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1 King Abdullah University of Science and Technology, 2University of Edinburgh,
3Moscow Institute of Physics and Technology

Abstract

We propose a randomized first order optimization method—SEGA (SkEtched
GrAdient)—which progressively throughout its iterations builds a variance-
reduced estimate of the gradient from random linear measurements (sketches) of
the gradient. In each iteration, SEGA updates the current estimate of the gradi-
ent through a sketch-and-project operation using the information provided by the
latest sketch, and this is subsequently used to compute an unbiased estimate of
the true gradient through a random relaxation procedure. This unbiased estimate
is then used to perform a gradient step. Unlike standard subspace descent meth-
ods, such as coordinate descent, SEGA can be used for optimization problems with
a non-separable proximal term. We provide a general convergence analysis and
prove linear convergence for strongly convex objectives. In the special case of
coordinate sketches, SEGA can be enhanced with various techniques such as im-
portance sampling, minibatching and acceleration, and its rate is up to a small
constant factor identical to the best-known rate of coordinate descent.

1 Introduction

Consider the optimization problem

min
x∈Rn

F (x)
def
= f(x) +R(x), (1)

where f : Rn → R is smooth and µ–strongly convex, and R : Rn → R∪ {+∞} is a closed convex
regularizer. In some applications, R is either the indicator function of a convex set or a sparsity
inducing non-smooth penalty such as `1-norm. We assume that the proximal operator of R, defined
by proxαR(x)

def
= argminy∈Rn

{
R(y) + 1

2α‖y − x‖
2
B

}
, is easily computable (e.g., in closed form).

Above we use the weighted Euclidean norm ‖x‖B
def
= 〈x, x〉1/2B , where 〈x, y〉B

def
= 〈Bx, y〉 is a

weighted inner product associated with a positive definite weight matrix B � 0. Strong convexity
of f is defined with respect to the same product and norm1.

1.1 Gradient sketching

In this paper we design proximal gradient-type methods for solving (1) without assuming that the
true gradient of f is available. Instead, we assume that an oracle provides a random linear trans-
formation (i.e., a sketch) of the gradient, which is the information available to drive the iterative

1f is µ–strongly convex if f(x) ≥ f(y) + 〈∇f(y), x− y〉B + µ
2
‖x− y‖2B for all x, y ∈ Rn.
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process. In particular, given a fixed distribution D over matrices S ∈ Rn×b (b ≥ 1 can but does not
need to be fixed), and a query point x ∈ Rn, our oracle provides us the random linear transformation
of the gradient given by

ζ(S, x)
def
= S>∇f(x) ∈ Rb, S ∼ D. (2)

Information of this type is available/used in a variety of scenarios. For instance, randomized coordi-
nate descent (CD) methods use oracle (2) with D corresponding to a distribution over standard basis
vectors. Minibatch/parallel variants of CD methods utilize oracle (2) with D corresponding to a dis-
tribution over random column submatrices of the identity matrix. If one is prepared to use difference
of function values to approximate directional derivatives, one can apply our oracle model to zeroth-
order optimization [8]. Indeed, the directional derivative of f in a random direction S = s ∈ Rn×1

can be approximated by ζ(s, x) ≈ 1
ε (f(x+ εs)− f(x)), where ε > 0 is sufficiently small.

We now illustrate this concept using two examples.

Example 1.1 (Sketches). (i) Coordinate sketch. Let D be the uniform distribution over standard
unit basis vectors e1, e2, . . . , en of Rn. Then ζ(ei, x) = e>i ∇f(x), i.e., the ith partial derivative of f
at x. (ii) Gaussian sketch. Let D be the standard Gaussian distribution in Rn. Then for s ∼ D we
have ζ(s, x) = s>∇f(x), i.e., the directional derivative of f at x in direction s.

1.2 Related work

In the last decade, stochastic gradient-type methods for solving problem (1) have received unprece-
dented attention by theoreticians and practitioners alike. Specific examples of such methods are
stochastic gradient descent (SGD) [43], variance-reduced variants of SGD such as SAG [44], SAGA [10],
SVRG [22], and their accelerated counterparts [26, 1]. While these methods are specifically designed
for objectives formulated as an expectation or a finite sum, we do not assume such a structure.
Moreover, these methods utilize a fundamentally different stochastic gradient information: they
have access to an unbiased gradient estimator. In contrast, we do not assume that (2) is an unbiased
estimator of ∇f(x). In fact, ζ(S, x) ∈ Rb and ∇f(x) ∈ Rn do not even necessarily belong to the
same space. Therefore, our algorithms and results are complementary to the above line of research.

While the gradient sketch ζ(S, x) does not immediatey lead to an unbiased estimator of the gradient,
SEGA uses the information provided in the sketch to construct an unbiased estimator of the gradient
via a sketch-and-project process. Sketch-and-project iterations were introduced in [15] in the contex
of linear feasibility problems. A dual view uncovering a direct relationship with stochastic subspace
ascent methods was developed in [16]. The latest and most in-depth treatment of sketch-and-project
for linear feasibility is based on the idea of stochastic reformulations [42]. Sketch-and-project can
be combined with Polyak [29, 28] and Nesterov momentum [14, 47], extended to convex feasibility
problems [30], matrix inversion [18, 17, 14], and empirical risk minimization [13, 19].

The line of work most closely related to our setup is that on randomized coordinate/subspace de-
scent methods [34, 16]. Indeed, the information available to these methods is compatible with our
oracle for specific distributions D. However, the main disadvantage of these methods is that they
can not handle non-separable regularizers R. In contrast, the algorithm we propose—SEGA—works
for any regularizerR. In particular, SEGA can handle non-separable constraints even with coordinate
sketches, which is out of range of current CD methods. Hence, our work could be understood as
extending the reach of coordinate and subspace descent methods from separable to arbitrary regular-
izers, which allows for a plethora of new applications. Our method is able to work with an arbitrary
regularizer due to its ability to build an unbiased variance-reduced estimate of the gradient of f
throughout the iterative process from the random sketches provided by the oracle. Moreover, and
unlike coordinate descent, SEGA allows for general sketches from essentially any distribution D.
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Another stream of work on designing gradient-type methods without assuming perfect access to the
gradient is represented by the inexact gradient descent methods [9, 11, 45]. However, these methods
deal with deterministic estimates of the gradient and are not based on linear transformations of the
gradient. Therefore, this second line of research is also significantly different from what we do here.

1.3 Outline

We describe SEGA in Section 2. Convergence results for general sketches are described in Sec-
tion 3. Refined results for coordinate sketches are presented in Section 4, where we also describe
and analyze an accelerated variant of SEGA. Experimental results can be found in Section 5. Con-
clusions are drawn and potential extensions outlined in Appendix A. Proofs of the main results can
be found in Appendices B and C. An aggressive subspace variant of SEGA is described and analyzed
in Appendix D. A simplified analysis of SEGA in the case of coordinate sketches and for R ≡ 0 is
developed in Appendix E (under standard assumptions as in the main paper) and F (under alternative
assumptions). Extra experiments for additional insights are included in Appendix G.

Notation. We introduce notation where needed. We also provide a notation table in Appendix H.

2 The SEGA Algorithm

In this section we introduce a learning process for estimating the gradient from the sketched infor-
mation provided by (2); this will be used as a subroutine of SEGA.

Let xk be the current iterate, and let hk be the current estimate of the gradient of f . The oracle
queried, and we receive new information in the form of the sketched gradient (2). Then, we would
like to update hk based on the new information. We do this using a sketch-and-project process [15,
16, 42]: we set hk+1 to be the closest vector to hk (in a certain Euclidean norm) satisfying (2):

hk+1 = arg min
h∈Rn

‖h− hk‖2B subject to S>k h = S>k∇f(xk). (3)

The closed-form solution of (3) is

hk+1 = hk −B−1Zk(hk −∇f(xk)) = (I−B−1Zk)hk + B−1Zk∇f(xk), (4)

where Zk
def
= Sk

(
S>k B

−1Sk
)†

S>k . Notice that hk+1 is a biased estimator of ∇f(xk). In order to
obtain an unbiased gradient estimator, we introduce a random variable2 θk = θ(Sk) for which

ED [θkZk] = B. (5)

If θk satisfies (5), it is straightforward to see that the random vector

gk
def
= (1− θk)hk + θkh

k+1 (4)
= hk + θkB

−1Zk(∇f(xk)− hk) (6)

is an unbiased estimator of the gradient:

ED
[
gk
] (5)+(6)

= ∇f(xk). (7)

Finally, we use gk instead of the true gradient, and perform a proximal step with respect to R. This
leads to a new optimization method, which we call SkEtched GrAdient Method (SEGA) and describe
in Algorithm 1. We stress again that the method does not need the access to the full gradient.

2Such a random variable may not exist. Some sufficient conditions are provided later.
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Algorithm 1: SEGA: SkEtched GrAdient Method

1 Initialize: x0, h0 ∈ Rn; B � 0; distribution D;
stepsize α > 0

2 for k = 1, 2, . . . do
3 Sample Sk ∼ D
4 gk = hk + θkB

−1Zk(∇f(xk)− hk)

5 xk+1 = proxαR(xk − αgk)

6 hk+1 = hk + B−1Zk(∇f(xk)− hk)

Figure 1: Iterates of SEGA and CD

2.1 SEGA as a variance-reduced method

As we shall show, both hk and gk become better at approximating ∇f(xk) as the iterates xk

approach the optimum. Hence, the variance of gk as an estimator of the gradient tends to zero,
which means that SEGA is a variance-reduced algorithm. The structure of SEGA is inspired by the
JackSketch algorithm introduced in [19]. However, as JackSketch is aimed at solving a finite-
sum optimization problem with many components, it does not make much sense to apply it to (1).
Indeed, when applied to (1) (with R = 0, since JackSketch was analyzed for smooth optimization
only), JackSketch reduces to gradient descent. While JackSketch performs Jacobian sketching
(i.e., multiplying the Jacobian by a random matrix from the right, effectively sampling a subset of the
gradients forming the finite sum), SEGA multiplies the Jacobian by a random matrix from the left.
In doing so, SEGA becomes oblivious to the finite-sum structure and transforms into the gradient
sketching mechanism described in (2).

2.2 SEGA versus coordinate descent

We now illustrate the above general setup on the simple example when D corresponds to a distribu-
tion over standard unit basis vectors in Rn.

Example 2.1. Let B = Diag(b1, . . . , bn) � 0 and let D be defined as follows. We choose Sk = ei
with probability pi > 0, where e1, e2, . . . , en are the unit basis vectors in Rn. Then

hk+1 (4)
= hk + e>i (∇f(xk)− hk)ei, (8)

which can equivalently be written as hk+1
i = e>i ∇f(xk) and hk+1

j = hkj for j 6= i. Note that hk+1

does not depend on B. If we choose θk = θ(Sk) = 1/pi, then

ED [θkZk] =

n∑
i=1

pi
1
pi
ei(e

>
i B
−1ei)

−1e>i =

n∑
i=1

eie
>
i

1/bi
= B

which means that θk is a bias-correcting random variable. We then get

gk
(6)
= hk + 1

pi
e>i (∇f(xk)− hk)ei. (9)

In the setup of Example 2.1, both SEGA and CD obtain new gradient information in the form of a
random partial derivative of f . However, the two methods perform a different update: (i) SEGA
allows for arbitrary proximal term, CD allows for separable one only [46, 27, 12]; (ii) While SEGA

updates all coordinates in every iteration, CD updates a single coordinate only; (iii) If we force
hk = 0 in SEGA and use coordinate sketches, the method transforms into CD.

Based on the above observations, we conclude that SEGA can be applied in more general settings for
the price of potentially more expensive iterations3. For intuition-building illustration of how SEGA

3Forming vector g and computing the prox.
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works, Figure 1 shows the evolution of iterates of both SEGA and CD applied to minimizing a simple
quadratic function in 2 dimensions. For more figures of this type, including the composite case
where CD does not work, see Appendix G.1.

In Section 4 we show that SEGA enjoys, up to a small constant factor, the same theoretical iteration
complexity as CD. This remains true when comparing state-of-the-art variants of CD with importance
sampling, parallelism/mini-batching and acceleration with the corresponding variants of SEGA.

Remark 2.2. Nontrivial sketches S and metric B might, in some applications, bring a substantial
speedup against the baseline choices mentioned in Example 2.1. Appendix D provides one example:
there are problems where the gradient of f always lies in a particular d-dimensional subspace of
Rn. In such a case, suitable choice of S and B leads to O

(
n
d

)
–times faster convergence compared

to the setup of Example 2.1. In Section 5.3 we numerically demonstrate this claim.

3 Convergence of SEGA for General Sketches

In this section we state a linear convergence result for SEGA (Algorithm 1) for general sketch distri-
butions D under smoothness and strong convexity assumptions.

3.1 Smoothness assumptions

We will use the following general version of smoothness.

Assumption 3.1 (Q-smoothness). Function f is Q-smooth with respect to B, where Q � 0 and
B � 0. That is, for all x, y, the following inequality is satisfied:

f(x)− f(y)− 〈∇f(y), x− y〉B ≥ 1
2‖∇f(x)−∇f(y)‖2Q, (10)

Assumption 3.1 is not standard in the literature. However, as Lemma B.1 states, in the special case
of B = I and Q = M−1, it reduces to M-smoothness (see Assumption 3.2), which is a common
assumption in modern analysis of CD methods.

Assumption 3.2 (M-smoothness). Function f is M-smooth for some matrix M � 0. That is, for
all x, y, the following inequality is satisfied:

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ 1
2‖x− y‖

2
M. (11)

Assumption 3.2 is fairly standard in the CD literature. It appears naturally in various application
such as empirical risk minimization with linear predictors and is a baseline in the development of
minibatch CD methods [41, 38, 36, 39]. We will adopt this notion in Section 4, when comparing
SEGA to coordinate descent. Until then, let us consider the more general Assumption 3.1.

3.2 Main result

Now we present one of the key theorems of the paper, stating a linear convergence of SEGA.

Theorem 3.3. Assume that f is Q–smooth with respect to B, and µ–strongly convex. Fix x0, h0 ∈
dom(F ) and let xk, hk be the random iterates produced by SEGA. Choose stepsize α > 0 and
Lyapunov parameter σ > 0 so that

α (2(C−B) + σµB) ≤ σED [Z] , αC ≤ 1
2 (Q− σED [Z]) , (12)

where C
def
= ED

[
θ2
kZk

]
. Then E

[
Φk
]
≤ (1− αµ)kΦ0 for Lyapunov function Φk

def
= ‖xk − x∗‖2B +

σα‖hk −∇f(x∗)‖2B, where x∗ is a solution of (1).
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CD SEGA

Nonaccelerated method
importance sampling, b = 1

Trace(M)
µ

log 1
ε

[34] 8.55 · Trace(M)
µ

log 1
ε

Nonaccelerated method
arbitrary sampling

(
maxi

vi
piµ

)
log 1

ε
[41] 8.55 ·

(
maxi

vi
piµ

)
log 1

ε

Accelerated method
importance sampling, b = 1

1.62 ·
∑
i

√
Mii√
µ

log 1
ε

[3] 9.8 ·
∑
i

√
Mii√
µ

log 1
ε

Accelerated method
arbitrary sampling

1.62 ·
√

maxi
vi
p2iµ

log 1
ε

[20] 9.8 ·
√

maxi
vi
p2iµ

log 1
ε

Table 1: Complexity results for coordinate descent (CD) and our sketched gradient method (SEGA), specialized
to coordinate sketching, for M–smooth and µ–strongly convex functions.

Note that Φk → 0 implies hk → ∇f(x∗). Therefore SEGA is variance reduced, in contrast to CD in
the non-separable proximal setup, which does not converge to the solution. If σ is small enough so
that Q− σED [Z] � 0, one can always choose stepsize α satisfying

α ≤ min
{

λmin(ED[Z])
λmax(2σ−1(C−B)+µB) ,

λmin(Q−σED[Z])
2λmax(C)

}
(13)

and inequalities (12) will hold. Therefore, we get the next corollary.

Corollary 3.4. If σ < λmin(Q)
λmax(ED[Z]) , α satisfies (13) and k ≥ 1

αµ log Φ0

ε , then E
[
‖xk − x∗‖2B

]
≤ ε.

As Theorem 3.3 is rather general, we also provide a simplified version thereof, complete with a
simplified analysis (Theorem E.1 in Appendix E). In the simplified version we remove the proximal
setting (i.e., we set R = 0), assume L–smoothness4, and only consider coordinate sketches with
uniform probabilities. The result is provided as Corollary 3.5.

Corollary 3.5. Let B = I and choose D to be the uniform distribution over unit basis vectors in
Rn. If the stepsize satisfies 0 < α ≤ min{(1 − Lσ/n)/(2Ln), n−1 (µ+ 2(n− 1)/σ)

−1}, then
ED
[
Φk+1

]
≤ (1− αµ)Φk, and therefore the iteration complexity is Õ(nL/µ).

Remark 3.6. In the fully general case, one might choose α to be bigger than bound (13), which
depends on eigen properties of ED [Z] ,C,Q,B, leading to a better overall complexity. However,
in the simple case with B = I, Q = I and Sk = eik with uniform probabilities, bound (13) is tight.

4 Convergence of SEGA for Coordinate Sketches

In this section we compare SEGA with coordinate descent. We demonstrate that, specialized to a par-
ticular choice of the distribution D (where S is a random column submatrix of the identity matrix),
which makes SEGA use the same random gradient information as that used in modern randomized
CD methods, SEGA attains, up to a small constant factor, the same convergence rate as CD methods.

Firstly, in Section 4.2 we develop SEGA with in a general setup known as arbitrary sampling [41,
40, 37, 38, 6] (Theorem 4.2). Then, in Section 4.3 we develop an accelerated variant of SEGA (see
Theorem C.5) for arbitrary sampling as well. Lastly, Corollary 4.3 and Corollary 4.4 provide us
with importance sampling for both nonaccelerated and accelerated method, which matches up to
a constant factor cutting-edge CD rates [41, 3] under the same oracle and assumptions5. Table 1
summarizes the results of this section. We provide all proofs for this section in Appendix C.

4The standard L–smoothness assumption is a special case of M–smoothness for M = LI, and hence is
less general than both M–smoothness and Q–smoothness with respect to B.

5There was recently introduced a notion of importance minibatch sampling for coordinate descent [20]. We
state, without a proof, that SEGA allows for the same importance sampling as developed in the mentioned paper.
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We now describe the setup and technical assumptions for this section. In order to facilitate a direct
comparison with CD (which does not work with non-separable regularizer R), for simplicity we
consider problem (1) in the simplified setting with R ≡ 0. Further, function f is assumed to be
M–smooth (Assumption 3.2) and µ–strongly convex.

4.1 Defining D: samplings

In order to draw a direct comparison with general variants of CD methods (i.e., with those analyzed
in the arbitrary sampling paradigm), we consider sketches in (3) that are column submatrices of
the identity matrix: S = IS , where S is a random subset (aka sampling) of [n]

def
= {1, 2, . . . , n}.

Note that the columns of IS are the standard basis vectors ei for i ∈ S and hence Range (S) =

Range (ei : i ∈ S) . So, distribution D from which we draw matrices is uniquely determined by
the distribution of sampling S. Given a sampling S, define p = (p1, . . . , pn) ∈ Rn to be the
vector satisfying pi = P (ei ∈ Range (S)) = P (i ∈ S), and P to be the matrix for which Pij =

P ({i, j} ⊆ S) . Note that p and P are the probability vector and probability matrix of sampling S,
respectively [38]. We assume throughout the paper that S is proper, i.e., we assume that pi > 0 for
all i. State-of-the-art minibatch CD methods (including the ones we compare against [41, 20]) utilize
large stepsizes related to the so-called ESO Expected Separable Overapproximation (ESO) [38]
parameters v = (v1, . . . , vn). ESO parameters play a key role in SEGA as well, and are defined next.

Assumption 4.1 (ESO). There exists a vector v satisfying the following inequality

P ◦M � Diag(p)Diag(v), (14)

where ◦ denotes the Hadamard (i.e., element-wise) product of matrices.

In case of single coordinate sketches, parameters v are equal to coordinate-wise smoothness con-
stants of f . An extensive study on how to choose them in general was performed in [38]. For
notational brevity, let us set P̂ def

= Diag(p) and V̂
def
= Diag(v) throughout this section.

4.2 Non-accelerated method

We now state the convergence rate of (non-accelerated) SEGA for coordinate sketches with arbitrary
sampling of subsets of coordinates. The corresponding CD method was developed in [41].

Theorem 4.2. Assume that f is M–smooth and µ–strongly convex. Denote Ψk def
= f(xk)−f(x∗) +

σ‖hk‖2
P̂−1

. Choose α, σ > 0 such that

σI− α2(V̂P̂−1 −M) � γµσP̂−1, (15)

where γ
def
= α− α2 maxi{ vipi } − σ. Then the iterates of SEGA satisfy E

[
Ψk
]
≤ (1− γµ)kΨ0.

We now give an importance sampling result for a coordinate version of SEGA. We recover, up to
a constant factor, the same convergence rate as standard CD [34]. The probabilities we chose are
optimal in our analysis and are proportional to the diagonal elements of matrix M.

Corollary 4.3. Assume that f is M–smooth and µ–strongly convex. Suppose that D is such that
at each iteration standard unit basis vector ei is sampled with probability pi ∝ Mii. If we choose

α = 0.232
Trace(M) , σ = 0.061

Trace(M) , then E
[
Ψk
]
≤
(

1− 0.117µ
Trace(M)

)k
Ψ0.

The iteration complexities from Theorem 4.2 and Corollary 4.3 are summarized in Table 1. We also
state that σ, α can be chosen so that (15) holds, and the rate from Theorem 4.2 coincides with the
rate from Table 1. Theorem 4.2 and Corollary 4.3 hold even under a non-convex relaxation of strong
convexity – Polyak-Łojasiewicz inequality: µ(f(x)−f(x∗)) ≤ 1

2‖∇f(x)‖22. Thus, SEGA works for
a certain class of non-convex problems. For an overview on relaxations of strong convexity, see [23].
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4.3 Accelerated method

In this section, we propose an accelerated (in the sense of Nesterov’s method [31, 32]) version of
SEGA, which we call ASEGA. The analogous accelerated CD method, in which a single coordinate is
sampled in every iteration, was developed and analyzed in [3]. The general variant utilizing arbitrary
sampling was developed and analyzed in [20].

Algorithm 2: ASEGA: Accelerated SEGA

1 Initialize: x0 = y0 = z0 ∈ Rn; h0 ∈ Rn; S; parameters α, β, τ, µ > 0

2 for k = 1, 2, . . . do
3 xk = (1− τ)yk−1 + τzk−1

4 Sample Sk = ISk , where Sk ∼ S, and compute gk, hk+1 according to (4), (6)
5 yk = xk − αP̂−1gk

6 zk = 1
1+βµ (zk + βµxk − βgk)

The method and analysis is inspired by [2]. Due to space limitations and technicality of the content,
we state the main theorem of this section in Appendix C.4. Here, we provide Corollary 4.4, which
shows that Algorithm 2 with single coordinate sampling enjoys, up to a constant factor, the same
convergence rate as state-of-the-art accelerated coordinate descent method NUACDM [3].

Corollary 4.4. Let the sampling be defined as follows: S = {i} w. p. pi ∝
√
Mii, for i ∈ [n]. Then

there exist acceleration parameters and a Lyapunov function Υk such that f(yk)−f(x∗) ≤ Υk and
E
[
Υk
]
≤ (1− τ)kΥ0 =

(
1−O

(√
µ/
∑
i

√
Mii

))k
Υ0.

The iteration complexity provided by Theorem C.5 and Corollary 4.4 are summarized in Table 1.

5 Experiments

In this section we perform numerical experiments to illustrate the potential of SEGA. Firstly, in Sec-
tion 5.1, we compare it to projected gradient descent (PGD) algorithm. Then in Section 5.2, we study
the performance of zeroth-order SEGA (when sketched gradients are being estimated through func-
tion value evaluations) and compare it to the analogous zeroth-order method. Lastly, in Section 5.3
we verify the claim from Remark 3.6 that in some applications, particular sketches and metric might
lead to a significantly faster convergence. In the experiments where theory-supported stepsizes were
used, we obtained them by precomputing strong convexity and smoothness measures.

5.1 Comparison to projected gradient

In this experiment, we show the potential superiority of our method to PGD. We consider the `2
ball constrained problem (R is the indicator function of the unit ball) with the oracle providing the
sketched gradient in the random Gaussian direction. As we mentioned, a method moving in the
gradient direction (analogue of CD), will not converge due as R is not separable. Therefore, we can
only compare against the projected gradient. In order to obtain the full gradient for PGD, one needs to
gather n sketched gradients and solve a corresponding linear system. As for f , we choose 4 different
quadratics, see Table 2 (appendix). We stress that these are synthetic problems generated for the
purpose of illustrating the potential of our method against a natural baseline. Figure 2 compares
SEGA and PGD under various relative cost scenarios of solving the linear system compared to the cost
of the oracle calls. The results show that SEGA significantly outperforms PGD as soon as solving the
linear system is expensive, and is as fast as PGD even if solving the linear system comes for free.
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Figure 2: Convergence of SEGA and PGD on synthetic problems with n = 500. The indicator “Xn” in the label
indicates the setting where the cost of solving linear system is Xn times higher comparing to the oracle call.
Recall that a linear system is solved after each n oracle calls. Stepsizes 1/λmax(M) and 1/(nλmax(M)) were
used for PGD and SEGA, respectively.

Figure 3: Comparison of SEGA and randomized direct search for various problems. Theory supported stepsizes
were chosen for both methods. 500 dimensional problem.

5.2 Comparison to zeroth-order optimization methods

In this section, we compare SEGA to the random direct search (RDS) method [5] under a zeroth-
order oracle and R = 0. For SEGA, we estimate the sketched gradient using finite differences. Note
that RDS is a randomized version of the classical direct search method [21, 24, 25]. At iteration k,
RDS moves to argmin

(
f(xk + αksk), f(xk − αksk), f(xk)

)
for a random direction sk ∼ D and a

suitable stepszie αk. For illustration, we choose f to be a quadratic problem based on Table 2 and
compare both Gaussian and coordinate sketches. Figure 3 shows that SEGA outperforms RDS.

5.3 Subspace SEGA: a more aggressive approach

As mentioned in Remark 3.6, well designed sketches are capable of exploiting structure of f and
lead to a better rate. We address this in detail in Appendix D where we develop and analyze a
subspace variant of SEGA. To illustrate this phenomenon in a simple setting, we perform experiments
for problem (1) with f(x) = ‖Ax − b‖2, where b ∈ Rd and A ∈ Rd×n has orthogonal rows, and
with R being the indicator function of the unit ball in Rn. We assume that n � d. We compare
two methods: naiveSEGA, which uses coordinate sketches, and subspaceSEGA, where sketches are
chosen as rows of A. Figure 4 indicates that subspaceSEGA outperforms naiveSEGA roughly by
the factor nd , as claimed in Appendix D.

Figure 4: Comparison of SEGA with sketches from a correct subspace versus coordinate sketches naiveSEGA.
Stepsize chosen according to theory. 1000 dimensional problem.
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Appendix

A Conclusions and Extensions

A.1 Conclusions

We proposed SEGA, a method for solving composite optimization problems under a novel stochastic
linear first order oracle. SEGA is variance-reduced, and this is achieved via sketch-and-project up-
dates of gradient estimates. We provided an analysis for smooth and strongly convex functions and
general sketches, and a refined analysis for coordinate sketches. For coordinate sketches we also
proposed an accelerated variant of SEGA, and our theory matches that of state-of-the-art CD methods.
However, in contrast to CD, SEGA can be used for optimization problems with a non-separable prox-
imal term. We develop a more aggressive subspace variant of the method—subspaceSEGA—which
leads to improvements in the n � d regime. In the Appendix we give several further results, in-
cluding simplified and alternative analyses of SEGA in the coordinate setup from Example 2.1. Our
experiments are encouraging and substantiate our theoretical predictions.

A.2 Extensions

We now point to several potential extensions of our work.

Speeding up the general method. We believe that it should be possible to extend ASEGA to the
general setup from Theorem 3.3. In such a case, it might be possible to design metric B and distri-
bution of sketches D so as to outperform accelerated proximal gradient methods [33, 4].

Biased gradient estimator. Recall that SEGA uses unbiased gradient estimator gk for updating
xk in a similar way JacSketch [19] or SAGA [10] do this for the stochastic finite sum optimiza-
tion. Recently, a stochastic method for finite sum optimization using biased gradient estimators was
proven to be more efficient [35]. Therefore, it might be possible to establish better properties for
a biased variant of SEGA. To demonstrate the potential of this approach, in Appendix G.1 we plot
the evolution of iterates for the very simple biased method which uses hk as an update for line 3 in
Algorithm 1.

Applications. We believe that SEGA might work well in applications where a zeroth-order ap-
proach is inevitable, such as reinforcement learning. We therefore believe that SEGA might be
an efficient proximal method in some reinforcement learning applications. We also believe that
communication-efficient variants of SEGA can be used for distributed training of machine learning
models. This is because SEGA can be adapted to communicate sparse model updates only.

B Proofs for Section 3

Lemma B.1. Suppose that B = I and f is twice differentiable. Assumption 3.1 is equivalent to
Assumption 3.2 for Q = M−1.

Proof: We first establish that Assumption 3.1 implies Assumption 3.2. Summing up (10) for (x, y)

and (y, x) yields
〈∇f(x)−∇f(y), x− y〉 ≥ ‖∇f(x)−∇f(y)‖2Q.

Using Cauchy Schwartz inequality we obtain

‖x− y‖Q−1 ≥ ‖∇f(x)−∇f(y)‖Q.
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By the mean value theorem, there is z ∈ [x, y] such that ∇f(x)−∇f(y) = ∇2f(z)(x− y). Thus

‖x− y‖Q−1 ≥ ‖x− y‖∇2f(z)Q∇2f(z).

The above is equivalent to(
∇2f(z)

)− 1
2 Q−1

(
∇2f(z)

)− 1
2 �

(
∇2f(z)

) 1
2 Q

(
∇2f(z)

) 1
2

Note that for any M′ � 0 we have M′ �M−1 if and only if M � I. Thus(
∇2f(z)

)− 1
2 Q−1

(
∇2f(z)

)− 1
2 � I,

which is equivalent to Q−1 � ∇2f(z). To establish the other direction, denote φ(y) = f(y) −
〈∇f(x), y〉. Clearly, x is minimizer of φ and therefore we have

φ(x) ≤ φ(x−M−1∇f(y)) ≤ φ(y)− 1

2
‖∇f(y)‖2M−1 ,

which is exactly (10) for Q = M−1.

Lemma B.2. For B � 0 and Zk
def
= Sk(S>k B

−1Sk)†S>k , then

Z>k B
−1Zk = Zk. (16)

Proof: It is a property of pseudo-inverse that for any matrices A,B it holds ((AB)†)> =

(B>A>)†, so Z>k = Zk. Moreover, we also know for any A that A†AA† = A† and, thus,

Z>k B
−1Zk = Sk(S>k B

−1Sk)†S>k B
−1Sk(S>k B

−1Sk)†S>k = Sk(S>k B
−1Sk)†S>k = Zk.

B.1 Proof of Theorem 3.3

We first state two lemmas which will be crucial for the analysis. They characterize key properties
of the gradient learning process (4), (6) and will be used later to bound expected distances of both
hk+1 and gk from ∇f(x∗). The proofs are provided in Appendix B.2 and B.3 respectively

Lemma B.3. For all v ∈ Rn we have

ED
[
‖hk+1 − v‖2B

]
= ‖hk − v‖2B−ED[Z] + ‖∇f(xk)− v‖2ED[Z]. (17)

Lemma B.4. Let C
def
= ED

[
θ2Z

]
. Then for all v ∈ Rn we have

ED
[
‖gk − v‖2B

]
≤ 2‖∇f(xk)− v‖2C + 2‖hk − v‖2C−B.

For notational simplicity, it will be convenient to define Bregman divergence between x and y:

Df (x, y)
def
= f(x)− f(y)− 〈∇f(y)), x− y〉B

We can now proceed with the proof of Theorem 3.3. Let us start with bounding the first term in the
expression for Φk+1. From Lemma B.4 and strong convexity it follows that

ED
[
‖xk+1 − x∗‖2B

]
= ED

[
‖ proxαR(xk − αgk)− proxαR(x∗ − α∇f(x∗))‖2B

]
≤ ED

[
‖xk − αgk − (x∗ − α∇f(x∗))‖2B

]
= ‖xk − x∗‖2B − 2αED

[
(gk −∇f(x∗))>B(xk − x∗)

]
+α2ED

[
‖gk −∇f(x∗)‖2B

]
≤ ‖xk − x∗‖2B − 2α(∇f(xk)−∇f(x∗))>B(xk − x∗)

+2α2‖∇f(xk)−∇f(x∗)‖2C + 2α2‖hk −∇f(x∗)‖2C−B
≤ ‖xk − x∗‖2B − αµ‖xk − x∗‖2B − 2αDf (xk, x∗)

+2α2‖∇f(xk)−∇f(x∗)‖2C + 2α2‖hk −∇f(x∗)‖2C−B.

14



Using Assumption 3.1 we get

−2αDf (xk, x∗) ≤ −α‖∇f(xk)−∇f(x∗)‖2Q.

As for the second term in Φk+1, we have by Lemma B.3

ασED
[
‖hk+1 −∇f(x∗)‖2B

]
= ασ‖hk −∇f(x∗)‖2B−ED[Z] + ασ‖∇f(xk)−∇f(x∗)‖2ED[Z]

Combining it into Lyapunov function Φk,

Φk+1 ≤ (1− αµ)‖xk − x∗‖2B + ασ‖hk −∇f(x∗)‖2B−ED[Z] + 2α2‖hk −∇f(x∗)‖2C−B
+ασ‖∇f(xk)−∇f(x∗)‖2ED[Z] + 2α2‖∇f(xk)−∇f(x∗)‖2C − α‖∇f(xk)−∇f(x∗)‖2Q.

To see that this gives us the theorem’s statement, consider first

ασED [Z] + 2α2C− αQ = 2α(αC− 1
2 (Q− σED [Z])) ≤ 0,

so we can drop norms related to∇f(xk)−∇f(x∗). Next, we have

ασ(B− ED [Z]) + 2α2(C−B) = α (α(2(C−B) + σµB)− ED [Z]) + σα(1− αµ)B

≤ σα(1− αµ)B,

which follows from our assumption on α.

B.2 Proof of Lemma B.3

Proof: Keeping in mind that Z>k = Zk and (B−1)> = B−1, we first write

ED
[
‖hk+1 − v‖2B

] (8)
= ED

[∥∥hk + B−1Zk(∇f(xk)− hk)− v
∥∥2

B

]
= ED

[∥∥(I−B−1Zk
)

(hk − v) + B−1Zk(∇f(xk)− v)
∥∥2

B

]
= ED

[∥∥(I−B−1Zk
)

(hk − v)
∥∥2

B

]
+ ED

[∥∥B−1Zk(∇f(xk)− v)
∥∥2

B

]
+2(hk − v)>ED

[(
I−B−1Zk

)>
BB−1Zk

]
(∇f(xk)− v)

= (hk − v)>ED
[(
I−B−1Zk

)>
B
(
I−B−1Zk

)]
(hk − v)

+(∇f(xk)− v)>ED
[
ZkB

−1BB−1Zk
]

(∇f(xk)− v)

+2(hk − v)>ED
[
Zk − ZkB

−1Zk
]

(∇f(xk)− v).

By Lemma B.2 we have ZkB
−1Zk = Zk, so the last term in the expression above is equal to 0. As

for the other two, expanding the matrix factor in the first term leads to

ED
[(
I−B−1Zk

)>
B
(
I−B−1Zk

)]
= ED

[(
I− ZkB

−1
)
B
(
I−B−1Zk

)]
= ED

[
B− ZkB

−1B−BB−1Zk + ZkB
−1BB−1Zk

]
= B− ED [Zk] .

We, thereby, have derived

ED
[
‖hk+1 − v‖2B

]
= (hk − v)> (B− ED [Zk]) (hk − v)

+(∇f(xk)− v)>ED
[
ZkB

−1Zk
]

(∇f(xk)− v)

= ‖hk − v‖2B−ED[Z] + ‖∇f(xk)− v‖2ED[Z].
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B.3 Proof of Lemma B.4

Proof: Throughout this proof, we will use without any mention that Z>k = Zk.

Writing gk − v = a+ b, where a def
= (I− θkB−1Zk)(hk − v) and b def

= θkB
−1Zk(∇f(xk)− v), we

get ‖gk‖2B ≤ 2(‖a‖2B + ‖b‖2B). Using Lemma B.2 and the definition of θk yields

ED
[
‖a‖2B

]
= ED

[
‖
(
I− θkB−1Zk

)
(hk − v)‖2B

]
= (hk − v)>ED

[(
I− θkZkB−1

)
B
(
I− θkB−1Zk

)]
(hk − v)

= (hk − v)>ED
[(
B− θkZkB−1B−BθkB

−1Zk + θ2
kZkB

−1BB−1Zk
)]

(hk − v)

= (hk − v)>ED
[(
B− 2B + θ2

kZk
)]

(hk − v)

= ‖hk − v‖2ED[θ2Z]−B.

Similarly, the second term in the upper bound on gk can be rewritten as

ED
[
‖b‖2B

]
= ED

[
‖θkB−1Zk(∇f(xk)− v)‖2B

]
= (∇f(xk)− v)>ED

[
θ2
kZkB

−1BB−1Zk
]

(∇f(xk)− v)

= ‖∇f(xk)− v‖2C.

Combining the pieces, we get the claim.

C Proofs for Section 4

C.1 Technical Lemmas

We first start with an analogue of Lemma B.4 allowing for a norm different from ‖ · ‖B. We remark
that matrix Q′ in the lemma is not to be confused with the smoothness matrix Q from Assump-
tion 3.1.

Lemma C.1. Let Q′ � 0. The variance of gk as an estimator of∇f(xk) can be bounded as follows:
1

2
ED
[
‖gk‖2Q′

]
≤ ‖hk‖2

P̂−1(P◦Q′)P̂−1−Q′ + ‖∇f(xk)‖2
P̂−1(P◦Q′)P̂−1 . (18)

Proof: Denote Sk to be a matrix with columns ei for i ∈ Range (Sk). We first write

gk = hk − P̂−1SkS
>
k h

k︸ ︷︷ ︸
a

+ P̂−1SkS
>
k∇f(xk)︸ ︷︷ ︸
b

.

Let us bound the expectation of each term individually. The first term is equal to

ED
[
‖a‖2Q′

]
= ED

[∥∥∥(I− P̂−1SkS
>
k

)
hk
∥∥∥2

Q′

]
= (hk)>ED

[(
I− P̂−1SkS

>
k

)>
Q′
(
I− P̂−1SkS

>
k

)]
hk

= (hk)>ED
[(

Q′ − P̂−1SkS
>
kQ
′ −Q′SkS

>
k P̂
−1
)]
hk

+(hk)>ED
[(

P̂−1SkS
>
kQ
′SkS

>
k P̂
−1
)]
hk

= (hk)>
(
P̂−1(P ◦Q′)P̂−1 −Q′

)
hk.

The second term can be bounded as

ED
[
‖b‖2Q′

]
= ED

[∥∥∥P̂−1S>k∇f(xk)Sk

∥∥∥2

Q′

]
= ED

[
‖∇f(xk)‖2

P̂−1SkS>k Q′SkS>k P̂−1

]
= ‖∇f(xk)‖2

P̂−1(P◦Q′)P̂−1

It remains to combine the two bounds.
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We also state the analogue of Lemma B.3, which allows for a different norm as well.

Lemma C.2. For all diagonal D � 0 we have

ED
[
‖hk+1‖2D

]
= ‖hk‖2

D−P̂D
+ ‖∇f(xk)‖2

P̂D
. (19)

Proof: Denote Sk to be a matrix with columns ei for i ∈ Sk. We first write

hk+1 = hk − SkS
>
k h

k + SkS
>
k∇f(xk).

Therefore

ED
[
‖hk+1‖2D

]
= ED

[∥∥(I− SkS
>
k )hk + SkS

>
k∇f(xk)

∥∥2

D

]
= ED

[∥∥(I− SkS
>
k )hk

∥∥2

D

]
+ ED

[∥∥SkS>k∇f(xk)
∥∥2

D

]
+2ED

[
hk
>

(I− SkS
>
k )DSkS

>
k∇f(xk)

]
= ‖hk‖2

D−P̂D
+ ‖∇f(xk)‖2

P̂D
.

C.2 Proof of Theorem 4.2

Proof: Throughout the proof, we will use the following Lyapunov function:

Ψk def
= f(xk)− f(x∗) + σ‖hk‖2P−1 .

Following similar steps to what we did before, we obtain

E
[
Ψk+1

] (11)
≤ f(xk)− f(x∗) + αE

[
〈∇f(xk), gk〉

]
+
α2

2
E
[
‖gk‖2M

]
+ σE

[
‖hk+1‖2

P̂−1

]
= f(xk)− f(x∗)− α‖∇f(xk)‖22 +

α2

2
E
[
‖gk‖2M

]
+ σE

[
‖hk+1‖2

P̂−1

]
(18)
≤ f(xk)− f(x∗)− α‖∇f(xk)‖22 + α2‖∇f(xk)‖2

P̂−1(P◦M)P̂−1 + α2‖hk‖2
P̂−1(P◦M)P̂−1−M

+σE
[
‖hk+1‖2

P̂−1

]
.

This is the place where the ESO assumption comes into play. By applying it to the right-hand side
of the bound above, we obtain

E
[
Ψk+1

] (14)
≤ f(xk)− f(x∗)− α‖∇f(xk)‖22 + α2‖∇f(xk)‖2

V̂P̂−1 + α2‖hk‖2
V̂P̂−1−M

+σE
[
‖hk+1‖2

P̂−1

]
(19)
= f(xk)− f(x∗)− α‖∇f(xk)‖22 + α2‖∇f(xk)‖2

V̂P̂−1 + α2‖hk‖2
V̂P̂−1−M

+σ‖∇f(xk)‖22 + σ‖hk‖2
P̂−1−I

= f(xk)− f(x∗)−
(
α− α2 max

i

vi
pi
− σ

)
‖∇f(xk)‖22

+‖hk‖2
α2(V̂P̂−1−M)+σ(P̂−1−I).

Due to Polyak-Łojasiewicz inequality, we can further upper bound the last expression by(
1−

(
α− α2 max

i

vi
pi
− σ

)
µ

)
(f(xk)− f(x∗)) + ‖hk‖2

α2(V̂P−1−M)+σ(P−1−I).

To finish the proof, it remains to use (15).
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C.3 Proof of Corollary 4.3

The claim was obtained by choosing carefully α and σ using numerical grid search. Note that by
strong convexity we have I � µDiag(M)−1, so we can satisfy assumption (15). Then, the claim
follows immediately noticing that we can also set V̂ = Diag(M) while maintaining(

α− α2 max
i

Mii

pi
− σ

)
≥ 0.117

Trace(M)
.

C.4 Accelerated SEGA with arbitrary sampling

Before establishing the main theorem, we first state two technical lemmas which will be crucial
for the analysis. First one, Lemma C.3 provides a key inequality following from (6). The sec-
ond one, Lemma C.4, analyzes update (5) and was technically established throughout the proof of
Theorem 4.2. We include a proof of lemmas in Appendix C.5 and C.6 respectively.

Lemma C.3. For every u ∈ Rn we have

β〈∇f(xk+1), zk − u〉 − βµ

2
‖xk+1 − u‖22

≤ β2 1

2
E
[
‖gk‖22

]
+

1

2
‖zk − u‖22 −

1 + βµ

2
E
[
‖zk+1 − u‖22

]
(20)

Lemma C.4. Letting η(v, p)
def
= maxi

√
vi
pi

, we have

f(xk+1)− E
[
f(yk+1)

]
+ ‖hk‖2

α2(V̂P̂−3−P̂−1MP̂−1)
≥
(
α− α2η(v, p)2

)
‖∇f(xk)‖2

P̂−1 . (21)

Now we state the main theorem of Section 4.3, providing a convergence rate of ASEGA (Algorithm 2)
for arbitrary minibatch sampling. As we mentioned, the convergence rate is, up to a constant factor,
same as state-of-the-art minibatch accelerated coordinate descent [20].

Theorem C.5. Assume M–smoothness and µ–strong convexity and that v satisfies (14). Denote

Υk def
=

2

75

η(v, p)−2

τ2

(
E
[
f(yk)

]
− f(x∗)

)
+

1 + βµ

2
E
[
‖zk − x∗‖22

]
+ σE

[
‖hk‖2

P̂−2

]
and choose

c1 = max

(
1, η(v, p)−1

√
µ

mini pi

)
(22)

α =
1

5η(v, p)2
(23)

β =
2

75τη(v, p)2
(24)

σ = 5β2 (25)

τ =

√
4

9·54 η(v, p)−4µ2 + 8
75η(v, p)−2µ− 2

75η(v, p)−2µ

2
(26)

Then, we have

E
[
Υk
]
≤
(
1− c−1

1 τ
)k

Υ0.

Proof: The proof technique is inspired by [2]. First of all, let us see what strong convexity of f
gives us:

β
(
f(xk+1)− f(x∗)

)
≤ β〈∇f(xk+1), xk+1 − x∗〉 − βµ

2
‖x∗ − xk+1‖22.
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Thus, we are interested in finding an upper bound for the scalar product that appeared above. We
have

β〈∇f(xk+1), zk − u〉 − βµ

2
‖xk+1 − u‖22 + σE

[
‖hk+1‖2

P̂−2

]
(20)
≤ β2 1

2
E
[
‖gk‖22

]
+

1

2
‖zk − u‖22 −

1 + βµ

2
E
[
‖zk+1 − u‖22

]
+ σE

[
‖hk+1‖2

P̂−2

]
.

Using the Lemmas introduced above, we can upper bound the norms of gk and hk+1 by using norms
of hk and ∇f(xk) to get the following:

β2 1

2
E
[
‖gk‖22

]
+ σE

[
‖hk+1‖2

P̂−2

]
(19)
≤ β2 1

2
E
[
‖gk‖22

]
+ σ‖hk‖2

P̂−2−P̂−1 + σ‖∇f(xk)‖2
P̂−1

(18)
≤ β2‖hk‖2

P̂−1−I + β2‖∇f(xk)‖2
P̂−1 + σ‖hk‖2

P̂−2−P̂−1 + σ‖∇f(xk)‖2
P̂−1 .

Now, let us get rid of∇f(xk) by using the gradients property from Lemma C.4:

β2 1

2
E
[
‖gk‖22

]
+ σE

[
‖hk+1‖2

P̂−2

]
(21)
≤ β2‖hk‖2

P̂−1−I +
(
β2 + σ

) f(xk+1)− f(yk+1) + ‖hk‖2
α2(V̂P̂−3−P̂−1MP̂−1)

α− α2η(v, p)2
+ σ‖hk‖2

P̂−2−P̂−1

= ‖hk‖2
β2(P̂−1−I)+ (β2+σ)α2

α−α2η(v,p)2
(V̂P̂−3−P̂−1MP̂−1)+σ(P̂−2−P̂−1)

+
β2 + σ

α− α2η(v, p)2
(f(xk+1)− E

[
f(yk+1)

]
)

≤ ‖hk‖2
β2P̂−1+

(β2+σ)α2

α−α2η(v,p)2
V̂P̂−3+σ(P̂−2−P̂−1)

+
β2 + σ

α− α2η(v, p)2
(f(xk+1)− E

[
f(yk+1)

]
).

Plugging this into the bound with which we started the proof, we deduce

β〈∇f(xk+1), zk − u〉 − βµ

2
‖xk+1 − u‖22 + σE

[
‖hk+1‖2

P̂−2

]
≤ ‖hk‖2

β2P̂−1+
(β2+σ)α2

α−α2η(v,p)2
V̂P̂−3+σ(P̂−2−P̂−1)

+
β2 + σ

α− α2η(v, p)2
(f(xk+1)− E

[
f(yk+1)

]
) +

1

2
‖zk − u‖22 −

1 + βµ

2
E
[
‖zk+1 − u‖22

]
.

Recalling our first step, we get with a few rearrangements

β
(
f(xk+1)− f(x∗)

)
≤ β〈∇f(xk+1), xk+1 − x∗〉 − βµ

2
‖x∗ − xk+1‖22

= β〈∇f(xk+1), xk+1 − zk〉+ β〈∇f(xk+1), zk − x∗〉 − βµ

2
‖x∗ − xk+1‖22

=
(1− τ)β

τ
〈∇f(xk+1), yk − xk+1〉+ β〈∇f(xk+1), zk − x∗〉 − βµ

2
‖x∗ − xk+1‖22

≤ (1− τ)β

τ

(
f(yk)− f(xk+1)

)
+ ‖hk‖2

β2P̂−1+
(β2+σ)α2

α−α2η(v,p)2
V̂P̂−3+σ(P̂−2−P̂−1)

+
β2 + σ

α− α2η(v, p)2
(f(xk+1)− E

[
f(yk+1)

]
) +

1

2
‖zk − x∗‖22

−1 + βµ

2
E
[
‖zk+1 − x∗‖22

]
− σE

[
‖hk+1‖2

P̂−2

]
.

Let us choose σ, β such that for some constant c2 (which we choose at the end) we have

c2σ = β2, β =
α− α2η(v, p)2

(1 + c−1
2 )τ

.
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Consequently, we have

α− α2η(v, p)2

(1 + c−1
2 )τ2

(
E
[
f(yk+1)

]
− f(x∗)

)
+

1 + βµ

2
E
[
‖zk+1 − x∗‖22

]
+ σE

[
‖hk+1‖2

P̂−2

]
≤ (1− τ)

α− α2η(v, p)2

(1 + c−1
2 )τ2

(
f(yk)− f(x∗)

)
+

1

2
‖zk − x∗‖22

+‖hk‖2(
P̂−1−(1−c2)I+

(1+c2)α2

α−α2η(v,p)2
V̂P̂−2

)
σP̂−1

Let us make a particular choice of α, so that for some constant c3 (which we choose at the end) we
can obtain the equations below:

α =
1

c3η(v, p)2
⇒ α−α2η(v, p)2 =

c3 − 1

c23
η(v, p)−2,

α2

α− α2η(v, p)2
=

1

(c3 − 1)η(v, p)2
.

Thus
c3−1
c23

η(v, p)−2

(1 + c−1
2 )τ2

(
E
[
f(yk+1)

]
− f(x∗)

)
+

1 + βµ

2
E
[
‖zk+1 − x∗‖22

]
+ σE

[
‖hk+1‖2

P̂−2

]
≤ (1− τ)

c3−1
c23

η(v, p)−2

(1 + c−1
2 )τ2

(
f(yk)− f(x∗)

)
+

1

2
‖zk − x∗‖22

+‖hk‖2(
P̂−1−(1−c2)I+

(1+c2)

(c3−1)η(v,p)2
V̂P̂−2

)
σP̂−1

.

Using the definition of η(v, p), one can see that the above gives

c3−1
c23

η(v, p)−2

(1 + c−1
2 )τ2

(
E
[
f(yk+1)

]
− f(x∗)

)
+

1 + βµ

2
E
[
‖zk+1 − x∗‖22

]
+ σE

[
‖hk+1‖2

P̂−2

]
≤ (1− τ)

c3−1
c23

η(v, p)−2

(1 + c−1
2 )τ2

(
f(yk)− f(x∗)

)
+

1

2
‖zk − x∗‖22 + ‖hk‖2(

P̂−1−(1−c2)I+
1+c2
c3−1 I

)
σP̂−1

.

To get the convergence rate, we shall establish(
1− c2 −

1 + c2
c3 − 1

)
c1I � τP̂−1 (27)

and
1 + βµ ≥ 1

1− τ
. (28)

To this end, let us recall that

β =
c3 − 1

c22
η(v, p)−2τ−1 1

1 + c−1
2

.

Now we would like to set equality in (28), which yields

0 = τ2 +
c3 − 1

c22
η(v, p)−2 1

1 + c−1
2

µτ − c3 − 1

c22
η(v, p)−2 1

1 + c−1
2

µ = 0.

This, in turn, implies

τ =

√(
c3−1
c22

)2

η(v, p)−4 1

(1+c−1
2 )

2µ2 + 4 c3−1
c22

η(v, p)−2 1
1+c−1

2

µ− c3−1
c22

η(v, p)−2 1
1+c−1

2

µ

2

= O

√c3 − 1

c22

1√
1 + c−1

2

η(v, p)−1√µ

 .

20



Notice that for any c ≤ 1 we have
√
c2+4c−c

2 ≤
√
c and therefore

τ ≤

√
c3 − 1

c22
η(v, p)−1 1√

1 + c−1
2

√
µ. (29)

Using this inequality and a particular choice of constants, we can upper bound P−1 by a matrix
proportional to identity as shown below:

τP̂−1
(29)
�

√
c3 − 1

c22
η(v, p)−1 1√

1 + c−1
2

√
µP̂−1

�

√
c3 − 1

c22
η(v, p)−1 1√

1 + c−1
2

√
µ

mini pi
I

(22)
�

√
c3 − 1

c22

1√
1 + c−1

2

c1I

(∗)
�

(
1− c2 −

1 + c2
c3 − 1

)
c1I,

which is exactly (27). Above, (∗) holds for choice c3 = 5 and c2 = 1
5 . It remains to verify that (23),

(24), (25) and (26) indeed correspond to our derivations.

We also mention, without a proof, that acceleration parameters can be chosen in general such that c1
can be lower bounded by constant and therefore the rate from Theorem C.5 coincides with the rate
from Table 1. Corollary 4.4 is in fact a weaker result of that type.

C.4.1 Proof of Corollary 4.4

It suffices to verify that one can choose v = Diag(M) in (14) and that due to pi ∝
√
Mii we have

c1 = 1.

C.5 Proof of Lemma C.3

Proof: Firstly (6), is equivalent to

zk+1 = argmin
z

ψk(z)
def
=

1

2
‖z − zk‖22 + β〈gk, z〉+

βµ

2
‖z − xk+1‖22.

Therefore, we have for every u

0 = 〈∇ψk(zk+1), zk+1 − u〉
= 〈zk+1 − zk, zk+1 − u〉+ β〈gk, zk+1 − u〉+ βµ〈zk+1 − xk+1, zk+1 − u〉. (30)

Next, by generalized Pythagorean theorem we have

〈zk+1 − zk, zk+1 − u〉 =
1

2
‖zk − zk+1‖22 −

1

2
‖zk − u‖22 +

1

2
‖u− zk+1‖22 (31)

and

〈zk+1 − xk+1, zk+1 − u〉 =
1

2
‖xk+1 − zk+1‖22 −

1

2
‖xk+1 − u‖22 +

1

2
‖u− zk+1‖22. (32)

Plugging (31) and (32) into (30) we obtain

β〈gk, zk − u〉 − βµ

2
‖xk+1 − u‖22

≤ β〈gk, zk − zk+1〉 − 1

2
‖zk − zk+1‖22 +

1

2
‖zk − u‖22 −

1 + βµ

2
‖zk+1 − u‖22

(∗)
≤ β2

2
‖gk‖22 +

1

2
‖zk − u‖22 −

1 + βµ

2
‖zk+1 − u‖22.
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The step marked by (∗) holds due to Cauchy-Schwartz inequality. It remains to take the expectation
conditioned on xk+1 and use (7).

C.6 Proof of Lemma C.4

Proof: The shortest, although not the most intuitive, way to write the proof is to put matrix factor
into norms. Apart from this trick, the proof is quite simple consists of applying smoothness followed
by ESO:

E
[
f(yk+1)

]
− f(xk+1)

(11)
≤ −αE

[
〈∇f(xk), P̂−1gk〉

]
+
α2

2
E
[
‖P̂−1gk‖2M

]
= −α‖∇f(xk)‖2

P̂−1 +
α2

2
E
[
‖gk‖P̂−1MP̂−1

]
(18)
≤ −α‖∇f(xk)‖2

P̂−1 + α2‖∇f(xk)‖2
P̂−1(P◦P̂−1MP̂−1)P̂−1

+α2‖hk‖2
P̂−1(P◦P̂−1MP̂−1)P̂−1−P̂−1MP̂−1

= −α‖∇f(xk)‖2
P̂−1 + α2‖∇f(xk)‖2

P̂−2(P◦M)P̂−2

+α2‖hk‖2
P̂−2(P◦M)P̂−2−P̂−1MP̂−1

(14)
≤ −α‖∇f(xk)‖2

P̂−1 + α2‖∇f(xk)‖2
V̂P̂−3

+α2‖hk‖2
V̂P̂−3−P̂−1MP̂−1

≤ −
(
α− α2 max

i

vi
p2
i

)
‖f(xk)‖2

P̂−1 + α2‖hk‖2
V̂P̂−3−P̂−1MP̂−1 .

D Subspace SEGA: a More Aggressive Approach

In this section we describe a more aggressive variant of SEGA, one that exploits the fact that the
gradients of f lie in a lower dimensional subspace if this is indeed the case.

In particular, assume that F (x) = f(x) +R(x) and

f(x) = φ(Ax),

where A ∈ Rm×n6. Note that∇f(x) lies in Range
(
A>
)
. There are situations where the dimension

of Range
(
A>
)

is much smaller than n. For instance, this happens whenm� n. However, standard
coordinate descent methods still move around in directions ei ∈ Rn for all i. We can modify the
gradient sketch method to force our gradient estimate to lie in Range

(
A>
)
, hoping that this will

lead to faster convergence.

D.1 The algorithm

Let xk be the current iterate, and let hk be the current estimate of the gradient of f . Assume that
the sketch S>k∇f(xk) is available. We can now define hk+1 through the following modified sketch-
and-project process:

hk+1 = arg min
h∈Rn

‖h− hk‖2B

subject to S>k h = S>k∇f(xk), (33)

h ∈ Range
(
A>
)
.

6Strong convexity is not compatible with the assumption that A does not have full rank, so a different type
of analysis using Polyak-Łojasiewicz inequality is required to give a formal justification. However, we proceed
with the analysis anyway to build the intuition why this approach leads to better rates.
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Before proceeding further, we note that there are such sketches and metric (as discussed in Sec-
tion D.4) which keep h ∈ Range

(
A>
)

implicitly, and therefore one might omit the extra constraint
in such case. In fact, the mentioned sketches also lead to a faster convergence, which is the main
takeaway from this section.

Standard arguments reveal that the closed-form solution of (33) is

hk+1 = H
(
hk −B−1Sk(S>kHB−1Sk)†S>k (Hhk −∇f(xk))

)
, (34)

where

H
def
= A>(ABA>)†AB (35)

is the projector onto Range
(
A>
)
. A quick sanity check reveals that this gives the same formula as

(4) in the case where Range
(
A>
)

= Rn. We can also write

hk+1 = Hhk −HB−1Zk(Hhk −∇f(xk)) =
(
I−HB−1Zk

)
Hhk + HB−1Zk∇f(xk), (36)

where

Zk
def
= Sk(S>kHB−1Sk)†S>k . (37)

Assume that θk is chosen in such a way that

ED [θkZk] = B.

Then, the following estimate of∇f(xk)

gk
def
= Hhk + θkHB−1Zk(∇f(xk)−Hhk) (38)

is unbiased, i.e. ED
[
gk
]

= ∇f(xk). After evaluating gk, we perform the same step as in SEGA:

xk+1 = proxαR(xk − αgk).

By inspecting (33), (35) and (38), we get the following simple observation.

Lemma D.1. If h0 ∈ Range
(
A>
)
, then hk, gk ∈ Range

(
A>
)

for all k.

Consequently, if h0 ∈ Range
(
A>
)
, (34) simplifies to

hk+1 = hk −HB−1Sk(S>kHB−1Sk)†S>k (hk −∇f(xk)) (39)

and (38) simplifies to

gk
def
= hk + θkHB−1Zk(∇f(xk)− hk). (40)

Example D.2 (Coordinate sketch). Consider B = I and the choice of D given by S = ei with
probability pi > 0. Then we can choose the bias-correcting random variable as θ = θ(s) = wi

pi
,

where wi
def
= ‖Hei‖22 = e>i Hei. Indeed, with this choice, (5) is satisfied. For simplicity, further

choose pi = 1/n for all i. We then have

hk+1 = hk − e>i h
k − e>i ∇f(xk)

wi
Hei =

(
I− Heie

>
i

wi

)
hk +

Heie
>
i

wi
∇f(xk) (41)

and (40) simplifies to

gk
def
= (1− θk)hk + θkh

k+1 = hk + nHeie
>
i

(
∇f(xk)− hk

)
. (42)
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D.2 Lemmas

All theory provided in this subsection is, in fact, a straightforward generalization of our non-
subspace results. The reader can recognize similarities in both statements and proofs with that
of previous sections.

Lemma D.3. Define Zk and H as in equations (37) and (35). Then Zk is symmetric, ZkHB−1Zk =

Zk, H2 = H and HB−1 = B−1H>.

Proof: The symmetry of Zk follows from its definition. The second statement is a corollary of the
equations ((A1A2)†)> = (A>2 A

>
1 )† and A†1A1A

†
1 = A†1, which are true for any matrices A1,A2.

Finally, the last two rules follow directly from the definition of H and the property A†1A1A
†
1 = A†1.

Lemma D.4. Assume hk ∈ Range
(
A>
)
. Then

ED
[
‖hk+1 − v‖2B

]
= ‖hk − v‖2B−ED[Z] + ‖∇f(xk)− v‖2ED[Z]

for any vector v ∈ Range
(
A>
)
.

Proof: By Lemma D.3 we can rewrite HB−1 as B−1H>, so

ED
[
‖hk+1 − v‖2B

] (36)
= ED

[∥∥hk −HB−1Zk(hk −∇f(xk))− v
∥∥2

B

]
= ED

[∥∥(I−HB−1Zk
)

(hk − v) + HB−1Zk(∇f(xk)− v)
∥∥2

B

]
= ED

[∥∥(I−B−1H>Zk
)

(hk − v) + HB−1Zk(∇f(xk)− v)
∥∥2

B

]
= ED

[∥∥(I−B−1H>Zk
)

(hk − v)
∥∥2

B

]
+ ED

[∥∥HB−1Zk(∇f(xk)− v)
∥∥2

B

]
+2(hk − v)>ED

[(
I−B−1H>Zk

)>
BHB−1Zk

]
(∇f(xk)− v)

= (hk − v)>ED
[(
I−B−1H>Zk

)>
B
(
I−HB−1Zk

)]
(hk − v)

+(∇f(xk)− v)>ED
[
ZkB

−1H>BHB−1Zk
]

(∇f(xk)− v)

+2(hk − v)>ED
[
BHB−1Zk − ZkHHB−1Zk

]
(∇f(xk)− v). (43)

By Lemma D.3 we have

ZkHHB−1Zk = ZkHB−1Zk = Zk,

so the last term in (43) is equal to 0. As for the other two, expanding the matrix factor in the first
term leads to(
I−B−1H>Zk

)>
B
(
I−HB−1Zk

)
=

(
I− ZkHB−1

)
B
(
I−HB−1Zk

)
= B− ZkHB−1B−BB−1H>Zk + ZkHB−1BHB−1Zk

= B− ZkH−H>Zk + Zk.

Let us mention that H(hk − v) = hk − v and (hk − v)>H> = (hk − v)> as both vectors hk and v
belong to Range

(
A>
)
. Therefore,

(hk − v)>ED
[
B− ZkH−H>Zk + Zk

]
(hk − v) = (hk − v)> (B− ED [Zk]) (hk − v).

It remains to consider

ED
[
ZkB

−1H>BHB−1Zk
]

= ED
[
ZkHB−1BHB−1Zk

]
= ED [Zk] .

We, thereby, have derived

ED
[
‖hk+1 − v‖2B

]
= (hk − v)> (B− ED [Zk]) (hk − v)

+(∇f(xk)− v)>ED
[
ZkB

−1Zk
]

(∇f(xk)− v)

= ‖hk − v‖2B−ED[Zk] + ‖∇f(xk)− v‖2ED[Z].
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Lemma D.5. Suppose hk ∈ Range
(
A>
)

and gk is defined by (38). Then

ED
[
‖gk − v‖2B

]
≤ ‖hk − v‖2C−B + ‖∇f(xk)− v‖2C (44)

for any v ∈ Range
(
A>
)
, where

C
def
= ED

[
θ2Z

]
. (45)

Proof: Writing gk − v = a + b, where a
def
= (I − θkHB−1Zk)(hk − v) and b

def
=

θkHB−1Zk(∇f(xk)− v), we get ‖gk‖2B ≤ 2(‖a‖2B + ‖b‖2B). By definition of θk,

ED
[
‖a‖2B

]
= ED

[
‖
(
I− θkHB−1Zk

)
(hk − v)‖2B

]
= (hk − v)>ED

[(
I− θkZkB−1H

)
B
(
I− θkHB−1Zk

)]
(hk − v)

= (hk − v)>ED
[(
B− θkZkB−1HB−BθkHB−1Zk + θ2

kZkB
−1HBHB−1Zk

)]
(hk − v).

According to Lemma D.3, HB−1 = B−1H and ZkHB−1Zk = Zk, so

ED
[
‖a‖2B

]
= (hk − v)>ED

[(
B− θkZkH− θkH>Zk + θ2

kZk
)]

(hk − v)

= ‖hk − v‖2ED[θ2Z]−B,

where in the last step we used the assumption that hk and v are from Range
(
A>
)

and H is the
projector operator onto Range

(
A>
)
.

Similarly, the second term in the upper bound on gk can be rewritten as

ED
[
‖b‖2B

]
= ED

[
‖θkHB−1Zk(∇f(xk)− v)‖2B

]
= (∇f(xk)− v)>ED

[
θ2
kZkB

−1H>BHB−1Zk
]

(∇f(xk)− v)

= ‖∇f(xk)− v‖2ED[θ2kZk]
.

Combining the pieces, we get the claim.

D.3 Main result

The main result of this section is:

Theorem D.6. Assume that f is Q–smooth, µ–strongly convex, and that α > 0 is such that

α (2(C−B) + σµB) ≤ σED [Z] , αC ≤ 1

2
(Q− σED [Z]) . (46)

If we define Φk
def
= ‖xk − x∗‖2B + σα‖hk −∇f(xk)‖2B, then E

[
Φk
]
≤ (1− αµ)kΦ0.

Proof: Having established Lemmas D.3, D.4 and D.5, the proof follows the same steps as the proof
of Theorem 3.3.

D.4 Optimal choice of B and Sk

Let us now slightly change the value of θk that we use in the algorithm. Instead of seeking for
θk giving ED [θkZk] = B, we will use the one that gives ED [θkZk] = BH. This will steal lead
to ED

[
gk
]

= ∇f(xk) and, if f is strongly-convex, we can still show the convergence rate of
Theorem D.6. Although the strong convexity assumption is simplistic, the new idea results in a
surprising finding.

Let a1, . . . , am be the columns of A> and U ∈ Rd×n be a matrix that transforms these columns
into an orthogonal basis of d def

= Rank(A) vectors. Set B = U>U. Then, 〈ai, aj〉B = 0 for any
i 6= j. Assume for simplicity, that ‖ai‖B 6= 0 for i ≤ d and ‖ai‖B = 0 for i > d. This is always
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true up to permutation of a1, . . . , am. Choose also Sk ∈ Rn equal to ξi
def
= Bai
‖ai‖B with i sampled

with probability pi > 0, and θk = p−1
i . Clearly, one has

ED [θkZk] =

d∑
i=1

pip
−1
i ξi(ξ

>
i HB−1ξi)

†ξ>i =

d∑
i=1

ξi‖ai‖2B(a>i BHB−1Bai)
†ξ>i .

Since ai lies in Range
(
A>
)
, we have Hai = ai, which gives

ED [θkZk] =

d∑
i=1

ξi‖ai‖2B(a>i Bai)
†ξ>i =

d∑
i=1

ξiξ
>
i . (47)

By definition of B,

(ABA>)† = (diag(‖ai‖2B))† =

d∑
i=1

‖ai‖−2
B eie

>
i .

Thus,

BH = BA>(ABA>)AB =

d∑
i=1

(Bai)
>Bai

‖ai‖2B
= ED [θkZk] ,

so we have achieved our goal. Note that if h0 ∈ Range
(
A>
)
, we have hk ∈ Range

(
A>
)

even
without implicitly enforcing it in (33). Therefore, the method can be seen as SEGA with a smart
choice of both sketches and metric in which we project.

To show how the choice of B and of the sketches provided above improves the rate, let us take a
closer look at the conditions of Theorem D.6. We have

C
(45)
= ED

[
θ2Z

] (47)
=

d∑
i=1

pip
−2
i ξiξ

>
i =

d∑
i=1

p−1
i ξiξ

>
i .

If we assume that σ ≤ 2/µ, then the first bound on α simplifies to

α(2(C−B) + σµB) ≤ 2αC ≤ σED [Z] = σ

d∑
i=1

piξiξ
>
i ,

where the second part needs to be verified by choosing α to be small enough. For this it is sufficient
to take α ≤ σmax p−2

i as every summand ξiξ>i in the expression for C is positive definite. As
for the second condition, it is enough to choose σ ≤ λmax(Q)

2λmin(ED[Z]) and α ≤ λmax(Q)
4λmin(C) . Note that

ξiξ
>
i ≤ ‖ξi‖22I, so for uniform sampling with pi = 1

d and uniform Q–smoothness with Q = 1
LI we

get the following condition on α:

α ≤ min

{
σ

d2
,

1

4Ldmaxi ‖ξi‖22

}
.

In particular, choosing σ = min
{

2
µ ,

λmax(Q)
2λmin(ED[Z])

}
= min

{
2
µ ,

d
2Lmaxi ‖ξi‖22

}
, we get the require-

ment

α ≤ min

{
2

µd2
,

1

4Ldmaxi ‖ξi‖22

}
.

Typically, d � 1
µ , so the leading term in the maximum above is the second one and we get O

(
1
d

)
requirement instead of previous O

(
1
n

)
.
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D.5 The conclusion of subspace SEGA

Let us recall that gk = hk + θkB
−1Zk(∇f(xk)− hk). A careful examination shows that when we

reduce θk from O(n) to O(d), we put more trust in the value of hk with the benefit of reducing the
variance of gk. This insight points out that a practical implementation of the algorithm may exploit
the fact that hk learns the gradient of f by using smaller θk.

It is also worth noting that SEGA is a stationary point algorithm regardless of the value of θk. Indeed,
if one has xk = x∗ and hk = ∇f(x∗), then gk = ∇f(x∗) for any θk. Therefore, once we get a
reasonable hk, it is well grounded to choose gk to be closer to hk. This argument is also supported
by our experiments.

Finally, the ability to take bigger stepsizes is also of high interest. One can think of extending other
methods in this direction, especially if interested in applications with a small rank of matrix A.

E Simplified Analysis of SEGA 1

In this section we consider the setup from Example 2.1 with B = I uniform probabilities: pi = 1/n

for all i and proximal term R = 0. We now state the main complexity result.

Theorem E.1. Let B = I and choose D to be the uniform distribution over unit basis vectors in
Rn. Choose σ > 0 and define

Φk
def
= ‖xk − x∗‖22 + σα‖hk‖22,

where {xk, hk}k≥0 are the iterates of the gradient sketch method. If the stepsize satisfies

0 < α ≤ min

1− Lσ
n

2Ln
,

1

n
(
µ+ 2(n−1)

σ

)
 , (48)

then ED
[
Φk+1

]
≤ (1− αµ)Φk. This means that

k ≥ 1

αµ
log

1

ε
⇒ E

[
Φk
]
≤ εΦ0.

In particular, if we let σ = n
2L , then α = 1

(4L+µ)n satisfies (48), and we have the iteration complexity

n

(
4 +

1

κ

)
κ log

1

ε
= Õ(nκ),

where κ def
= L

µ is the condition number.

This is the same complexity as NSync [41] under the same assumptions on f . NSync also needs just
access to partial derivatives. However, NSync uses variable stepsizes, while SEGA can do the same
with fixed stepsizes. This is because SEGA learns the direction gk using past information.

E.1 Technical Lemmas

Since f is L–smooth, we have

‖∇f(xk)‖22 ≤ 2L(f(xk)− f(x∗)). (49)

On the other hand, by µ–strong convexity of f we have

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉+
µ

2
‖x∗ − xk‖22. (50)
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Lemma E.2. The variance of gk as an estimator of∇f(xk) can be bounded as follows:

ED
[
‖gk‖22

]
≤ 4Ln(f(xk)− f(x∗)) + 2(n− 1)‖hk‖22. (51)

Proof: In view of (9), we first write

gk = hk − 1

pi
e>i h

kei︸ ︷︷ ︸
a

+
1

pi
e>i ∇f(xk)ei︸ ︷︷ ︸

b

,

and note that pi = 1/n for all i. Let us bound the expectation of each term individually. The first
term is equal to

ED
[
‖a‖22

]
= ED

[∥∥hk − ne>i hkei∥∥2

2

]
= ED

[∥∥(I− neie>i )hk∥∥2

2

]
= (hk)>ED

[(
I− neie>i

)> (
I− neie>i

)]
hk

= (n− 1)‖hk‖22.
The second term can be bounded as

ED
[
‖b‖22

]
= ED

[∥∥ne>i ∇f(xk)ei
∥∥2

2

]
= n2

n∑
i=1

1

n
(e>i ∇f(xk))2

= n‖∇f(xk)‖22
= n‖∇f(xk)−∇f(x∗)‖22

(49)
≤ 2Ln(f(xk)− f(x∗)),

where in the last step we used L–smoothness of f . It remains to combine the two bounds.

Lemma E.3. For all k we have

ED
[
‖hk+1‖22

]
=

(
1− 1

n

)
‖hk‖22 +

1

n
‖∇f(xk)‖22. (52)

Proof: We have

ED
[
‖hk+1‖22

] (8)
= ED

[∥∥hk + e>ik(∇f(xk)− hk)eik
∥∥2

2

]
= ED

[∥∥(I− eike>ik)hk + eike
>
ik
∇f(xk)

∥∥2

2

]
= ED

[∥∥(I− eike>ik)hk∥∥2

2

]
+ ED

[∥∥eike>ik∇f(xk)
∥∥2

2

]
= (hk)>ED

[(
I− eike>ik

)> (
I− eike>ik

)]
hk(∇f(xk))>ED

[
(eike

>
ik

)>eike
>
ik

]
∇f(xk)

= (hk)>ED
[
I− eike>ik

]
hk + (∇f(xk))>ED

[
eike

>
ik

]
∇f(xk)

=

(
1− 1

n

)
‖hk‖22 +

1

n
‖∇f(xk)‖22.

E.2 Proof of Theorem E.1

We can now write

ED
[
‖xk+1 − x∗‖22

]
= ED

[
‖xk − αgk − x∗‖22

]
= ‖xk − x∗‖22 + α2ED

[
‖gk‖22

]
− 2α〈ED

[
gk
]
, xk − x∗〉

(7)
= ‖xk − x∗‖22 + α2ED

[
‖gk‖22

]
− 2α〈∇f(xk), xk − x∗〉

(50)
≤ (1− αµ)‖xk − x∗‖22 + α2ED

[
‖gk‖22

]
− 2α(f(xk)− f(x∗)).
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Using Lemma E.2, we can further estimate

ED
[
‖xk+1 − x∗‖22

]
≤ (1− αµ)‖xk − x∗‖22

+2α(2Lnα− 1)(f(xk)− f(x∗)) + 2(n− 1)α2‖hk‖22.

Let us now add σαED
[
‖hk+1‖22

]
to both sides of the last inequality. Recalling the definition of the

Lyapunov function, and applying Lemma B.3, we get

ED
[
Φk+1

]
≤ (1− αµ)‖xk − x∗‖22 + 2α(2Lnα− 1)(f(xk)− f(x∗)) + 2(n− 1)α2‖hk‖22

+σα

(
1− 1

n

)
‖hk‖22 +

σα

n
‖∇f(xk)‖22

(49)
≤ (1− αµ)‖xk − x∗‖22 + 2α

(
2Lnα+

Lσ

n
− 1

)
︸ ︷︷ ︸

I

(f(xk)− f(x∗))

+

(
1− 1

n
+

2(n− 1)α

σ

)
︸ ︷︷ ︸

II

σα‖hk‖22.

Let us choose α so that I ≤ 0 and II ≤ 1 − αµ. This leads to the bound (48). For any α > 0

satisfying this bound we therefore have ED
[
Φk+1

]
≤ (1 − αµ)Φk, as desired. Lastly, as we have

freedom to choose σ, let us pick it so as to maximize the upper bound on the stepsize.

F Simplified Analysis of SEGA II

In this section we consider the setup from Example 2.1 with arbitrary non-uniform probabilities:
pi > 0 for all i and proximal term R = 0. We provide a simplified analysis of SEGA in this scenario.
However, we will do this under slightly different assumptions. In particular, we shall assume that
smoothness and strong convexity of f are measured with respect to the same norm.

In this setup, as we shall see, uniform probabilities are optimal. That is, uniform probabilities are
identical to the importance sampling probabilities. We note that this would be the case even for
standard coordinate descent under these assumptions, as follows from the results in [41].

Let G = Diag(g1, . . . , gn) � 0 and assume that

‖∇f(x)−∇f(y)‖G−1 ≤ L‖x− y‖G

and7

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2G

for all x, y ∈ Rn. These two assumptions combined lead to the following inequalities:

f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2G ≤ f(x) ≤ f(y) + 〈∇f(y), x− y〉+

L

2
‖x− y‖2G.

We define gk as before, but change the method to:

xk+1 = xk − αG−1gk (53)

We now state the main complexity result.

7Note that in the strong convexity inequality below the scalar product is without any additional metric unlike
in other sections.
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Theorem F.1. Choose σ > 0 and define Φk
def
= ‖xk − x∗‖2G + σα‖hk‖2

Diag
(

1
gipi

), where

{xk, hk}k≥0 are the iterates of the gradient sketch method. If the stepsize satisfies

0 < α ≤ min
i

{
pi

(
1

µ+ L
− σ

2

)
,

pi
2
σ (1− pi) + 2Lµ

µ+L

}
, (54)

then ED
[
Φk+1

]
≤
(

1− αµ 2L
µ+L

)
Φk. This means that

k ≥ L+ µ

2αLµ
log

1

ε
⇒ E

[
Φk
]
≤ εΦ0.

In particular, if we choose gi = 1 and pi = 1
n for all i, then if we set σ = 1

2L , we can choose stepsize

α = 3L−µ
4Ln(L+µ) , and obtain the rate 2L+2µ

3L−µ n
(
L
µ + 1

)
log 1

ε ≤ 2n
(
L
µ + 1

)
log 1

ε .

F.1 Two lemmas

Lemma F.2. Let d1, . . . , dn > 0. The variance of gk as an estimator of∇f(xk) can be bounded as
follows:

ED
[
‖gk‖2Diag(di)

]
≤ 2‖hk‖2

Diag
(
di

1−pi
pi

) + 2‖∇f(xk)‖2
Diag

(
di
pi

). (55)

Proof: In view of (9), we first write

gk = hk − 1

pi
e>i h

kei︸ ︷︷ ︸
a

+
1

pi
e>i ∇f(xk)ei︸ ︷︷ ︸

b

.

Let us bound the expectation of each term individually. The first term is equal to

ED
[
‖a‖2G−1

]
= ED

[∥∥∥∥hk − 1

pi
e>i h

kei

∥∥∥∥2

Diag(di)

]

= ED

[∥∥∥∥(I− 1

pi
eie
>
i

)
hk
∥∥∥∥2

Diag(di)

]

= (hk)>ED

[(
I− 1

pi
eie
>
i

)>
Diag(di)

(
I− 1

pi
eie
>
i

)]
hk

= (hk)>ED
[(

Diag(di)−
2di
pi
eie
>
i +

di
p2
i

eie
>
i

)]
hk

=

n∑
i=1

di

(
1

pi
− 1

)
(hki )2.

The second term can be bounded as

ED
[
‖b‖2Diag(di)

]
= ED

[∥∥∥∥ 1

pi
e>i ∇f(xk)ei

∥∥∥∥2

Diag(di)

]
=

n∑
i=1

di
pi

(e>i ∇f(xk))2.

It remains to combine the two bounds.

Lemma F.3. For all v ∈ Rn and d1, . . . , dn > 0 we have

ED
[
‖hk+1 − v‖2Diag(di)

]
= ‖hk − v‖2Diag(di(1−pi)) + ‖∇f(xk)− v‖2Diag(dipi)

. (56)
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Proof: We have

ED
[
‖hk+1 − v‖2Diag(di)

]
(8)
= ED

[∥∥hk + e>i (∇f(xk)− hk)ei − v
∥∥2

Diag(di)

]
= ED

[∥∥(I− eie>i ) (hk − v) + eie
>
i (∇f(xk)− v)

∥∥2

Diag(di)

]
= ED

[∥∥(I− eie>i ) (hk − v)
∥∥2

Diag(di)

]
+ ED

[∥∥eie>i (∇f(xk)− v)
∥∥2

Diag(di)

]
= (hk − v)>ED

[(
I− eie>i

)>
Diag(di)

(
I− eie>i

)]
(hk − v)

+(∇f(xk)− v)>ED
[
(eie

>
i )>Diag(di)eie

>
i

]
(∇f(xk)− v)

= (hk − v)>ED
[
Diag(di)− dieie>i

]
(hk − v)

+(∇f(xk)− v)>ED
[
dieie

>
i

]
(∇f(xk)− v)

= ‖hk − v‖2Diag(di(1−pi)) + ‖∇f(xk)− v‖2Diag(dipi)
.

F.2 Proof of Theorem F.1

Proof: Since f is L–smooth and µ–strongly convex, we have the inequality

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L
‖x− y‖2G +

1

µ+ L
‖∇f(x)−∇f(y)‖2G−1 .

In particular, we will use it for x = xk and y = x∗:

〈∇f(xk), x∗ − xk〉 ≤ − µL

µ+ L
‖x− x∗‖2G −

1

µ+ L
‖∇f(xk)‖2G−1 . (57)

We can now write

ED
[
‖xk+1 − x∗‖2G

] (53)
= ED

[
‖xk − αG−1gk − x∗‖2G

]
= ‖xk − x∗‖2G + α2ED

[
‖G−1gk‖2G

]
− 2α〈ED

[
gk
]
, xk − x∗〉

(7)
= ‖xk − x∗‖2G + α2ED

[
‖gk‖2G−1

]
+ 2α〈∇f(xk), x∗ − xk〉

(57)
≤

(
1− αµ 2L

µ+L

)
‖xk − x∗‖2G + α2ED

[
‖gk‖2G−1

]
− 2α

µ+L‖∇f(xk)‖2G−1 .

Using Lemma F.2 to bound ED
[
‖gk‖2G−1

]
, we can further estimate

ED
[
‖xk+1 − x∗‖2G

]
≤

(
1− αµ 2L

µ+L

)
‖xk − x∗‖2G + 2α2‖∇f(xk)‖2

Diag
(

1
pigi

)
− 2α
µ+L‖∇f(xk)‖2G−1 + 2α2‖hk‖2

Diag

(
1−pi
pigi

).

Let us now add σαED

[
‖hk+1‖2

Diag
(

1
gipi

)
]

to both sides of the last inequality. Recalling the defi-

nition of the Lyapunov function, and applying Lemma F.3 with v = 0 and di = 1
gipi

, we get

ED
[
Φk+1

]
≤

(
1− αµ 2L

µ+L

)
‖xk − x∗‖2G + 2α2‖∇f(xk)‖2

Diag
(

1
pigi

) +
(
ασ − 2α

µ+L

)
‖∇f(xk)‖2G−1

+(2α2 + ασ)‖hk‖2
Diag

(
1−pi
pigi

)
≤

(
1− αµ 2L

µ+L

)
‖xk − x∗‖2G + σα‖hk‖2

Diag
(
( 2α
σ +1) 1−pi

pigi

)
+‖∇f(xk)‖2

Diag
(

2α2

pigi
+σα
gi
− 2α

(µ+L)gi

).
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If we now choose α > 0 such that

2α

pi
+ σ − 2

µ+ L
≤ 0,

(
2α

σ
+ 1

)
(1− pi) ≤ 1− αµ 2L

µ+ L
,

then we get the recursion

ED
[
Φk+1

]
≤
(

1− αµ 2L
µ+L

)
Φk ≤ (1− αµ)Φk.

G Extra Experiments

G.1 Evolution of Iterates: Extra Plots

Here we show some additional plots similar to Figure 1, which we believe help to build intuition
about how the iterates of SEGA behave. We also include plots for biasSEGA, which uses biased
estimators of the gradient instead. We found that the iterates of biasSEGA often behave in a more
stable way, as could be expected given the fact that they enjoy lower variance. However, we do not
have any theory supporting the convergence of biasSEGA; this is left for future research.

Figure 5: Evolution of iterates of
SEGA, CD and biasSEGA (updates
made via hk+1 instead of gk).

Figure 6: Iterates of SEGA, CD and
biasSEGA (updates made via hk+1

instead of gk). Different starting
point.

Figure 7: Iterates of projected
SEGA, projected CD (which do not
converge) and projected biasSEGA
(updates made via hk+1 instead of
gk). The constraint set is repre-
sented by the shaded region.
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G.2 Experiments from Section 5 with empirically optimal stepsize

In the experiments in Section 5, we worked with quadratic functions of the form

f(x)
def
=

1

2
x>Mx− b>x,

where b is a random vector with independent entries from N (0, 1) and M
def
= UΣU> according to

Table 2 for U obtained from QR decomposition of random matrix with independent entries from
N (0, 1). For each problem, the starting point was chosen to be a vector with independent entries
from N (0, 1).

Type Σ

1 Diagonal matrix with first n/2 components equal to 1 and the rest equal to n
2 Diagonal matrix with first n− 1 components equal to 1 and the remaining one equal to n
3 Diagonal matrix with i–th component equal to i
4 Diagonal matrix with components coming from uniform distribution over [0, 1]

Table 2: Spectrum of M.

The results are provided in Figures 8-10. They include zeroth-order experiments and the subspace
version of SEGA.

Figure 8: Counterpart to Figure 2 – convergence illustration of SEGA and PGD. The indicator “Xn” in the label
stands for the setting when the cost of solving linear system is Xn times higher comparing to the oracle call.
Recall that a linear system is solved after each n oracle calls. Empirically best stepsizes were used both PGD

and SEGA.

Figure 9: Counterpart to Figure 3 – comparison of SEGA and randomized direct search for a various problems.
Empirically best stepsizes were used for both methods.

G.3 Experiment: comparison with randomized coordinate descent

In this section we numerically compare the results from Section 4 to analogous results for coordinate
descent (as indicated in Table 1). We consider the ridge regression problem on LibSVM [7] data, for
both primal and dual formulation. For all methods, we have chosen parameters as suggested from
theory Figure 11 shows the results. We can see that in all cases, SEGA is slower to the correspond-
ing coordinate descent method, but still is competitive. We however observe only constant times
difference in terms of the speed, as suggested by Table 1.
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Figure 10: Counterpart to Figure 4 – comparison of SEGA with sketches from a correct subspace versus naive
SEGA. Optimal (empirically) stepsize chosen.

Figure 11: Comparison of SEGA and ASEGA with corresponding coordinate descent methods for
R = 0.
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Figure 12: Comparison of SEGA with CD on logistic regression problem with similar stepsizes.

G.4 Experiment: large-scale logistic regression

In this experiment, we set B to be identity matrix and compare CD to SEGA with coordinate sketches,
both with uniform sampling and with similar stepsizes. The problem considered is logistic regression
with `2 penalty:

min
x∈Rn

1

m

m∑
i=1

log
(
1 + exp(−bia>i x)

)
+
µ

2
‖x‖22,

where ai and bi are data-dependent. Clearly, this regularizer is separable, so we can easily apply
both methods. The value of µ was chosen to be of order 1

m in both experiments. Here we use real-
world large scale datasets from the LIBSVM [7] library, a summary can be found in Table 3. To
make it clear whether CD and SEGA converge with the same speed if given similar stepsizes, we use
stepsize 1

L for CD and 1
dL for SEGA. The results can be found in Figure 12.

Dataset m n L µ

Epsilon 400000 2000 0.25 2.5 · 10−5

Covtype 581012 54 21930585. 25 10−1

Table 3: Description of the datasets used in our logistic regression experiments. Constants m, n, L
and µ denote respectively the size of the training set, the number of features, the Lipschitz constant,
and the value of `2 penalty.
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H Frequently Used Notation

Basic
E [·], P (·) Expectation / Probability
〈·, ·〉B, ‖ · ‖B Weighted inner product and norm: 〈x, y〉B = x>By; ‖x‖B =

√
〈x, x〉B

ei i-th vector from the standard basis
I Identity matrix

λmax(·), λmin(·) Maximal eigenvalue / minimal eigenvalue
f Objective to be minimized over set Rn (1)
R Regularizer (1)
x∗ Global optimum
L Lipschitz constant for∇f
Q Smoothness matrix (10)
M Smoothness matrix, equal to Q−1 for B = I (11)
µ Strong convexity constant

SEGA

D Distribution over sketch matrices S
S Sketch matrix (3)

ED [·] Expectation over the choice of S
b Random variable such that S ∈ Rn×b

ζ(S, x) Sketched gradient at x (2)
Z S

(
S>B−1S

)†
S>

θ Random variable for which ED [θZ] = B (5)
C ED

[
θ2Z

]
Thm 3.3

h, g Biased and unbiased gradient estimators (4), (6)
α Stepsize
Φ Lyapunov function Thm 3.3,
σ Parameter for Lyapunov function Thm 3.3, 4.2

Extra Notation for Section 4
p, P Probability vector and matrix
v vector of ESO parameters (14)

P̂, V̂ Diag(p),Diag(v)

γ α− α2 maxi{ vipi } − σ Thm 4.2
y, z Extra sequences of iterates for ASEGA
τ, β Parameters for ASEGA
Ψ,Υ Lyapunov functions Thm 4.2, C.5
η(v, p) maxi

√
vi
pi

Table 4: Summary of frequently used notation.
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