
Appendix

A Proof of Lemma 2.10

Suppose that dTV (p, CU ) ≥ ε. We want to show that with high probability over the samples it holds∑
i∈S |pi − p(S)/|S|| = Ω(ε). The main difficulty is that the value of p(S) is unknown, hence we

need a somewhat indirect argument. By Claim 2.6, for all x ∈ [0, 1] we have that∑
i∈Ω

min{pi, |pi − x|} ≥ ε/2 . (3)

To show that Z(x)
def
=
∑
i∈S |pi − x| = Ω(ε), when x = p(S)/|S|. To do this, we note that for any

S, Z(x) always attains a minimum at pi for some i. Furthermore, if |S| = Θ(n) and p(S) ≥ 1/3,
then Z(x) is automatically large unless x = Θ(1/n). Thus, it suffices to show that:

Claim A.1. With probability at least 19/20, for all x = pi = Θ(1/n), we have that Z(x) = Ω(ε).

Proof. We note that there are only O(n) allowable values of x, and so we will prove that for any
given x = Θ(1/n) that the statement holds with high probability.

Let Zi, i ∈ Ω, be the indicator of the event i ∈ S. Then, Z(x) =
∑
i∈Ω |pi − x|Zi. Note that Zi

is a Bernoulli random variable with E[Zi] = 1− e−pim and that the Zi’s are mutually independent.
Note that E[Z(x)] =

∑
i∈Ω(1 − e−pim)|pi − x|. We recall the following concentration inequality

for sums of non-negative random variables (see, e.g., Exercise 2.9 in [BLM13]):

Fact A.2. Let X1, . . . , Xk be independent non-negative random variables, and X =
∑k
j=1Xj .

Then, for any t > 0, it holds that Pr[X ≤ E[X]− t] ≤ exp
(
−t2/(2

∑k
i=1 E[X2

i ])
)
.

Since Z(x) =
∑
i∈Ω |pi − x|Zi where the Zi’s are independent Bernoulli random variables with

E[Z2
i ] = 1− e−pim, an application of Fact A.2 yields that

Pr [Z(x) ≤ E[Z(x)]− t] ≤ exp

(
−t2

2
∑
i∈Ω(1− e−pim)(pi − x)2

)
. (4)

Let Sl = {i ∈ Ω : pi ≤ x/2} and Sh = Ω \ Sl. By (3), we get that
∑
i∈Sl

pi +
∑
i∈Sh
|x− pi| ≥

ε/2 . For i ∈ Sl, we have that (1 − e−pin)|pi − x| ≥ m · pi · |x/2| = Ω(pi). For i ∈ Sh, we
have that (1− e−pin) = Ω(1) and therefore (1− e−pim)|pi − x| = Ω(1)|pi − x|. We therefore get
that E[Z(x)] = Ω(ε). We now bound

∑
i∈Ω(1 − e−pim)(pi − x)2 from above using the fact that

pi = O(log n/n), for all i ∈ Ω. This assumption and the range of x imply that∑
i∈Ω

(1− e−pim)(pi − x)2 ≤ O(log n/n) ·E[Z] .

So, by setting t = E[Z]/2 in (4), we get that

Pr[Z(x) ≤ E[Z(x)]/2] ≤ exp (−Ω(εn/ log n)) = exp
(
−nΩ(1)

)
,

where the last inequality follows from the range of ε. Recalling that there are only O(1/n) many
allowable values of x, Claim A.1 follows by a union bound.

Lemma 2.10 follows from noting that it suffices to show that Z(p(S)/|S|) = Ω(ε) when |S| = Θ(n)
and p(S) ≥ 1/3. In such a case, Z(x) takes a minimum when x = pi for some i. If x = Θ(1/n), the
result follows from our claim. Otherwise, it is easy to see that Z(x) = Ω(1) for all x not Θ(1/n).
This completes the proof of our lemma.

To complete our analysis of the soundness case, we have that unless p assigns some bin probability
Ω(log(n)/n), that with high probability over samples, either we are rejected by (ii), have p(S) <
1/3 or (p|S) is Ω(ε)-far from uniform. If p(S) ≤ 1/3, most of our m′ samples lie outside of S with
high probability. If (p|S) is far from uniform, our m′ samples from Step 6 either mostly lie outside
of S (in which case we reject), or the first m′/2 of them are independent random samples from
(p|S). Since (p|S) is ε/C ′-far from uniform, our uniformity tester will reject with 99% probability.
This completes our proof.
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B Omitted Proofs from Section 3

We exhibit the relevant families D and D′. In both cases, we want to arrange µi := µ({i}) to be
i.i.d. for different i. We also want it to be the case that the first and second moments of µi are the
same for D and D′. Combining this with requirements on closeness to uniform, we are led to the
following definitions:

For µ taken from D′, we let

µi =


1+ε
n , with probability n

2N
1−ε
n , with probability n

2N

0 , otherwise .

For µ taken from D, we let

µi =

{
1+ε2

n , with probability n
N(1+ε2)

0 , otherwise .

Note that in both cases, the average total mass is 1, and it is easy to see by Chernoff bounds that the
actual mass of µ is Θ(1) with high probability. Additionally, in both cases the expected sizes of ‖p‖22
and ‖p‖33 are Θ(n−1) and Θ(n−2), respectively. Again, it is not hard to show by a Chernoff bound
that with high probability the actual second and third moments of p are within constant factors of
this. For µ taken from D, all of the µi are either 0 or 1+ε2

n , and thus µ/‖µ‖1 is uniform over its
support. For µ taken from D′, with high probability at least a third of the bins in its support have
µi = 1+ε

n , and at least a third have µi = 1−ε
n . If this is the case, then at least a constant fraction

of the mass of µ/‖µ‖1 comes from bins with mass off from the average mass by at least a (1 ± ε)
factor, and this implies that µ/‖µ‖1 is at least Ω(ε)-far from uniform.

We have thus verified 1-4. Property 5 will be somewhat more difficult to prove. For this, let X be a
random {0, 1} random variable with equal probabilities. Let µ be chosen randomly fromD ifX = 0,
and randomly from D′ if X = 1. Let our Poisson process with intensity kµ return Ai samples
from bin i. We note that, by the same arguments as in [DK16], it suffices to show that the shared
information I(X;A1, . . . , AN ) = o(1). In order to prove this, we note that the Ai are conditionally
independent on X , and thus we have that I(X;A1, . . . , AN ) ≤

∑N
i=1 I(X;Ai) = NI(X;A1).

Thus, we need to show that I(X;A1) = o(1/N). For notational simplicity, we drop the subscript in
A1.

This boils down to an elementary but tedious calculation. We begin by noting that we can bound

I(X;A) =

∞∑
t=0

O

(
(Pr(A = t|X = 0)− Pr(A = t|X = 1))2

Pr(A = t)

)
.

(This calculation is standard. See Fact 81 in [CDKS17] for a proof.) We seek to bound each of these
terms. The distribution ofA conditioned on µ1 is Poisson with parameter kµ1. Thus, the distribution
of A conditioned on X is a mixture of two or three Poisson distributions, one of which is the trivial
constant 0. We start by giving explicit expressions for these probabilities.

Firstly, for the t = 0 term, note that

Pr(A = t|X = 1) = 1− n

N

(
1− e−k(1+ε)/n + e−k(1−ε)/n

2

)
,

Pr(A = t|X = 0) = 1− n

N(1 + ε2)
(1− e−k(1+ε2)/n) .

Note that Pr(A = 0) is at least 1−n/N ≥ 1/2 and Pr(A = t|X = 1)−Pr(A = t|X = 0) ≤ n/N .
Thus, the contribution from this term, (Pr(A=0|X=0)−Pr(A=0|X=1))2

Pr(A=0) , is O(n/N)2 = o(1/N).

For t ≥ 1, there is no contribution from µ1 = 0. We can compute the probabilities involved exactly
as

Pr(A = t|X = 1) =
n

N

(k(1 + ε)/n)te−k(1+ε)/n + (k(1− ε)/n)te−k(1−ε)/n

2t!
,
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Pr(A = t|X = 0) =
n

N(1 + ε2)

(k(1 + ε2)/n)te−k(1+ε2)/n

t!
,

and obtain that (Pr(A=t|X=0)−Pr(A=t|X=1))2

Pr(A=t) is

O

(n1−tkt

2Nt!

) ((1 + ε)te−k(1+ε)/n + (1− ε)te−k(1−ε)/n − 2(1 + ε2)t−1e−k(1+ε2)/n
)2

(1 + ε)te−k(1+ε)/n + (1− ε)te−k(1−ε)/n + 2(1 + ε2)t−1e−k(1+ε2)/n

 .

Factoring out the e−k/n terms and noting that, since kε/n = o(1), the denominator is Ω(e−k/n)
yields that

O

((
n1−tkte−k/n

2Nt!

)(
(1 + ε)te−k(1+ε)/n + (1− ε)te−k(1−ε)/n − 2(1 + ε2)t−1e−k(1+ε2)/n

)2
)
.

Noting that k/n = o(1), we can ignore this e−kn term and Taylor expanding the exponentials, we
have that

(Pr(A = t|X = 0)− Pr(A = t|X = 1))2

Pr(A = t)
=

O

((
n1−tkt

2Nt!

)(
(1 + ε)t(1− k(1 + ε)/n) + (1− ε)t(1 + k(1− ε)/n)

− 2(1 + ε2)t−1(1− k(1 + ε2)/n) +O((kε/n)2(1 + ε)t)
)2)

.

We deal separately with the cases t = 1, t = 2 and t > 2. For the t = 1 term, we have

O

((
k

N

)(
(1 + ε)(1− kε/n) + (1− ε)(1 + kε/n)− 2(1− kε2/n) +O((kε/n)2)

)2)
=O

((
k

N

)
O((kε/n)2)2

)
.

Since k = o(n2/3/ε4/3) and ε > n−1/4, εk/n = o(n−1/3/ε1/3) = o(n−1/4), and we find that this
is

O

((
k

N

)
o(1/n)

)
= o(1/N) .

This appropriately bounds the contribution from this term.

When t = 2, we have

O

((
k2

nN

)(
(1 + ε)2(1− k(1 + ε)/n) + (1− ε)2(1− k(1− ε)/n)

−2(1 + ε2)(1− k(1 + ε2)/n) +O((kε/n)2)
)2)

.

Note that the terms without k/n factors cancel out, (1 + ε)2 + (1− ε)2 − 2(1 + ε2) = 0, yielding

O(k2/nN)(kε2/n+o(n−1/2))2 = O(k4ε4/n3N)+o(k2/n2N) = o(k3ε4/n2N)+o(1/N) = o(1/N) ,

using both k = o(n2/3/ε4/3) and k = o(n).

For t > 2, we let ft(x) = (1 + x)t(1 − kx/n). In terms of ft, we have that
(Pr(A=t|X=0)−Pr(A=t|X=1))2

Pr(A=t) is:

O

((
n1−tkt

2Nt!

)
(ft(ε) + ft(−ε))/2− ft(0)− (ft−1(ε2)− ft−1(0)) + o(n−1/2)2

)
.

Using the Taylor expansion of ft in terms of its first two derivatives and ft−1 in terms of its first, we
see that

(ft(ε) + ft(−ε))/2− ft(0) = ε2f ′′t (ξ)
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and
ft−1(ε2)− ft−1(0) = ε2f ′t−1(ξ′) ,

for some ξ ∈ [−ε, ε] and ξ′ ∈ [0, ε2]. However, the derivatives are

f ′t(x) = (1 + x)t−1(t− (1 + x+ tx)k/n)

and
f ′′t (x) = (1 + x)t−2(t(t− 1)− t(t+ 1)xk/n) ,

and so |f ′′t (ξ)| ≤ O(t2(1 + ε)t−1) and f ′t−1(ξ′) ≤ O(t(1 + ε2)t−2). Hence, the term

(Pr(A = t|X = 0)− Pr(A = t|X = 1))2

Pr(A = t)

is at most

O(n1−tkt/Nt!)(ε4t4(1 + ε)2t−2) + o(1/n))

= O
(
(k3ε4/n2)(t4(1 + ε)2/N)(k(1 + ε)2/n)t−3/t!

)
+ o

(
(k/n)t/(Nt!)

)
= o(1/N)t4/t! ,

using both k = o(n2/3/ε4/3) and k = o(n). Since (t + 1)4/(t + 1)! ≤ t4/2t! for all t ≥ 4, even
summing the above over all t ≥ 3 still leaves o(1/N).

Thus, we have that I(X;A) = o(1/N), and therefore that I(X : A1, . . . , AN ) = o(1). This
proves that X = 0 and X = 1 cannot be reliably distinguished given A1, . . . , AN , and thus proves
property 5, completing the proof of our lower bound.
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