sures that the regularity condition (11) holds through
the solution path of the RGD method.

13Here, we define }q´i}
´1
8 “ `8 when }q´i}8 “ 0, so that the set Si`

ξ is compact and ei is also contained
in the set.
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Proposition 3.3 (Implicit Regularization) Under the same condition of Proposition 3.2, w.h.p.
over the randomness of txiu

p
i“1, the Riemannian gradient of fpqq satisfies

B

grad fpqq,
1

qj
ej ´

1

qi
ei

F

ě c4
θp1 ´ θq

n

ξ

1 ` ξ
, (12)

for all q P Si`
ξ and any qj such that j ‰ i and q2j ě 1

3q
2
i .

Remark 3. In a nutshell, (12) guarantees that the negative gradient direction points towards ei
component-wisely for relatively large components (i.e., q2j ě 1

3q
2
i , @j ‰ i). With this, we can

prove that those components will not increase after gradient update, ensuring the iterates stay within
the region Si`

ξ . This type of implicit regularizations for the gradient has also been discovered
for many nonconvex optimization problems, such as low-rank matrix factorizations [40–43], phase
retrieval [44], and neural network training [45].
3.2 From geometry to efficient optimization
Phase 1: Finding an approximate solution via RGD. Starting from a random initialization qp0q

uniformly drawn from Sn´1, we solve the problem (4) via vanilla RGD

qpk`1q “ PSn´1

´

qpkq ´ τ ¨ grad fpqpkqq

¯

, (13)

where τ ą 0 is the stepsize, and PSn´1 p¨q is a projection operator onto the sphere Sn´1.

Proposition 3.4 (Linear convergence of gradient descent) Suppose Proposition 3.2 and Proposi-
tion 3.3 hold. With probability at least 1{2, the random initialization qp0q falls into one of the regions
Si˘
ξ for some i P rns. Choosing a fixed step size τ ď c

n min
␣

µ, n´3{2
(

in (13), we have

›

›

›
qpkq ´ ei

›

›

›
ď 2µ, @k ě N :“

C

θ
n4 log

ˆ

1

µ

˙

.

Because of the preconditioning and smoothing via Huber loss (5), the geometry structure in Propo-
sition 3.2 implies that the gradient descent method can only produce an approximate solution qs up
to a precision Opµq. Moreover, as we can show that }ei ´ βpRQ´1q´1ei} ď µ{2, it does not make
much difference of stating the result in terms of either ei or βpRQ´1q´1ei. Next, we show that,
by using qs as a warm start, an extra linear program (LP) rounding procedure produces an exact
solution pRQ´1q´1ei up to a scaling factor in a few iterations.

Phase 2: Exact solution via LP rounding. Let r “ qs be the solution obtain from solving RGD.
We recover the exact solution by solving the following LP problem14

min
q

ζpqq :“
1

np

p
ÿ

i“1

›

›Cxi
RQ´1q

›

›

1
s.t. xr, qy “ 1. (14)

Since the feasible set xr, qy “ 1 is essentially the tangent space of the sphere Sn´1 at r, and r “ qs
is pretty close to the target solution, one should expect that the optimizer q‹ of (14) exactly recovers
the inverse kernel h up to a scaled-shift. The problem (14) is convex and can be directly solved
using standard tools such as CVX [46], but it will be time consuming for large dataset. Instead, we
introduce an efficient projected subgradient method for solving (14),

qpk`1q “ qpkq ´ τ pkqPrKgpkq, gpkq “
1

np

p
ÿ

i“1

`

RQ´1
˘J

CJ
xi

sign
´

Cxi
RQ´1qpkq

¯

. (15)

For convenience, let rr :“
`

RQ´1
˘´J

r, and define the distance dpqq between q and the truth

distpqq :“ }dpqq} , dpqq :“ q ´
`

RQ´1
˘´1 en

rrn
.

Proposition 3.5 Suppose µ ď 1
25 and let r “ qs which satisfies }r ´ ei} ď 2µ. Choose τ pkq “

ηkτ p0q with τ p0q “ c1 log
´2

pnpq and η P r
`

1 ´ c2 log
´2

pnpq
˘1{2

, 1q. Under the same condition
of Theorem 3.1, w.h.p. the sequence tqpkqu produced by (15) with qp0q “ r converges to the target
solution in a linear rate, i.e.,

distpqpkqq ď Cηk, @ k “ 0, 1, 2, ¨ ¨ ¨ .
14For convenience, we state this problem in the rotated space. For the original problem (5), we should solve

an equivalent problem of (14) as minq ζpqq :“ 1
np

řp
i“1 }CyiPq}1 , s.t. xr, qy “ 1, with r “ QJr.
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Figure 3: Comparison of iterate
convergence. p “ 50, n “ 200,
θ “ 0.25.

Figure 4: Comparison of recovery
probability with varying θ. p “ 50,
n “ 500.

Remark 4. Unlike smooth problems, in general, subgradient methods for nonsmooth problem
have to use geometrically diminishing stepsize to achieve linear convergence15 [48–51]. The under-
lying geometry that supports the use of geometric diminishing step size and linear convergence is
the so-called sharpness property [52] of the problem (14). In particular, for some constant α ą 0,
we prove ζpqq is sharp in the sense that

ζpqq ´ ζ
´

`

RQ´1
˘´1

en{rrn

¯

ě α ¨ distpqq, @ xr, qy “ 1.

Finally, we end this section by noting that although we use matrix-vector form of convolutions in
(13) and (15), all the matrix-vector multiplications can be efficiently implemented by FFT, including
the preconditioning matrix in (6) which is also a circulant matrix. With FFT, the complexities of
implementing one gradient update in (13) and subgradient in (15) are both Oppn log nq.

4 Experiment

Experiments on 1D synthetic dataset. First, we conduct a series of experiments on synthetic
dataset to demonstrate the superior performance of the vanilla RGD method (13). For all synthetic
experiments, we generate the measurements yi “ a f xi (1 ď i ď p), with the ground truth kernel
a P Rn drawn uniformly random from the sphere Sn´1 (i.e., a „ UpSn´1q), and with sparse signals
xi P Rn, i “ rps drawn from i.i.d. Bernoulli-Gaussian distribution xi „i.i.d. BGpθq.

We compare the performances of RGD16 with random initialization on ℓ1-loss, Huber-loss, and ℓ4-
loss considered in [21]. We use line-search for adaptively choosing stepsize. For a fair comparison
of optimizing all losses, we refine all solutions with the LP rounding procedure (14) optimized by
subgradient descent (15), and use the same random initialization uniformly drawn from the sphere.

For judging the success of recovery, let q‹ be a solution produced by the algorithm and we define
ρaccpq‹q :“ }CaPq‹}8 { }CaPq‹} P r0, 1s.

If q‹ achieves the target solution, it should satisfy Pq‹ “ h, with h being the inverse kernel of a and
thus ρaccpq‹q “ 1. Therefore, we should expect ρaccpq‹q « 1 when an algorithm produces a correct
solution. For the following simulations, we assume successful recovery whenever ρaccpq‹q ě 0.95.

(a) Comparison of iterate convergence. We first compare the convergence in terms of the distance
from the iterate to the target solution for all losses using RGD. As shown in Figure 3, in Phase 1
optimizing ℓ4-loss can only produce an approximate solution up to precision 10´2. In contrast,
optimizing Huber-loss converges much faster, and producing much more accurate solutions as
µ decreases. In Phase 2, subgradient descent converges linearly to the exact solution.

(b) Recovery with varying sparsity. Fix n “ 500 and p “ 50, we compare the recovery prob-
ability with varying sparsity level θ. For each θ, we repeat the simulation for 15 times. As
illustrated in Figure 4, optimizing Huber-loss enables successful recovery for much larger θ in
comparison with that of ℓ4-loss. The performances of optimizing ℓ1-loss and Huber-loss are
quite similar.

15Typical choices such as τ pkq “ Op1{kq and τ pkq “ Op1{
?
kq lead to sublinear convergence [47–51].

16For ℓ1-loss, we use Riemannian subgradient method, similar to (15).
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