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Supplementary Information

A Characteristics of coupling function λ(ξ) and confining potential W(ξ)

This section serves as a supplementary specification for both λ(ξ) and W(ξ).

Let us first recall the Hamiltonian of the extended system; for readability, we rewrite Eq. (4) here:

H(Γ) = λ(ξ)U(θ) +W(ξ) + p>θ M−1
θ pθ/2 + p2

ξ/2mξ ,

where λ(ξ) ∈ R+ denotes the coupling function that maps the tempering variable ξ ∈ R to a multiplier
to the (inverse) temperature so that the effective temperature T/λ(ξ) for the original system can vary.
W(ξ) represents the confining potential for ξ, acting as a potential well to physically restrict ξ’s range.
Note that the effective temperature of the original system T/λ(ξ) depends on the temperature of the
extended system T , which is constant. In our experiments, we fix it at T = 1.

An illustration of both the coupling function λ(ξ) and the confining potential W(ξ) is shown in Fig. 1.
The potential W(ξ), as explained in §3.3, is implemented as a well of infinite height, depicted as the
vertical red dashed lines. The coupling function λ(ξ), on the other hand, is a first-order differentiable
function with a plateau at the level of λ(ξ∗) = 1, drawn as the blue curve. We highlight the plateau by
the shaded region in Fig. 1. For simplicity, λ(ξ) is built to be even, i.e. symmetric w.r.t. the y-axis.
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Figure 1: Illustration of the coupling function λ(ξ) and confining potential W(ξ). The shaded region
represents the interval of standard temperature, in which the sampler generates unbiased samples.

Specifically, we define the coupling function in the form of

1
λ(ξ)

=

{
1 if |ξ | ≤ ξ0 ,

1 +
(
|ξ |−ξ0
ξ1−ξ0

)n
if |ξ | > ξ0 ,

with ξ1 > ξ0 > 0 and n ∈ N+.

By definition, a plateau of width 2ξ0 is placed at the centre; λ(ξ) decays monotonically as |ξ | increases
when |ξ | exceeds ξ0, and it approaches 0+ in the limit |ξ | → ∞.

In the synthetic cases, we use the parameter [ξ0 = 1/3, ξ1 = 1,n = 3] so that λ(ξ) ≡ 1 if |ξ | ≤ ξ0 = 1/3.
It reaches the effective temperature of 2 when |ξ | = ξ1 = 1; by placing the two walls of the potential
well W(ξ) at |W0 | = ±5/3, the highest temperature that can be reached is 9.

Given a well-tuned sampler, the tempering variable ξ should be able to move freely within the well
W(ξ), i.e. the probability of finding ξ in any interval with fixed length must be equal. In this scenario,
the efficiency of obtaining an unbiased system configuration is equivalent to the probability of finding
the system at standard temperature, which then equals to the chance of ξ being found on the plateau:

efficiency =
|ξ0 |

|W0 |
,

where the efficiency of sampling, in our setting, is 20%.
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Here we would like to emphasise that the magnitude of λ′(ξ) may have some influence in stability of
simulating the dynamics in Eq. (5). The magnitude |λ′(ξ)| is, however, in a way inversely proportional
to the ratio |ξ0 |/|W0 | given a specific form of λ(ξ) with the highest temperature available to hold fixed
(i.e. by keeping the functional of λ(ξ) unchanged and fixing the value at λ(ξ = W0)). For that reason,
we suggest the efficiency not to exceed 25%.

B Alternative approach to tempering enhancement by Metadynamics

We have leveraged the adaptive biasing force (ABF) method [2] in Algorithm 1 in order to cancel the
instantaneous force preventing the tempering variable ξ from free motion. Equivalently, ABF flattens
the actual potential that ξ feels, which is essentially the superposition of the confining potential W(ξ)
and that arises from the interaction between ξ and θ through λ(ξ)U(θ).

Metadynamics [3] has emerged as an alternative to ABF for a similar purpose of enhancing sampling.
It introduces a history-dependent repulsive biasing potential to the target variable, i.e. ξ, to discourage
ξ from revisiting the places it has already visited. Due to its simplicity and the robustness, this method
has been widely used in a variety of disciplines, ranging from science to engineering.

To implement Metadynamics, we establish a history-dependent biasing potential A(ξ, t) on ξ’s feasible
interval confined by W(ξ). The interval is then divided into J bins with length δ; for each bin j, we
maintain and update a memory Aj(t) stored at the centre aj of bin j in the form

Aj(t) =
t∑

τ=0
hAI

[
ξ(τ) ∈ bin j

]
,

where I[ξ(t) ∈ bin j] = 1 if ξ(t) ∈ bin j otherwise 0 represents the indicator function and hA defines
the incremental for Aj(t) in each of the updates. By tracking ξ(t) in the runtime, we locate the current
bin j and then increase the previous value Aj(t − 1) in that bin j by hA.

The resulting biasing force can be readily calculated by

∂ξ A(ξ, t) =
{[

Aj(t) − Aj+1(t)
] /
δ if ξ ∈ bin j and ξ ≥ aj ,[

Aj−1(t) − Aj(t)
] /
δ if ξ ∈ bin j and ξ < aj .

A major problem that the vanilla Metadynamics [3] encounters is that it lacks a proof of convergence
because the incremental hA remains constant; the biasing potential Aj(t) grows proportionally to the
time elapsed in simulation. Recent advances [1] in the development of Metadynamics seem to have
mitigated this issue, which enables its application in a wider range of tasks [4].
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